WO2004060800A1 - 単層カーボンナノチューブの製造方法および製造装置 - Google Patents

単層カーボンナノチューブの製造方法および製造装置 Download PDF

Info

Publication number
WO2004060800A1
WO2004060800A1 PCT/JP2003/017056 JP0317056W WO2004060800A1 WO 2004060800 A1 WO2004060800 A1 WO 2004060800A1 JP 0317056 W JP0317056 W JP 0317056W WO 2004060800 A1 WO2004060800 A1 WO 2004060800A1
Authority
WO
WIPO (PCT)
Prior art keywords
walled carbon
organic solvent
organometallic compound
producing
carbon nanotube
Prior art date
Application number
PCT/JP2003/017056
Other languages
English (en)
French (fr)
Inventor
Shigeo Maruyama
Shohei Chiashi
Original Assignee
Bussan Nanotech Research Institute Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bussan Nanotech Research Institute Inc. filed Critical Bussan Nanotech Research Institute Inc.
Priority to AU2003292716A priority Critical patent/AU2003292716A1/en
Priority to US10/540,826 priority patent/US20060073275A1/en
Priority to JP2004564564A priority patent/JP4443423B2/ja
Publication of WO2004060800A1 publication Critical patent/WO2004060800A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes

Definitions

  • the present invention relates to a method and an apparatus for producing a single-walled carbon nanotube comprising a graphene sheet layer, and particularly to a method for spraying an organometallic compound dissolved in an organic solvent into a high-temperature reactor to obtain high purity and high yield.
  • the present invention relates to a method for producing single-walled carbon nanotubes by using the method and an apparatus for performing the method. Background art
  • a carbon nanotube is a single carbon cluster with a cross-sectional diameter of 10 Onm or less, in which a graph ensheet in which carbon atoms are arranged in a hexagonal mesh has a cylindrical shape.
  • SWNTs single-walled carbon nanotubes
  • SWNTs are produced by arc discharge.
  • a carbon electrode is mixed with metal and carbon by using a hydrocarbon gas as a carbon source and a mixed gas of helium and hydrogen as a carrier gas.
  • a method using an electrode is disclosed.
  • researchers at Rice University used a conventional laser pulse method such as Sma 11ey to vaporize carbon and float metal catalyst fine particles such as konoleto near the focal point of the laser.
  • Japanese Patent No. 27377736 discloses a method as a high-frequency plasma method, in which a hydrocarbon gas and a powdery metal catalyst are blown into a rare gas atmosphere into electrodeless high-frequency plasma.
  • a method of supporting a metal fine particle catalyst such as iron or cobalt on an anodized film and generating low-pressure low-ionization gas plasma by microwave discharge to react carbon and hydrogen is disclosed in Japanese Patent Application Laid-Open No. H11-111. It is disclosed in Japanese Patent Publication No. 0191917.
  • the metal catalyst is brought into contact with the carbon source in a reaction space in a substantially real space in a reaction field, so that the collision between the carbon source and the metal catalyst is efficient, and the amount of carbon source Requires a relatively large amount of metal catalyst.
  • these catalysts remain as impurities in the SWNTs, and this metal removal operation results in defects on the highly reactive SWNT surface.
  • An object of the present invention is to provide a method and a device for producing high-purity single-walled carbon nanotubes with a small amount of impurities such as catalyst metals by a gas phase synthesis method by chemical pyrolysis in a high yield. I do. Disclosure of the invention
  • a raw material gas serving as a carbon source is introduced into a reaction vessel together with a carrier gas, and at the same time, a metal ultrafine particle catalyst is introduced to carry out the reaction at 800 to L200 ° C. This is a method for obtaining bon nanotubes.
  • FIG. 6 is a diagram schematically showing a conventional reactor used for the pyrolysis method.
  • metal fine particles of a catalyst are placed on a substrate and stored in a reaction furnace, and when heated to a reaction temperature, the raw material gas and a carrier gas are passed through to decompose the raw material gas to generate carbon nanotubes. Collect in one.
  • FIG. 2 is a diagram showing an entire apparatus for carrying out the present invention
  • FIG. 1 is a diagram showing an outline of a reaction furnace.
  • the present invention relates to a method for synthesizing single-walled carbon nanotubes by a gas phase synthesis method of carbon nanotubes by thermal decomposition, wherein the carbon nanotubes are heated to 50 to 600 ° C. in a rare gas atmosphere of 500 T 0 rr or less.
  • a solution obtained by dissolving a catalyst made of an organometallic compound in an organic solvent is pressurized with an inert gas and injected from a pore nozzle.
  • the mixed gas of the organic solvent and the organometallic compound degassed in the preheating furnace is heated to 550 to 100 ° C. in a rare gas atmosphere of 500 Torr or less adjacent to the preheating furnace.
  • FIG. 1 is a diagram schematically showing a SWNT reactor of the present invention.
  • FIG. 2 is a view showing the entire manufacturing apparatus of the present invention.
  • FIG. 3 is a scanning electron micrograph of the SWNT manufactured in Example 2.
  • FIG. 4 is a transmission electron micrograph of the SWNT manufactured in Example 2.
  • FIG. 5 is a Raman spectrum diagram of the SWNTs manufactured in Examples 1 to 3.
  • FIG. 6 is a diagram schematically showing a conventional SWNT reactor.
  • FIG. 7 is a scanning electron micrograph of SWNT manufactured in Comparative Example 2.
  • FIG. 8 is a Raman spectrum diagram of SWNTs manufactured in Comparative Examples 1 to 3.
  • FIG. 9 is a diagram showing the results of thermomass spectrometry of the SWNTs manufactured in Example and Comparative Example 4.
  • the organometallic compound is decomposed in a reaction furnace to generate fine metal particles and acts as a catalyst.
  • Such compounds include Feguchisen, Conoretocene, and Nickel Examples thereof include meta-mouth sen such as ruthene, and iron pen carbonate carbonyl (Fe (CO) 5 ).
  • the organic solvent is a solvent for dissolving the organometallic compound and also a raw material for the carbon nanotube.
  • examples of the organic solvent include alcohols such as ethanol, methanol, and propanol, ethers such as dimethyl ether, and ethyl ether, and ketones.
  • the organometallic compound is used after being dissolved in an organic solvent to a concentration of 0.01 to: L mass%, preferably 0.05 to 0.2 mass%. If the amount is less than 0.01% by mass, the effect as a catalyst is not exhibited. If the amount exceeds 1% by mass, the metal in the catalyst is increased in the single-walled carbon nanotube of the product, which is not preferable.
  • the inert gas that can be used in the present invention is preferably a rare gas such as helium or argon, and the inert gas introduced into the reactor may contain 5% by mass or less of hydrogen.
  • the reactor shown in FIG. 1 includes a preheating section, a main heating section, a growth section, and holding means for heating and holding each section at a predetermined temperature.
  • the operating temperature of the preheating section is 50-600 ° C, preferably 100-400 ° C; the main heating section is 550-1000 ° C; Thermal decomposition of carbon raw material).
  • the growth section anneals the carbon atoms generated by the decomposition of the carbon material in the main heating section at a lower temperature than the main heating section to grow the graph ensheet.
  • the nozzle that sprays the solution of the organometallic compound in the organic solvent has a diameter of 0.01 to 1 mm, and sprays the solution as fine droplets to the preheating section of the reactor at a back pressure of 100 to 1000 Torr. I do.
  • the reactor before spraying should be no more than 1 Torr with noble gas.
  • the sprayed droplets are heated and vaporized in the preheating unit. Since all of the sprayed liquid is vaporized, the mixed gas is kept at a constant mixing ratio between the organometallic compound and the organic solvent.
  • the organic metal compound is thermally decomposed in the main heating section to generate fine metal particles, and the organic solvent as a carbon source is decomposed by using the metal particles as a catalyst to generate carbon atoms.
  • this is annealed in the growth section to form a graph ensheet. Lengthen.
  • the supply of the raw materials to the reaction furnace may be performed after evaporating a solution in which an organic metal compound is dissolved in an organic solvent.
  • This method is the most effective method for industrialization because it is not necessary to vaporize the solution by spraying the above solution into the furnace.
  • an evaporator for evaporating the solution a supply system for supplying the evaporated solution into the furnace, a preheating unit and a main heating unit similar to the above configuration are provided. It is desirable to have a growth part.
  • the preheating furnace is 20 cm long and the main heating furnace is 30 cm long.
  • the preheating furnace maintained at 300 ° C and the main heating furnace maintained at 800 ° C, 900 ° C, and 1000 ° C
  • 0.2 mass% ferrocene was pressurized with argon gas to a back pressure of 50 OTor.
  • the evening solution was sprayed from a 0.1 mm nozzle into the glass tube at a rate of 1 g / min.
  • the Hue-mouth ethanol solution was vaporized in the preheating furnace, and the gas pressure became about 2 OO Torr.
  • SWNT was observed with a scanning electron microscope (SEM) and a transmission electron microscope (TEM), and Raman spectroscopy was performed. SEM photographs, TEM photographs and Raman spectra at a main heating temperature of 900 ° C are shown in Figs. Comparative Examples 1 to 3
  • SWNTs were manufactured using the conventional reactor shown in FIG. 6 by the process shown in FIG. 2 in the same manner as in Example 1 above.
  • the heating furnace is 30 cm long. Put solid fluorocene as a catalyst in the substrate and put it in the heating part. With the heating furnace kept at 800 ° C, 900 ° C, and 1000 ° C, evacuate the equipment, and then pressurize the ethanol vapor pressure at room temperature. Flowed ethanol through the tube at approximately 10 Torr. Ethanol was decomposed in the reactor to form SWNTs. The generated SWNTs were trapped in a membrane with a membrane filter with a pore size of 5 zm.
  • the SWNT yield at each reaction temperature was about 30% on a mass basis with respect to the mass of iron and total carbon in Fe-ethanol.
  • the obtained SWNT was observed by SEM, and Raman spectroscopy was performed.
  • the amount of SWNT generated in the reaction system is determined according to the number of collisions between the carbon source ethanol and the catalyst. Therefore, the system
  • the ethanol is supplied at a pressure of 500 Torr, many carbon sources exist in the system. Therefore, it is possible to obtain a sufficient collision probability without using a large amount of the catalyst with respect to the amount of the carbon source in the system, and it is possible to generate SWNT at a high yield. Further, since the amount of the catalyst with respect to the carbon source is small, the amount of the catalyst adhering to SWNT can be reduced.
  • a solution comprising a carbon source and a catalyst source is sprayed.
  • a carbon source and a catalyst source are supplied to the reactor (main heating section).
  • both are present in a state of molecules that are not aggregated in the reaction furnace, and can be efficiently decomposed into a catalyst and carbon atoms, so that the raw material efficiency can be further increased.
  • an organic metal compound is heated in an atmosphere of an inert gas to decompose and aggregate the organic metal to form fine metal particles of about 1 nm.
  • a carbon source such as alcohol at a higher temperature using a catalyst to grow carbon nanotubes. If the heating rate is not appropriate, a large amount of catalyst having a large particle size is generated.
  • a catalyst with a large particle size does not effectively contribute to the production of single-walled carbon nanotubes, And adhere to SWNTs as impurities.
  • FIG. 9 shows the thermomass spectrometry data of SWNT generated by the above method together with the thermomass spectrometry data of SWNT generated in the example of the present invention.
  • the thermal mass spectrometry data of SWNT according to the embodiment of the present invention are different from those of comparative example 4 in that (1) the combustion temperature is higher, and (2) the amount of increase in mass around 300 ° C. (3) There is a large difference between the three points: (3) The amount of mass reduction at 400 ° C or more is large.
  • the difference in combustion temperature indicates the difference in the amount of defects in the generated single-walled carbon nanotubes and the difference in the amount of catalyst that has not been used effectively in the system. Defective SWNTs burn at low temperatures. When a large amount of catalyst metal is not used effectively, the catalyst metal becomes a combustion catalyst and induces the combustion of SWNT, so that SWNT burns at a low temperature. Therefore, it can be seen that the SWNT of this example having a high combustion temperature in the thermal mass spectrometry has few defects and is produced by effectively utilizing the catalytic metal.
  • An increase in mass below 300 ° C indicates oxidation of the catalyst metal, and a difference in the increase indicates a difference in the amount of catalyst metal that was not used effectively.
  • Catalyst metal that has not been effectively used is easily oxidized, whereas catalyst metal that has been effectively used is present inside the SWNT and is not oxidized until the SWNT is burned. Therefore, it can be seen that the SWNT of the present example having a small increase in mass has a smaller amount of catalyst metal that has not been used effectively than the sample of Comparative Example 4.
  • the catalyst metal that is not used effectively forms particles of about 1 Onm, but the particles of about 10 nm found in the TEM photograph correspond to this. In addition, it can be seen from the TEM photograph that amorphous carbon is hardly recognized.
  • a decrease in mass above 400 ° C indicates combustion of carbon nanotubes, and the difference in mass ratio between a mass reduced and saturated state indicates the amount of impurities contained in carbon nanotubes. Is shown. That is, in the method of the present invention, SWNTs with higher purity than the SWNT of Comparative Example 4 can be produced. According to the production method of the present invention, SWNTs with clearly high purity can be obtained in high yield. Industrial applicability
  • the single-walled carbon nanotube produced according to the present invention is useful as an electronic material and a functional material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

 500Torr以下の希ガス雰囲気で、50~600℃の反応炉内予備加熱炉に、有機金属化合物を有機溶媒に溶解した溶液を、不活性ガスにより加圧して細孔ノズルより噴射し、予備加熱され気化した有機溶媒と有機金属化合物混合ガスが、この予備加熱炉に隣接した、500Torr以下の希ガス雰囲気で550~1000℃に熱せられた主加熱炉内に供給され、有機金属化合物が熱分解されて金属微粒子を生じ、これを触媒として有機溶媒が熱分解されて炭素原子を生じ、主加熱炉の下流側に設けた成長部でグラフェンシートの成長が行われ、単層カーボンナノチューブが生成する。有機金属化合物としてはフェロセン、鉄カルボニール、有機溶媒としてはアルコール類、エーテル類が使用できる。

Description

明 細 書 単層カーボンナノチューブの製造方法および製造装置 技術分野
本発明は、 グラフエンシートー層からなる単層カーボンナノチューブの製造方 法及び装置に関し、 特に有機溶媒に溶解した有機金属化合物を高温の反応炉内に 噴霧することによって、 高純度および高収率で単層カーボンナノチューブを製造 する方法とそれを行うための装置に関する。 背景技術
カーボンナノチューブは、 炭素原子が六角網目状に配列したグラフエンシート が筒状になっている、 断面の直径が 10 Onm以下の炭素クラスタ一である。 特 にグラフエンシートが一層の単層カーボンナノチューブ (以下 SWNT) は電気 的あるいは化学的特性が特異であることから機能材料として有用であることが数 々報告されている。
SWNTの製造方法としては、 ァ一ク放電法、 レーザ一アブレ一シヨン法、 高 周波プラズマ法、 熱分解法が知られている。 最近では、 これらの製造方法におい て使用する触媒の種類、 その担持法等種々に対して工夫が報告されている。 アーク放電による SWNTの製造方法として、 特開平 07— 197325号公 報には、 炭素源として炭化水素、 キャリアガスにはヘリウムと水素の混合ガスを 使用して、 炭素電極と、 金属と炭素の混合電極を用いる方法が開示されている。 ライス大学の研究者は、 Sma 11 e y等の伝統的なレーザーパルス法で炭素 を気化させると共に、 コノ レト等の金属触媒微粒子をレーザ一焦点付近に浮遊さ せ、 生じた遊離状態の炭素クラス夕一を 1000〜1400°C、 100〜800 To rrでアニーリングする方法を開示している (特表 2001-520615 号公報) 。
特許第 2 7 3 7 7 3 6号公報には、 高周波プラズマ法として、 無電極の高周波 プラズマ中に炭化水素ガスと粉体状金属触媒を希ガス雰囲気中に吹き込む方法が 開示されている。
さらに、 陽極酸化膜上に鉄、 コバルトなどの金属微粒子触媒を担持させ、 マイ クロ波グロ一放電による低圧低電離ガスプラズマを発生させて、 炭素と水素を反 応させる方法が特開平 1 1—0 1 1 9 1 7号公報に開示されている。
しかしながら、 上記いずれの方法でも金属触媒を炭素源と反応場において、 真 空に近い状態の実質空間にて接触反応させるため、 炭素源と金属触媒の衝突は確 率的であり、 炭素源の量に対して比較的多量の金属触媒を必要とする。 したがつ て、 これらの触媒が不純物として S WN T中に残留し、 この金属除去の操作で反 応性の高い S WN T表面に欠陥をつくる結果となる。
本発明は、 化学熱分解による気相合成法によって、 触媒金属などの不純物の少 ない高純度の単層カーボンナノチューブを高収率で製造する方法と製造するため の装置を提供することを目的とする。 発明の開示
化学熱分解法は、 反応容器中に炭素源となる原料ガスをキヤリァガスと共に導 入し、 同時に金属超微粒子触媒を導入して 8 0 0〜; L 2 0 0 °Cで反応を行い、 力 —ボンナノチューブを得る方法である。
図 6は熱分解法に使用される従来の反応炉の概略を示す図である。 この方法で は触媒の金属微粒子を基板に乗せて反応炉内に収納し、 反応温度に加熱したとこ ろへ原料ガスとキャリアガスを通して原料ガスを分解し、 カーボンナノチューブ を生成させ、 これをフィル夕一で捕集する。
図 2は、 本発明を実施するための装置の全体を示す図であり、 図 1は反応炉の 概略を示す図である。 本発明は、 熱分解によるカーボンナノチュープの気相合成法によって単層力一 ボンナノチューブを合成する方法であって、 5 0 0 T 0 r r以下の希ガス雰囲気 で 5 0〜6 0 0 °Cに保たれた反応炉内予備加熱炉に、 有機金属化合物からなる触 媒を有機溶媒に溶解した溶液を、 不活性ガスにより加圧して細孔ノズルより噴射 する。 予備加熱炉で気ィ匕した有機溶媒と有機金属化合物混合ガスが、 この予備加 熱炉に隣接した、 5 0 0 T o r r以下の希ガス雰囲気で 5 5 0〜 1 0 0 0 °Cに熱 せられた主加熱炉内で熱分解され、 主加熱炉の下流側に設けた成長部でグラフェ ンシ一トの成長が行われる気相合成法によるグラフェンシートがー層の単層力一 ボンナノチューブを生成する方法とその方法を実施して単層カーボンナノチュー ブを製造するための装置である。
図面の簡単な説明
図 1は、 本発明の SWN Tの反応炉の概略を示す図である。
図 2は、 本発明の製造装置の全体を示す図である。
図 3は、 実施例 2で製造した SWN Tの走査型電子顕微鏡写真である。
図 4は、 実施例 2で製造した SWN Tの透過型電子顕微鏡写真である。
図 5は、 実施例 1〜 3で製造した SWN Tのラマン分光スぺクトル図である。 図 6は、 従来の SWN Tの反応炉の概略を示す図である。
図 7は、 比較例 2で製造した SWN Tの走査型電子顕微鏡写真である。
図 8は、 比較例 1〜3で製造した S WN Tのラマン分光スペクトル図である。 図 9は、 実施例及び比較例 4で製造した SWN Tの熱質量分析結果を示す図で ある。
発明を実施するための最良の形態
本発明で有機金属化合物は、 反応炉で分解して金属微粒子を生成し、 触媒とし て作用するもので、 このような化合物としてフエ口セン、 コノ レトセン、 ニッケ ルセン等のメタ口セン、 鉄ペン夕カルボニール (Fe (CO) 5) が挙げられ、 特に鉄ィ匕合物であるフエ口センが好ましい。
有機溶媒は、 有機金属化合物を溶解する溶剤であると同時にカーボンナノチュ ーブの原料ともなるものである。 有機溶媒としては、 エタノール、 メタノール、 プロパノール等のアルコール類、 ジメチルェ一テル、 ジェチルェ一テル等のエー テル類ゃケトン類が挙げられる。
本発明では、 有機金属化合物を有機溶媒に 0. 01〜: L質量%、 好ましくは 0 . 05〜0. 2質量%の濃度に溶解して使用する。 0. 01質量%未満では触媒 としての効果が発揮されず、 1質量%を超えると製品の単層カーボンナノチュー ブに触媒中の金属が多くなり、 好ましくない。
本発明で使用できる不活性ガスとしては、 ヘリゥムゃアルゴン等の希ガス類が よく、 反応炉に導入する不活性ガスには水素を 5質量%以下含んでいてもよい。 図 1に示す反応炉は予熱部、 主加熱部及び成長部と各部を所定の温度に加熱保 持する保持手段からなる。 予熱部の操作温度は 50-600°C、 好ましくは 10 0〜 400 °C;、 主加熱部では 550〜1000°C;、 好ましくは 700〜: L 000 °cで有機金属化合物および有機溶媒 (炭素原料) の熱分解を行う。成長部は主加 熱部より低い温度で主加熱部で炭素原料が分解して生成した炭素原子をァニーリ ングしてグラフエンシートを成長させる。
この反応炉において、 有機金属化合物の有機溶媒による溶液を噴霧するノズル は、 口径が 0. 01〜 1 mmであり、 背圧 100〜1000Tor rで反応炉の 予熱部へ溶液を微小液滴として噴霧する。 噴霧前反応炉は、 希ガスで 1 T o r r 以下にしておく。 噴霧された液滴は予熱部で加熱されて気化する。 噴霧した液が すべて気化するので気ィ匕したガスは有機金属化合物と有機溶媒の混合比が一定に 保たれる。 気ィ匕したガスは、 主加熱部で有機金属化合物が加熱分解されて微小な 金属粒子を生じ、 その金属粒子を触媒として炭素源である有機溶媒が分解して炭 素原子を生成する。 次にこれを成長部でァニーリングしてグラフエンシートを成 長させる。 ァニ一リングによって成長したカーボンナノチューブを 1〜2 Oj m の孔径を有する膜フィルタ一で捕集することによって高純度の単層力一ボンナノ チューブを高収率で得ることができる。
なお、 反応炉への原料の供給は、 有機溶媒に有機金属化合物を溶解した溶液を 蒸発させてから行ってもよい。 この方法は、 炉内に上記溶液を噴霧して溶液を気 化させる必要がないため、 工業化において最も有効な方法である。 このような方 法を実現するためには、 上記溶液を蒸発させるための蒸発器と、 蒸発した溶液を 炉内に供給するための供給系と、 上記構成と同様の予熱部と主加熱部と成長部と を備えていることが望ましい。 実施例
以下、 実施例、 比較例により本発明を更に詳しく説明する。 本発明は下記の実 施例に限定されるものではない。
実施例 1〜 3
図 1に示す反応炉を用い、 図 2に示す製造プロセスにより製造した。
口一夕リ一ポンプで真空状態にした直径 24 mmのガラス管を 2つの炉で加熱 する。 予備加熱炉は長さ 20 cm、 主加熱炉は長さ 30 cmである。 予備加熱炉 を 300°C、 主加熱炉を 800°C、 900°C、 1000°Cに保った状態で、 アル ゴンガスによって背圧 50 OTor rに加圧された 0. 2質量%フエロセンのェ 夕ノール溶液を 0. lmm のノズルより、 1 g/m i nの速度でガラス管内に 噴射した。 フエ口セン—エタノール溶液は、 予備加熱炉で気化し、 ガス圧は約 2 O O To rrとなった。 この気化したガス混合物を主加熱炉で加熱するとフエ口 セン中の鉄が鉄クラス夕を形成し、 ェ夕ノ一ルが分解して S WN Tが生成した。 これを成長部で冷却した。 成長部は反応管を保温することなしに室温にさらした 状態で、 操作を行った。 生成された SWNTは、 成長部の下流にある孔径 5 m のメンプレンフィル夕一で膜状にトラップした。 各反応温度における S W N Tの 収率は、 フエ口セン—エタノール中の鉄と全炭素の質量に対して質量基準でいず れも約 80%であった。
得られた SWNTを走査型電子顕微鏡 (SEM) 及び透過型電子顕微鏡 (TE M) で観察し、 またラマン分光分析を行った。 主加熱温度 900°Cのときの SE M写真、 TEM写真及びラマンスペクトルをそれそれ図 3、 4、 5に示す。 比較例 1 ~ 3
上記実施例 1と同様図 2に示すプロセスで、 図 6に示す従来型の反応炉を用い て SWNTを製造した。
口一夕リーポンプで真空状態にした直径 24mmのガラス管を炉で加熱する。 加熱炉は長さ 30 cmである。触媒として固体のフヱロセンを基板に入れて加熱 部分に入れ、 加熱炉を 800°C、 900°C:、 1000°Cに保った状態で、 装置を 真空にした上で、 常温のエタノールの蒸気圧によって凡そ 10 Tor rで管内に エタノールを流した。 エタノールは、 反応炉内で分解して SWNTが生成した。 生成された SWNTは、 孔径 5 zmのメンブレンフィル夕一で膜状にトラップし た。
各反応温度における S WN Tの収率は、 フエ口セン一エタノ一ル中の鉄と全炭 素の質量に対して質量基準でいずれも約 30%であった。
得られた S WN Tを S E Mで観察し、 ラマン分光分析を行つた。
加熱温度 900°Cのときの SEM写真及びラマンスペクトルをそれそれ図 7、 8 に示す。
このような反応系では、 炭素源であるエタノ一ルと触媒の衝突回数に応じて、 その反応系内で生成される SWNTの量が決定される。従って、 系内へのェ夕ノ
—ルの供給量が少ない状態で SWN Tを生成する場合には、 系内に多量の触媒を 供給して互いの衝突確率を上げなければならない。 しかしながら、 多くの触媒は
、 炭素源の分解に寄与するわけではない。 このため、 系内に供給される炭素源お よび触媒源の総量と、 生成される SWN Tの量との比率である収率は低下する。 さらに、 系内に存在するエタノールの量に対する触媒の量が増加するほど、 生 成された S WN Tに不純物として付着する触媒の量が増加する。 このような不純 物は、 酸処理などの金属除去処理により除去することができるが、 SWN T表面 に反応性の高い欠陥をつくる原因となる。 このため、 系内の触媒の量を極力少量 として、 SWN Tに付着する触媒の量を低減し、 SWN Tの純度を向上させるこ とが望ましい。
上記の比較例においては、 1 0 T o r rの圧力でエタノールを供給しているた め、 反応系内に存在するエタノール量が少ない。 このため、 上述した通り、 収率 が低いばかりか、 高純度の SWN Tは生成されない。
これに対して、 本発明の実施例においては、 5 0 0 T o r rの圧力でェタノ一 ルが供給されていることから、 多くの炭素源が系内に存在している。 このため、 系内の炭素源の量に対して触媒の量を多く存在させなくても十分な衝突確率を得 ることが可能となり、 高い収率で SWN Tを生成することが可能となる。 さらに 、 炭素源に対する触媒の量が少ないため、 SWN Tに付着する触媒の量を減少さ せることが可能となる。
さらに、 本発明の実施例においては、 炭素源と触媒源とからなる溶液を噴霧し
、 さらに気化させた後に、 反応炉(主加熱部) に炭素源と触媒源とを供給してい る。 これにより、 反応炉において両者とも凝集していない分子の状態で存在させ て、 効率良く触媒および炭素原子に分解させることが可能となり、 原料効率をさ らに高めることができる。 また、 効率的に SWN Tを合成する際には、 有機金属 化合物を不活性ガスの雰囲気下で加熱して有機金属を分解、 凝集させ、 l nm程 度の微細な金属粒子を形成する。 その後、 さらに高い温度でアルコールなどの炭 素源を触媒を用いて分解させ、 力一ボンナノチューブを成長させることが望まれ る。 加熱速度が適当でないと粒子サイズの大きな触媒が多量に生成する。粒子サ ィズの大きな触媒は、 単層カーボンナノチューブの生成に有効に寄与せず、 残留 して SWNTに不純物として付着する。 予備加熱炉を設け、 原料ガスのフィード 量やキヤリアガスの流量を変えることにより、 加熱速度をコントロール可能であ り、 反応に有効に利用できる触媒量を増やすことができる。
また、 本発明の方法では、 原料溶液を噴霧し、 気化させる方式をとつているた め、 反応炉をあえて真空状態に保つ必要がない。 本発明の実施例において、 多量 の原料を炉内に供給可能となっているのはこのためであるが、 さらに、 炉内を真 空状態に保つ必要がないことから、 炉内圧力を大気圧程度まで高めることが可能 となり、 高価な真空容器や真空ポンプを用いずに反応系を安価に構築することが できる。 このため、 本発明の製造方法は、 工業ィ匕において大きな優位性を有して いる。 比較例 4
触媒金属源として鉄カルボニル、 炭素源として一酸化炭素を用いた SWN Tの 生成例が報告されている (P. Nikolaev e t a 1. , Chemi c a 1 Phys ics Letters, 313, 91— 97 (1999) ) 。 この報告例においては、 200~500°Cに昇温された COと鉄カルボニルと を箄 1の原料供給管を通じて反応炉内に供給するとともに、 850°Cに昇温され た COを第 2の原料供給管を通じて反応炉に供給する。 この時、 COが鉄の作用 によって分解され、 炭素原子が得られ、 SWNTが生成される。 なお、 炉内圧力 は 1〜 10 a t m、 反応炉内温度は 800〜 1200°Cである。
上述のような方法で生成した S WN Tについての熱質量分析データを、 本発明 の実施例で生成した SWNTの熱質量分析データとともに図 9に示す。
本発明の実施例の SWNTの熱質量分析デ一夕は、 比較例 4の熱質量分析デー 夕に対して、 ( 1 )燃焼温度が高い、 ( 2 ) 300 °C付近での質量の増加量が少 ない、 (3) 400°C以上での質量の減少量が多い、 という 3点の大きな差を有 している。 燃焼温度の違いは、 生成した単層カーボンナノチューブ中の欠陥量の違いと、 系内で有効に使われていない触媒の量の違いを示している。 欠陥の多い SWNT は低温で燃焼する。 また、 有効に使われなかった触媒金属が多い場合には、 触媒 金属が燃焼触媒となり、 SWNTの燃焼を誘起するため、 SWNTは低温で燃焼 する。従って、 熱質量分析において燃焼温度が高い本実施例の SWNTは、 欠陥 が少なく、 触媒金属を有効に利用して生成されたものであることがわかる。
300°C以下における質量の増加は、 触媒金属の酸化を示しており、 増加量の 違いは、 有効に使われなかった触媒金属の量の違いを示している。 有効に使われ なかった触媒金属は容易に酸化されるのに対し、 有効に使われた触媒金属は SW NTの内部に存在するため、 SWNTが燃焼するまで酸化されない。従って、 質 量増加の少ない本実施例の S WN Tには、 有効に使われなかつた触媒金属の付着 量が比較例 4のサンプルよりも少ないことがわかる。 なお、 有効に使われない触 媒金属は 1 Onm程度の粒子を形成するが、 TEM写真において認められる 10 nm程度の粒子はこれに該当する。 また、 TEM写真から非晶質カーボンがほと んど認められないことがわかる。
また、 400°C以上での質量の減少は、 力一ボンナノチューブの燃焼を示して おり、 質量が減少し飽和した状態の質量比の違いは、 力一ボンナノチューブに含 まれていた不純物の量を示している。 すなわち、 本発明の方法においては、 比較 例 4の SWNTよりも高純度な SWNTを生成することができるものである。 本発明の製造方法によると、 明らかに純度の高い SWNTを高収率で得ること ができる。 産業上の利用可能性
本発明により製造される単層カーボンナノチューブは、 電子材料、 機能材料と して有用である。

Claims

1 . 気相合成法によって単層力一ボンナノチュ一ブを合成する方法であって、 希ガス雰囲気の炉内に有機溶媒に有機金属化合物を溶解した溶液を噴霧するステ ップと、
噴霧した溶液を加熱することによつて前記有機金属化合物および有機溶媒をそれ 請
それ気^:するステップと、
気化した有機金属化合物を加熱分解して金属を得るとともに、 気ィ匕した有機溶媒 の
を前記金属を分解触媒として加熱分解して炭素原子を得るステップと、 得られた炭素原子を用いてグラフヱンシ一トを成長させるステップ
とを有することを特徴とする単層力一ボンナノチューブの製造方法。
2 . 炉内の圧力を 7 6 O T o r r以下にすることを特徴とする請求の範囲 1記載 の単層カーボンナノチューブの製造方法。
3 . 炉内の圧力を 5 0 0 T o r r以下にすることを特徴とする請求の範囲 2記載 の単層カーボンナノチューブの製造方法。
4 . 有機溶媒が、 アルコールであることを特徴とする請求の範囲 1ないし 3のい ずれか 1項に記載の単層力一ボンナノチューブの製造方法。
5 . アルコールが、 エタノールであることを特徴とする請求の範囲 4記載の単層 カーボンナノチューブ製造方法。
6 . 有機金属化合物が、 メタ口センであることを特徴とする請求の範囲 1ないし 5のいずれか 1項に記載の単層力一ボンナノチューブの製造方法。
7 . メタ口センが、 フエ口センであることを特徴とする請求の範囲 6記載の単層 カーボンナノチューブの製造方法。
8 . 有機溶媒に有機金属化合物を溶解した溶液の有機金属化合物の濃度が、 0 . 0 1〜1質量%であることを特徴とする請求の範囲 1ないし 7のいずれか 1項に 記載の単層力一ボンナノチュープの製造方法。
9. 背圧が 100~1000To r rの不活性ガスにより加圧された前記溶液を 口径 0. 01〜 lmmのノズルを通じて噴霧することを特徴とする請求の範囲 1 ないし 8のいずれか 1項に記載の単層カーボンナノチューブの製造方法。
10. 有機溶媒および有機金属化合物を気ィ匕するための加熱温度が、 50-60 0 °Cであることを特徴とする請求の範囲 1ないし 9のいずれか 1項に記載の単層 カーボンナノチューブの製造方法。
11. 有機溶媒および有機金属化合物を気ィ匕するための加熱温度が、 100〜4 00°Cであることを特徴とする請求の範囲 10記載の単層力一ボンナノチューブ の製造方法。
12. 有機溶媒および有機金属化合物を加熱分解するための加熱温度が、 550 -1000°Cであることを特徴とする請求の範囲 1ないし 11のいずれか 1項に 記載の単層カーボンナノチューブの製造方法。
13. 有機溶媒および有機金属化合物を加熱分解するための加熱温度が、 700 〜1000°Cであることを特徴とする請求の範囲 12記載の単層力一ボンナノチ ュ一ブの製造方法。
14. グラフエンシートを成長させる温度が有機溶媒の加熱温度よりも低いこと を特徴とする請求の範囲 1ないし 13のいずれか 1項に記載の単層カーボンナノ チューブの製造方法。
15. 不活性ガスが、 アルゴンまたはヘリウムであることを特徴とする請求の範 囲 1ないし 14のいずれか 1項に記載の単層力一ボンナノチューブの製造方法。
16. 不活性ガスに 5質量%以下の水素ガスを混合することを特徴とする請求の 範囲 1〜 15のいずれか 1項に記載の単層カーボンナノチューブの製造方法
17. 成長したグラフエンシートよりなる単層カーボンナノチューブを膜フィル 夕一を用いて捕集することを特徴とする低い請求の範囲 1ないし 16のいずれか 1項に記載の単層力一ボンナノチューブの製造方法。
18. 気相合成法によって単層カーボンナノチューブを合成する製造装置であつ て、
有機溶媒に有機金属化合物を溶解した溶液を所定の背圧の不活性ガスで加圧して 噴霧するためのノズルと、
噴霧された溶液を加熱することによって前記有機金属化合物および有機溶媒をそ れそれ気化する予備加熱部と、
予備加熱部で気化された有機金属化合物を加熱分解するとともに、 有機金属化合 物が加熱分解されて得られた金属を触媒として、 予備加熱部で気ィ匕された有機溶 媒を加熱分解する主加熱部と、
主加熱部で前記有機溶媒が加熱分解されて得られた炭素原子を用いてグラフェン シートの成長を行う成長部と、
前記予備加熱部の炉内温度を 5 0〜 6 0 0 °Cに保持する第 1の保持手段と、 前記主加熱部の炉内温度を 5 5 0〜: L 0 0 0 °Cに保持する第 2の保持手段と、 予備加熱部、 主加熱部および成長部を希ガス雰囲気に保持する第 3の保持手段 とを備えたことを特徴とする単層カーボンナノチューブの製造装置。
PCT/JP2003/017056 2002-12-27 2003-12-26 単層カーボンナノチューブの製造方法および製造装置 WO2004060800A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2003292716A AU2003292716A1 (en) 2002-12-27 2003-12-26 Process and apparatus for producing single-walled carbon nanotube
US10/540,826 US20060073275A1 (en) 2002-12-27 2003-12-26 Process and apparatus for producing single-walled carbon nanotube
JP2004564564A JP4443423B2 (ja) 2002-12-27 2003-12-26 単層カーボンナノチューブの製造方法および製造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002382007 2002-12-27
JP2002-382007 2002-12-27

Publications (1)

Publication Number Publication Date
WO2004060800A1 true WO2004060800A1 (ja) 2004-07-22

Family

ID=32708524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/017056 WO2004060800A1 (ja) 2002-12-27 2003-12-26 単層カーボンナノチューブの製造方法および製造装置

Country Status (4)

Country Link
US (1) US20060073275A1 (ja)
JP (1) JP4443423B2 (ja)
AU (1) AU2003292716A1 (ja)
WO (1) WO2004060800A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006030642A1 (ja) * 2004-09-17 2008-05-15 独立行政法人産業技術総合研究所 ナノカプセル型構造体
US7518045B2 (en) * 2004-09-20 2009-04-14 Samsung Sdi Co., Ltd. Method of preparing carbon nanocages
CN101941695A (zh) * 2010-09-09 2011-01-12 北京化工大学 一种石墨烯的合成方法
JP2015143187A (ja) * 2009-07-27 2015-08-06 アプライド グラフェン マテリアルズ ユーケー リミテッド 金属アルコキシドからグラフェンの製造
KR20150122943A (ko) * 2014-04-24 2015-11-03 재단법인 한국탄소융합기술원 금속캡슐 탄소나노튜브 필러의 제조방법
JP2016222530A (ja) * 2015-05-28 2016-12-28 コリア インスティチュート オブ エナジー リサーチ 窒素ドーピングされた多孔質グラフェンカバーの形成方法
CN117165914A (zh) * 2023-11-03 2023-12-05 山东海化集团有限公司 一种气相沉积碳包覆改性普鲁士蓝类钠电正极材料的方法及由该方法制备的正极材料

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8354294B2 (en) 2006-01-24 2013-01-15 De Rochemont L Pierre Liquid chemical deposition apparatus and process and products therefrom
CN100443403C (zh) * 2006-11-09 2008-12-17 上海交通大学 连续合成大直径单壁碳纳米管的方法
US20090004075A1 (en) * 2007-06-26 2009-01-01 Viko System Co., Ltd. Apparatus for mass production of carbon nanotubes using high-frequency heating furnace
WO2009029984A1 (en) * 2007-09-03 2009-03-12 Newsouth Innovations Pty Limited Graphene
US7790242B1 (en) 2007-10-09 2010-09-07 University Of Louisville Research Foundation, Inc. Method for electrostatic deposition of graphene on a substrate
WO2012105777A2 (en) * 2011-01-31 2012-08-09 Samsung Techwin Co., Ltd. Method and apparatus for manufacturing graphene
KR101912798B1 (ko) 2011-01-31 2018-10-30 한화에어로스페이스 주식회사 그래핀 합성장치 및 합성방법
CA2857947C (en) * 2011-03-15 2015-08-04 Peerless Worldwide, Llc Facile synthesis of graphene, graphene derivatives and abrasive nanoparticles and their various uses, including as tribologically-beneficial lubricant additives
US9896338B1 (en) * 2015-06-09 2018-02-20 Mainstream Engineering Corporation Segregated flow reactor and method for growth of ultra-long carbon nanotubes
KR101813584B1 (ko) 2015-09-02 2017-12-29 한국과학기술연구원 탄소나노구조체 및 이의 제조 방법
CN116692834B (zh) * 2023-07-26 2024-02-20 烯格沃(上海)纳米技术有限公司 一种单壁碳纳米管反应装置及制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999006618A1 (en) * 1997-08-04 1999-02-11 Hyperion Catalysis International, Inc. Process for producing single wall nanotubes using unsupported metal catalysts and single wall nanotubes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816289A (en) * 1984-04-25 1989-03-28 Asahi Kasei Kogyo Kabushiki Kaisha Process for production of a carbon filament
DE60031890T2 (de) * 1999-09-01 2007-09-06 Nikkiso Co., Ltd. Kohlenstofffasermaterial, verfahren und vorrichtung zu dessen herstellung und vorrichtung zur ablagerungsverhinderung von diesem material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999006618A1 (en) * 1997-08-04 1999-02-11 Hyperion Catalysis International, Inc. Process for producing single wall nanotubes using unsupported metal catalysts and single wall nanotubes

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KAMALAKARAN R. ET AL.: "Synthesis of thick and crystalline nanotube arrays ba spray pyrolsis", APPLIED PHYSIC LETTERS, vol. 77, no. 21, 20 November 2000 (2000-11-20), pages 3385 - 3387, XP000970325 *
RAO C.N.R. ET AL.: "Synthesis of multi-walled and single-walled nanotubes, aligned-nanotube bundles and nanorods by employing organometallic precursors", MATERIALS RESEARCH INNOVATIONS, vol. 2, no. 3, November 1998 (1998-11-01), pages 128 - 141, XP002903792 *
SHIASHI SHOHEI ET AL.: "Tanso carbon nanotube no alcohol kiso shokubai CVD-ho ni yoru seisei", THE JAPAN SOCIETY OF MECHANICAL ENGINEERS NETSUKOGAKU CONFERENCE 2003 KOEN RONBUNSHU, 15 November 2003 (2003-11-15), pages 21 - 22, XP002903791 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006030642A1 (ja) * 2004-09-17 2008-05-15 独立行政法人産業技術総合研究所 ナノカプセル型構造体
JP5168683B2 (ja) * 2004-09-17 2013-03-21 独立行政法人産業技術総合研究所 ナノカプセル型構造体
US7518045B2 (en) * 2004-09-20 2009-04-14 Samsung Sdi Co., Ltd. Method of preparing carbon nanocages
JP2015143187A (ja) * 2009-07-27 2015-08-06 アプライド グラフェン マテリアルズ ユーケー リミテッド 金属アルコキシドからグラフェンの製造
CN101941695A (zh) * 2010-09-09 2011-01-12 北京化工大学 一种石墨烯的合成方法
KR20150122943A (ko) * 2014-04-24 2015-11-03 재단법인 한국탄소융합기술원 금속캡슐 탄소나노튜브 필러의 제조방법
KR101627407B1 (ko) 2014-04-24 2016-06-07 재단법인 한국탄소융합기술원 금속캡슐 탄소나노튜브 필러의 제조방법
JP2016222530A (ja) * 2015-05-28 2016-12-28 コリア インスティチュート オブ エナジー リサーチ 窒素ドーピングされた多孔質グラフェンカバーの形成方法
US9947926B2 (en) 2015-05-28 2018-04-17 Korea Institute Of Energy Research Method of forming nitrogen-doped porous graphene envelope
CN117165914A (zh) * 2023-11-03 2023-12-05 山东海化集团有限公司 一种气相沉积碳包覆改性普鲁士蓝类钠电正极材料的方法及由该方法制备的正极材料

Also Published As

Publication number Publication date
JPWO2004060800A1 (ja) 2006-05-11
JP4443423B2 (ja) 2010-03-31
AU2003292716A1 (en) 2004-07-29
US20060073275A1 (en) 2006-04-06

Similar Documents

Publication Publication Date Title
JP4443423B2 (ja) 単層カーボンナノチューブの製造方法および製造装置
US7687109B2 (en) Apparatus and method for making carbon nanotube array
US7682658B2 (en) Method for making carbon nanotube array
Zheng et al. Plasma‐assisted approaches in inorganic nanostructure fabrication
EP2986557B1 (en) Process for the production of boron nitride nanotubes
JP2737736B2 (ja) カーボン単層ナノチューブの製造方法
RU2483022C2 (ru) Способ изготовления функционализированной фуллеренами углеродной нанотрубки, композиционный материал, толстая или тонкая пленка, провод и устройство, выполненные с использованием получаемых нанотрубок
US7713589B2 (en) Method for making carbon nanotube array
US7700048B2 (en) Apparatus for making carbon nanotube array
JP2001020072A (ja) カーボンソースガス分解用触媒金属膜を用いたカーボンナノチューブの低温合成方法
KR20050121426A (ko) 탄소나노튜브 제조용 촉매의 제조 방법
Amadi et al. Nanoscale self-assembly: concepts, applications and challenges
JP2005515146A (ja) 中空ナノ構造のプラズマ合成
WO2006135378A2 (en) Method and apparatus for hydrogen production from greenhouse gas saturated carbon nanotubes and synthesis of carbon nanostructures therefrom
JP2006015342A (ja) カーボンナノチューブ製造用の触媒ベースの製造方法及びそれを利用したカーボンナノチューブの製造方法
JP4642658B2 (ja) 直径のそろった単層カーボンナノチューブの製造方法
Li et al. Low-temperature synthesis of carbon nanotubes using corona discharge plasma at atmospheric pressure
KR20040082950A (ko) 기상합성법에 의한 이중벽 탄소나노튜브의 대량 합성 방법
Yardimci et al. Synthesis methods of carbon nanotubes
KR20230027747A (ko) 보론 나이트라이드 나노튜브의 제조 방법
JP6476759B2 (ja) カーボンナノチューブ配向集合体の製造方法
JP2018083169A (ja) カーボンナノチューブ集合体製造用触媒基材とカーボンナノチューブ集合体の製造方法
KR101141296B1 (ko) 열플라즈마에 의한 질화마그네슘 나노분말의 제조 방법 및 이에 의하여 제조되는 질화마그네슘 나노분말
JP2005350308A (ja) カーボンナノチューブおよびその製造方法
KR102032413B1 (ko) 그래핀 복합체의 제조방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004564564

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006073275

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10540826

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10540826

Country of ref document: US