CN114326432A - 一种基于交叉耦合控制的特种车辆快速调平方法 - Google Patents

一种基于交叉耦合控制的特种车辆快速调平方法 Download PDF

Info

Publication number
CN114326432A
CN114326432A CN202111508527.1A CN202111508527A CN114326432A CN 114326432 A CN114326432 A CN 114326432A CN 202111508527 A CN202111508527 A CN 202111508527A CN 114326432 A CN114326432 A CN 114326432A
Authority
CN
China
Prior art keywords
special vehicle
controller
model
equation
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111508527.1A
Other languages
English (en)
Other versions
CN114326432B (zh
Inventor
姚建勇
张书祺
谢文建
胡健
黎兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202111508527.1A priority Critical patent/CN114326432B/zh
Publication of CN114326432A publication Critical patent/CN114326432A/zh
Application granted granted Critical
Publication of CN114326432B publication Critical patent/CN114326432B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Feedback Control In General (AREA)

Abstract

本发明公开了一种基于交叉耦合控制的特种车辆快速调平方法,首先根据特种车辆三维模型建立特种车辆动力学模型;对每个支腿电机分别建立支腿电机模型;再设计基于ESO的ARC控制器;将特种车辆动力学模型导出生成MATLAB/Simulink子模块,作为特种车辆模块,在MATLAB/Simulink加入支腿电机模型,并结合设计的基于ESO的ARC控制器,在MATLAB/Simulink中搭建出上述控制器模块,利用交叉耦合控制,搭建特种车辆和支腿电机的控制仿真模块,对其赋予指令信号,通过调节控制器中的各个参数实现对特种车辆的快速调平。本发明提供的基于交叉耦合控制的特种车辆快速调平方法,有效的克服了各通道之间的耦合效应,满足了高精度的调平要求。

Description

一种基于交叉耦合控制的特种车辆快速调平方法
技术领域
本发明涉及车辆调平技术领域,具体涉及一种基于交叉耦合控制的特种车辆快速调平方法。
技术背景
对于特种车辆,除了车辆自身质量外,车辆上需加装各种功能的设备,一般情况,车辆上加装搭载的设备载荷比车辆底盘自身的质量要大。对于某些加装搭载的专用设备,需要在车辆上加支撑并调平后,设备才能正常工作。特种车辆多工作在恶劣环境中,比如车载雷达、天线、激光武器和火炮及车载DDFS作战平台等,由于设备随时需要更换位置,再次调整到水平状态的时间过长,想要充分发挥其作用,就必须具有高机动性能和快速反应性能。对于特种车辆来说调平时间、调平精度是调平系统优良的两个重要指标,采用汽车起重机调平方式已不能满足支撑的平稳性要求和快速调平的时间指标要求。
对于多缸同步系统控制的特种车辆,由于调平过程中系统存在复杂的外界干扰以及非线性因素,两缸的同步性既会影响双缸同步控制的精度,又可能破坏负载,因此必须考虑两侧电动缸的同步控制问题。要实现高精度同步控制,采用电动缸与支撑平台间的刚性联接,势必会增加各通道间的耦合效应,电机系统固有的非线性影响会更加显著,此时采用经典同步控制方法已不能满足高精度同步的要求。
发明内容
本发明的目的在于提供一种面向于特种车辆调平的基于交叉耦合控制的方法,有效的克服了各通道之间的耦合效应,满足了高精度的调平要求,同时采用联合仿真技术,可以更好的模拟出具体调平过程,以便于分析仿真过程中的动力学特性。
实现本发明目的的技术解决方案为:一种基于交叉耦合控制的特种车辆快速调平方法,包括以下步骤:
步骤1,建立特种车辆三维模型,在ADAMS中,根据特种车辆三维模型建立特种车辆动力学模型。
步骤2,对每个支腿电机分别建立支腿电机模型。
步骤3,根据支腿电机的模型,设计基于ESO的ARC控制器。
步骤4,将ADAMS中的特种车辆动力学模型导出生成MATLAB/Simulink子模块,作为特种车辆模块,在MATLAB/Simulink加入支腿电机模型,并结合设计的基于ESO的ARC控制器,在MATLAB/Simulink中搭建出上述控制器模块,利用交叉耦合控制,搭建特种车辆和支腿电机的控制仿真模块,对其赋予指令信号,通过调节控制器中的各个参数实现对特种车辆的快速调平。
本发明与现有技术相比,其显著优点是:
(1)提升了特种车辆的准备时间,有效的解决了经典同步控制无法满足大偏载、强耦合、强非线性及参数时变等环境下的控制精度要求的问题。
(2)采用MATLAB与ADAMS联合仿真技术,建立了与实际工况更为接近的特种车辆模型,可以得到车辆调平过程中的动态响应结果,为修改车辆控制方案提供意见。
(3)经过与其余学者的研究结果对比分析,本发明提供的仿真方法计算所得结果较为准确可靠,解决了现有技术的局限性。
附图说明
图1是Simulink与ADAMS数据交换原理图。
图2是交叉耦合控制的原理示意图。
图3是特种车辆示意图。
图4是支腿分布示意图。
图5是支腿电机模型示意图。
图6是控制模块具体模块设置图。
图7是两支腿的控制方案总体设置图。
图8是ADAMS生成的系统子模块图。
图9是Simulink与ADAMS联合仿真的系统模型图。
图10是支腿一期望(实)与输出(虚)轨迹图。
图11是支腿一误差曲线图。
图12是支腿一受力曲线图。
图13是支腿二期望(实)与输出(虚)轨迹图。
图14是支腿二误差曲线图。
图15是支腿二受力曲线图。
图16是支腿三期望(实)与输出(虚)轨迹图。
图17是支腿三误差曲线图。
图18是支腿三受力曲线图。
图19是支腿四期望(实)与输出(虚)轨迹图。
图20是支腿四误差曲线图。
图21是支腿四受力曲线图。
图22是支腿一与支腿三之间的误差曲线图。
图23是支腿二与支腿四之间的误差曲线图。
具体实施方式
下面结合附图及具体实施例对本发明作进一步详细说明。
结合图1~图9,本发明所述的一种基于交叉耦合控制的特种车辆快速调平方法,具体如下:
步骤1,建立特种车辆三维模型,根据特种车辆三维模型建立特种车辆动力学模型,具体步骤如下:
本发明所考虑的重载大型特种车辆,车辆进行适当简化,其主要由大梁、悬架、轮胎、支腿和上装部件组成,使用Solidworks进行绘图。
调平部分三维模型主要有支腿、车体、电动缸三部分组成,其余结构均予以适当简化;调平方案为四点支撑,由车辆支撑支腿进行调平,将我们的车架与其余各部分包括上装部件通过Solidworks进行装配,特种车辆的模型示意图如图3所示。
将三维模型导入ADAMS中添加约束。电动缸与车辆支腿使用固定副连接;支腿电动缸中采用移动副连接;轮胎及支腿与地面之间均采用接触力连接;且车辆支腿给予位移驱动。其中车体与地面,轴向旋转2.5°,径向旋转5°,以此模拟在不平整路面调平的环境,车辆四个支腿分布如图4所示。
步骤2,对每个支腿电机分别建立模型,步骤如下:所述电机采用永磁同步电机,利用matlab/simulink建立支腿电机模型,各支腿电机模型相同。电机模型搭建如图5所示。
步骤3,根据支腿电机的模型,设计基于ESO的ARC控制器,步骤如下:
对于一个电流控制的永磁同步电机,将其作为系统,惯性载荷的动力学方程为:
Figure BDA0003404327230000041
其中,y表示角位移,
Figure BDA0003404327230000042
表示角速度,
Figure BDA0003404327230000043
表示角加速度,m表示惯性载荷,K表示转矩常数,u为控制器输入,B表示粘滞摩擦系数,
Figure BDA0003404327230000044
表示其他未建模扰动,包括非线性摩擦、外部扰动和未建模动力学;t表示时间;
将式(1)写成状态空间形式,如下:
Figure BDA0003404327230000045
其中,x=[x1,x2]T表示位置和速度的状态向量,x1表示位置向量,x2表示速度向量,
Figure BDA0003404327230000046
表示加速度,中间参数向量θ=[θ12]T,其中θ1=K/m,θ2=B/m;总扰动
Figure BDA0003404327230000047
假设1:θ满足:
θmin≤θ≤θmax (3)
其中,θ最小值θmin=[θ1min2min]T,θ最大值θmax=[θ1max2max]T是已知的,并且d(x,t)是有界的,此外我们还假设θ1min>0;
参数适应:
Figure BDA0003404327230000048
表示θ的估计值,
Figure BDA0003404327230000049
表示估计误差,
Figure BDA00034043272300000410
不连续的投影定义为:
Figure BDA00034043272300000411
其中,·i表示向量·的第i个分量,i=1,2;两个向量之间的<运算,是根据向量对应的元素来执行的;
通过使用自适应律得
Figure BDA00034043272300000412
的导数
Figure BDA00034043272300000413
Figure BDA00034043272300000414
其中,Γ>0为对角自适应速率矩阵,τ为待合成的自适应函数,对于任意自适应函数τ,式(5)中使用的投影映射保证,如式(6)和式(7):
P1:
Figure BDA0003404327230000051
P2:
Figure BDA0003404327230000052
设计控制器:
1)设计反馈线性化控制器:定义一组切换函数,如下
Figure BDA0003404327230000053
其中,z1=x1-x1d为系统的跟踪误差,x1d是系统期望跟踪的位置指令,z2表示系统速度误差,k1为反馈增益,
Figure BDA0003404327230000054
是期望位置指令对时间的导数,
Figure BDA0003404327230000055
位置跟踪误差的导数,x2eq为x2的期望,由于G(s)=z1(s)/z2(s)=1/(s+k1)是一个稳定的传递函数,使z1小或者收敛为零等价于使z2小或者收敛为零,其中s表示拉普拉斯算子;因此,剩下的设计就是使z2尽可能小,通过式(8)和式(2),得到:
Figure BDA0003404327230000056
基于系统模型,设计的反馈线性化控制器为:
Figure BDA0003404327230000057
其中θ1n为θ1的标称值,θ2n为θ2的标称值,反馈增益k2>0;θ1n=θ1
如果系统模型已知,即θ1n=θ1,θ2n=θ2,d(x,t)=0,则所设计的反馈线性化控制器(10)可获得渐进跟踪性能;但是,事实上,所有的物理系统都有不同的建模不确定性,因此,θ1n≠θ1,θ2n≠θ2,d(x,t) ≠0;
2)基于ESO的反馈线性化控制器设计:为了处理反馈线性化控制中的建模不确定性,使用ESO,首先,将式(2)重写为:
Figure BDA0003404327230000058
其中,Δ(t)=(θ111n)u-(θ22n)x2-d(x,t)视为广义扰动,扩展Δ(t)作为附加的状态变量,即定义x3=Δ(t),其中x3是扩展的系统状态,设h(t)表示Δ(t)的时间导数,则式(11)被描述为:
Figure BDA0003404327230000061
从式(12)可知,它是可观测的;因此,线型ESO构造为:
Figure BDA0003404327230000062
其中,
Figure BDA0003404327230000063
是状态估计向量,ωo为ESO的带宽,ωo>0;
为了分析ESO的特性,推导式(13)中的特征多项式λo(l)为:
λo(l)=(l+ωo)3 (14)
其中l表示特征多项式中单个特征值。设
Figure BDA0003404327230000064
表示估计误差,j=1,2,3,
Figure BDA0003404327230000065
表示
Figure BDA0003404327230000066
的导数,由式(12)和(13)可知,观测器估计误差为:
Figure BDA0003404327230000067
定义,中间变量
Figure BDA0003404327230000068
中间变量向量
Figure BDA0003404327230000069
Figure BDA00034043272300000610
的导数
Figure BDA00034043272300000611
为:
Figure BDA00034043272300000612
其中,A为Hurwitz矩阵,由式(15)以及矩阵M=[0,0,1]T推导得出;
引理1:假设h(t)有界,则状态估计总是有界的,并且存在一个常数σj>0和一个有限的时间T1>0,使式(17)对正整数c成立;
Figure BDA0003404327230000071
在状态估计
Figure BDA0003404327230000072
的基础上,提出一种带ESO的反馈线性化控制器:
Figure BDA0003404327230000073
则z2写成:
Figure BDA0003404327230000074
在引理1的基础上,经过有限时间T1,z2满足:
Figure BDA0003404327230000075
其中,时间差值Δt=t-T1
式(20)表明,有限时间T1过后,所提出的带ESO的反馈线性化控制器具有指数收敛的暂态性能,最终跟踪误差以已知形式通过某些控制器参数自由调整;从引理1可以看出,大的ωo可以减小σ3的界。因此,σ3/k2以及z2(∞)(跟踪误差最终指标)的界可以通过增加σ3或k2来任意减小。因此,增加这些增益将提高闭环系统的带宽。但是,如果控制器和观测器的带宽过高,会由于忽略测量噪声和高频动态等因素而不稳定或恶化。因此,实际中控制器(18)所能达到的精度是有限的。该控制器的另一个问题是,系统中存在的不确定性没有被明确地单独考虑,即参数不确定性和非结构不确定性被认为是相同的,并由ESO共同估计。当参数的标称值与真实值相差甚远时,参数的不确定性可能导致扩展状态x3非常大。此外,众所周知,残差估计误差将会很大,跟踪性能将会很差。
3)自适应鲁棒控制器设计:为了进一步提高性能,有必要引入不同的机制分别处理参数不确定性和非结构不确定性。ARC控制器既可以通过自适应控制处理参数不确定性,也可以通过确定性鲁棒反馈控制处理非结构不确定性,并采用基于投影的自适应律将这两种控制技术统一起来。根据(9),得到的ARC控制器为:
Figure BDA0003404327230000081
us=us1+us2,us1=-k2z2 (21)
其中ua为模型补偿项、us表示鲁棒控制函数、us1表示线型反馈项、us2表示非线性控制反馈项;
把式(21)带入式(9),得到:
Figure BDA0003404327230000082
中间向量
Figure BDA0003404327230000083
Figure BDA0003404327230000084
式(6)中的假设1和P1存在us2满足以下两个条件,其中ε为一个正的设计参数:
z2us2≤0 (24)
Figure BDA0003404327230000085
为了选择一个us2来满足式(24)、式(25)这样的约束,设g为任意满足条件的光滑函数:
Figure BDA0003404327230000086
其中,中间变量θM=θmaxmin,并且δd是d(x,t)的上界;那么选出一个us2来满足式(24)和式(25)的约束条件:
Figure BDA0003404327230000087
其中ks被认为是一个非线性反馈增益;
定理1:取式(5)中的自适应函数τ为:
Figure BDA0003404327230000088
并定义中间变量λ=2k2,那么ARC法则式(21)保证:一般情况下,所有信号都是有界的,并且正定函数Vs被定义为:
Figure BDA0003404327230000089
其上界为:
Figure BDA0003404327230000091
其中,v(0)表示一中间函数在t=0时的值;
仔细考虑一下鲁棒控制律和条件,其应该是一个高增益反馈律,它使用不确定行的最大界。在实际应用中,由于测量噪声和未建模的动态,高增益反馈控制很难实现。因此,高增益反馈控制可能会导致实际系统不稳定。为了避免这个实际问题,必须采用有限增益和较大的ε。这些参数的选择将使结果(30)没有什么意义。
但是,从前文,已经证明了ESO具有一定的能力来估计具有给定估计误差的扰动,即引理1。一种直观的想法是将自适应律和ESO相结合,以处理(2)中存在的不同不确定性。采用参数自适应减少结构化不确定性,剩余的不确定性由ESO估计,并在前向信道中进行补偿。参数估计可以最大限度的减小参数不确定性。
4)基于ESO的自适应鲁棒控制器设计:为了在无高增益反馈的情况下控制来自各种不确定因素的干扰,提出了一种带ESO的自适应鲁棒控制器设计:
Figure BDA0003404327230000092
扩展后的系统模型为:
Figure BDA0003404327230000093
其中,
Figure BDA0003404327230000094
H(t)表示x3的时间导数;
根据式(31)、式(32)中的估计状态
Figure BDA0003404327230000095
可由ESO更新:
Figure BDA0003404327230000096
通过将得到的控制律式(31)应用于式(9),可得:
Figure BDA0003404327230000097
与引理1相似,当H(t)有界时,也存在常数γi>0和有限时间T2>0使式(35)对正整数n成立:
Figure BDA0003404327230000101
由于缺乏γ3的精确界,像式(25)这样的控制精度水平无法预先指定,从而导致式(31)中的非线性控制反馈项us2满足比式(25)更宽松的条件,即:
Figure BDA0003404327230000102
us2取为:
us2=-z2/(4ε) (37)
假设H(t)有界,并让参数估计用自适应律式(5)更新,其中τ如式(28),则控制律式(31)、式(33)和式(37)一起保证所有信号都有界;此外所提出的控制律(31)保证在有限时间后,正定函数Vs的界为:
Figure BDA0003404327230000103
其中,时间差值T=t-T2
证明:因为t<T2,从式(34)和式(37),我们有:
Figure BDA0003404327230000104
与引理1相似,状态估计误差总是有界的;因此,当t<T2时,z2总是有界的;
若t≥T2,基于式(35)和式(37)中的us2保证式(36)为真;因此,Vs的时间导数满足
Figure BDA0003404327230000105
对上述不等式以T2到t为界积分,获得:
Figure BDA0003404327230000111
因此,基于式(6)和式(35)的Vs∈L很容易保证控制输入是有界的,L表示Vs所属的一个无穷集合。
步骤4,将ADAMS中的特种车辆动力学模型导出生成MATLAB/Simulink子模块,作为特种车辆模块,在MATLAB/Simulink加入支腿电机模型,并结合设计的基于ESO的ARC控制器,在MATLAB/Simulink中搭建出上述控制器。设计交叉耦合控制方案,因是交叉耦合控制,所以不仅需要支腿的输出做反馈,同时也需要同侧支腿之间的误差做反馈信号,由此来达到更好更高的控制精度。图6为控制模块具体模块设置,ADAMS中的反馈值,在此模块中做差而后进入控制器。最后反馈到支腿中。图7为两支腿的控制方案总体设置。由ADAMS生成MATLAB/Simulink子模块,该模块即为系统模块;随后搭建MATLAB/Simulink控制模块;赋予合适的指令信号,通过调节交叉耦合控制器中的各个参数得到理想的控制效果。
本发明的基于交叉耦合控制的特种车辆快速调平方法可通过以下仿真进一步说明:
本发明所考虑的重载特种车辆全重大约100吨,其中平台质量大约60吨,上装质量大约40吨。平台长度为17±0.15米,宽度为3米,高度为4米(含上装)。特种车辆进行适当简化,其主要由大梁、悬架、轮胎、支腿和上装部件组成,使用Solidworks进行绘图。车辆支腿的设计行程为650mm,其中空载行程为400,负载行程为250mm;支腿前后距离为8480mm,左右距离为2800mm。
由电机带动支腿进行一个曲线规划,因此,我们可以从支腿轨迹规划中反推出电机的转速规划曲线。先从支腿的轨迹规划曲线,反推出支腿的速度规划曲线,再根据
Figure BDA0003404327230000112
可得到各段速度曲线所对应的电机转速曲线(P为导程,n1/n2为减速比。)由此可得最终的电机转速曲线,以此作为输入。
使用Simulink与ADAMS进行联合仿真,首先由ADAMS生成Simulink子模块,该模块即为系统模块,如图8所示。输入为车辆支腿位移输入;输出为各支腿受力、车辆支腿位移。搭建Simulink模型如图9所示,给定期望位移曲线,由matlab输入到ADAMS模块中。
依据以上建模方式,对系统进行仿真,各支腿位置示意如图4所示,仿真结果如图10~23所示。对结果分析结果如下:仿真过程中各支腿与其规划的理想曲线之间误差最大不超过10mm,电动缸最大伸出长度为650mm,同侧交叉耦合控制支腿控制效果好,两只腿行程之间的误差最大不超过0.7mm。各支腿在触底瞬间,接触力产生波动,随后平稳波动,总体大小在安全范围内,支腿1/2受力不超过490KN,支腿受力不超过224KN。车辆最终调平结果误差在0.5°以内。
综上所述,本发明提供的基于交叉耦合控制的特种车辆快速调平方法,可以有效的在保证高机动性能和快速反应性能的情况下,是车辆完成高精度的调平,对研究车辆调平方案具有指导意义。

Claims (4)

1.一种基于交叉耦合控制的特种车辆快速调平方法,在特种车辆的前部和后部各设有两个支腿,每个支腿受一个电机控制,通过控制支腿的伸缩快速调平特种车辆,其特征在于,步骤如下:
步骤1,建立特种车辆三维模型,在ADAMS中,根据特种车辆三维模型建立特种车辆动力学模型;
步骤2,对每个支腿电机分别建立支腿电机模型;
步骤3,根据支腿电机模型,设计基于ESO的ARC控制器;
步骤4,将ADAMS中的特种车辆动力学模型导出生成MATLAB/Simulink子模块,作为特种车辆模块,在MATLAB/Simulink加入支腿电机模型,并结合设计的基于ESO的ARC控制器,在MATLAB/Simulink中搭建出上述控制器,利用交叉耦合控制,搭建特种车辆和支腿电机的控制仿真模块,对控制仿真模块赋予指令信号,通过调节控制器中的各个参数实现对特种车辆的快速调平。
2.根据权利要求1所述的基于交叉耦合控制的特种车辆快速调平方法,其特征在于,步骤1中,建立特种车辆三维模型,在ADAMS中,根据特种车辆三维模型建立特种车辆动力学模型,具体如下:
对特种车辆进行简化,将其简化为由大梁、悬架、轮胎、支腿和上装部件组成,使用Solidworks进行绘图,得到特种车辆三维模型;
将特种车辆三维模型导入ADAMS中添加约束,得到特种车辆动力学模型。
3.根据权利要求2所述的基于交叉耦合控制的特种车辆快速调平方法,其特征在于,步骤2中,对每个支腿电机分别建立支腿电机模型,具体如下:
所述电机采用永磁同步电机,利用matlab/simulink建立支腿电机模型,各支腿电机模型相同。
4.根据权利要求3所述的基于交叉耦合控制的特种车辆快速调平方法,其特征在于,步骤3中,根据支腿电机的模型,设计基于ESO的ARC控制器,具体如下:
对于一个电流控制的永磁同步电机,将其作为系统,惯性载荷的动力学方程为:
Figure FDA0003404327220000011
其中,y表示角位移,
Figure FDA0003404327220000012
表示角速度,
Figure FDA0003404327220000013
表示角加速度,m表示惯性载荷,K表示转矩常数,u为控制器输入,B表示粘滞摩擦系数,
Figure FDA0003404327220000021
表示其他未建模扰动,包括非线性摩擦、外部扰动和未建模动力学;t表示时间;
将式(1)写成状态空间形式,如下:
Figure FDA0003404327220000022
其中,x=[x1,x2]T表示位置和速度的状态向量,x1表示位置向量,x2表示速度向量,
Figure FDA0003404327220000023
表示加速度,中间参数向量θ=[θ1,θ2]T,其中θ1=K/m,θ2=B/m;总扰动
Figure FDA0003404327220000024
假设1:θ满足:
θmin≤θ≤θmax (3)
其中,θ最小值θmin=[θ1min,θ2min]T,θ最大值θmax=[θ1max,θ2max]T是已知的,并且d(x,t)是有界的,此外我们还假设θ1min>0;
参数适应:
Figure FDA0003404327220000025
表示θ的估计值,
Figure FDA0003404327220000026
表示估计误差,
Figure FDA0003404327220000027
不连续的投影定义为:
Figure FDA0003404327220000028
其中,·i表示向量·的第i个分量,i=1,2;两个向量之间的<运算是根据向量对应的元素来执行的;
通过使用自适应律,得
Figure FDA0003404327220000029
的导数
Figure FDA00034043272200000210
Figure FDA00034043272200000211
其中,Γ>0为对角自适应速率矩阵,τ为待合成的自适应函数,对于任意自适应函数τ,式(5)中使用的投影映射保证,如式(6)和式(7):
P1:
Figure FDA00034043272200000212
P2:
Figure FDA00034043272200000213
设计控制器:
1)设计反馈线性化控制器:定义一组切换函数,如下
Figure FDA0003404327220000031
其中,系统的跟踪误差z1=x1-x1d,x1d是系统期望跟踪的位置指令,z2表示系统速度误差,k1为反馈增益,
Figure FDA0003404327220000032
是期望位置指令对时间的导数,
Figure FDA0003404327220000033
位置跟踪误差的导数,x2eq为x2的期望,由于G(s)=z1(s)/z2(s)=1/(s+k1)是一个稳定的传递函数,使z1小或者收敛为零等价于使z2小或者收敛为零,其中s表示拉普拉斯算子;因此,剩下的设计就是使z2尽可能小,通过式(8)和式(2),得:
Figure FDA0003404327220000034
基于系统模型,设计的反馈线性化控制器为:
Figure FDA0003404327220000035
其中θ1n为θ1的标称值,θ2n为θ2的标称值,反馈增益k2>0;θ1n=θ1
如果系统模型已知,即θ1n=θ1,θ2n=θ2,d(x,t)=0,则所设计的反馈线性化控制器式(10)能够获得渐进跟踪性能;但是,事实上,所有的物理系统都有不同的建模不确定性,因此,θ1n≠θ1,θ2n≠θ2,d(x,t)≠0;
2)基于ESO的反馈线性化控制器设计:为了处理反馈线性化控制中的建模不确定性,使用ESO,首先,将式(2)重写为:
Figure FDA0003404327220000036
其中,Δ(t)=(θ11n)u-(θ22n)x2-d(x,t)视为广义扰动,扩展Δ(t)作为附加的状态变量,即定义扩展的系统状态x3=Δ(t),设h(t)表示Δ(t)的时间导数,则式(11)被描述为:
Figure FDA0003404327220000037
从式(12)可知,它是可观测的;因此,线型ESO构造为:
Figure FDA0003404327220000041
其中,
Figure FDA0003404327220000042
是状态估计向量,ωo>0被认定为是ESO的带宽;
为了分析ESO的特性,推导式(13)中参数矩阵的特征多项式λo(l)为:
λo(l)=(l+ωo)3 (14)
其中l表示特征多项式中单个特征值;设估计误差
Figure FDA0003404327220000043
下标j=1,2,3,
Figure FDA0003404327220000044
表示
Figure FDA0003404327220000045
的导数,由式(12)和(13)可知,观测器估计误差为:
Figure FDA0003404327220000046
定义,中间变量
Figure FDA0003404327220000047
中间变量向量
Figure FDA0003404327220000048
Figure FDA0003404327220000049
的导数
Figure FDA00034043272200000410
为:
Figure FDA00034043272200000411
其中,A为Hurwitz矩阵,由式(15)以及矩阵M=[0,0,1]T推导得出;
引理1:假设h(t)有界,则状态估计总是有界的,并且存在一个常数σj>0和一个有限的时间T1>0,使式(17)对正整数c成立;
Figure FDA00034043272200000412
在状态估计
Figure FDA00034043272200000413
的基础上,提出一种带ESO的反馈线性化控制器:
Figure FDA00034043272200000414
则z2写成:
Figure FDA00034043272200000415
在引理1的基础上,经过有限时间T1,z2满足:
Figure FDA0003404327220000051
其中,时间差值Δt=t-T1
式(20)表明,有限时间T1过后,所提出的带ESO的反馈线性化控制器具有指数收敛的暂态性能,最终跟踪误差以已知形式通过某些控制器参数自由调整;
3)设计自适应鲁棒控制器:
根据式(9),得到的ARC控制器为
Figure FDA0003404327220000052
us=us1+us2,us1=-k2z2 (21)
其中ua为模型补偿项、us表示鲁棒控制函数、us1表示线型反馈项、us2表示非线性控制反馈项;
把式(21)带入式(9),得到:
Figure FDA0003404327220000053
中间向量
Figure FDA0003404327220000054
Figure FDA0003404327220000055
式(6)中的假设1和P1存在us2满足以下两个条件,其中ε为一个正的设计参数:
z2us2≤0 (24)
Figure FDA0003404327220000056
为了选择一个us2来满足式(24)、式(25)这样的约束,设g为任意满足条件的光滑函数:
Figure FDA0003404327220000057
其中,中间变量θM=θmaxmin,并且δd是d(x,t)的上界;那么选出一个us2来满足式(24)和式(25)的约束条件:
Figure FDA0003404327220000061
其中ks被认为是一个非线性反馈增益;
定理1:取式(5)中的自适应函数τ为:
Figure FDA0003404327220000062
并定义中间变量λ=2k2,那么ARC法则式(21)保证:一般情况下,所有信号都是有界的,并且正定函数Vs被定义为:
Figure FDA0003404327220000063
其上界为:
Figure FDA0003404327220000064
其中,v(0)表示一中间函数在t=0时的值;
4)为了在无高增益反馈的情况下控制来自各种不确定因素的干扰,提出了一种带ESO的自适应鲁棒控制器设计:
Figure FDA0003404327220000065
扩展后的系统模型为:
Figure FDA0003404327220000066
其中,
Figure FDA0003404327220000067
H(t)表示x3的时间导数;
根据式(31)、式(32)中的估计状态
Figure FDA0003404327220000068
由ESO更新:
Figure FDA0003404327220000069
通过将得到的控制律式(31)应用于式(9),得:
Figure FDA0003404327220000071
与引理1相似,当H(t)有界时,也存在常数γi>0和有限时间T2>0,使式(35)对正整数n成立:
Figure FDA0003404327220000072
由于缺乏γ3的精确界,像式(25)这样的控制精度水平无法预先指定,从而导致式(31)中的非线性控制反馈项us2满足比式(25)更宽松的条件,即:
Figure FDA0003404327220000073
us2取为:
us2=-z2/(4s) (37)
假设H(t)有界,并让参数估计用自适应律式(5)更新,其中τ如式(28),则控制律式(31)、式(33)和式(37)一起保证所有信号都有界;此外所提出的控制律(31)保证在有限时间后,正定函数Vs的界为:
Figure FDA0003404327220000074
其中,时间差值T=t-T2
证明:因为t<T2,从式(34)和式(37),我们有:
Figure FDA0003404327220000075
与引理1相似,状态估计误差总是有界的;因此,当t<T2时,z2总是有界的;
若t≥T2,基于式(35)和式(37)中的us2保证式(36)为真;因此,Vs的时间导数满足
Figure FDA0003404327220000076
对上述不等式以T2到t为界积分,获得:
Figure FDA0003404327220000081
因此,基于式(6)和式(35)的Vs∈L很容易保证控制输入是有界的,L表示Vs所属的一个无穷集合;
v(0)表示一中间函数在t=0时的值。
CN202111508527.1A 2021-12-10 2021-12-10 一种基于交叉耦合控制的特种车辆快速调平方法 Active CN114326432B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111508527.1A CN114326432B (zh) 2021-12-10 2021-12-10 一种基于交叉耦合控制的特种车辆快速调平方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111508527.1A CN114326432B (zh) 2021-12-10 2021-12-10 一种基于交叉耦合控制的特种车辆快速调平方法

Publications (2)

Publication Number Publication Date
CN114326432A true CN114326432A (zh) 2022-04-12
CN114326432B CN114326432B (zh) 2023-09-05

Family

ID=81051459

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111508527.1A Active CN114326432B (zh) 2021-12-10 2021-12-10 一种基于交叉耦合控制的特种车辆快速调平方法

Country Status (1)

Country Link
CN (1) CN114326432B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110117521A (ko) * 2010-04-21 2011-10-27 김현희 아웃트리거 수평조절장치
CN104485866A (zh) * 2014-12-15 2015-04-01 南京理工大学 基于高阶滑模微分器的电机间接自适应鲁棒输出反馈控制方法
CN106094880A (zh) * 2016-06-16 2016-11-09 南京理工大学 基于十二点支撑的垂直发射平台姿态调平控制方法
CN106125572A (zh) * 2016-06-16 2016-11-16 南京理工大学 十二点支撑垂直发射平台姿态调平系统建模方法
CN106740729A (zh) * 2016-12-19 2017-05-31 三汽车制造有限公司 支腿调平方法、控制系统及工程车辆
CN109367525A (zh) * 2018-09-20 2019-02-22 西安海康普德智能装备有限公司 一种基于六点支撑的大型车体自动调平系统及方法
CN110398903A (zh) * 2019-08-05 2019-11-01 河海大学常州校区 一种高空作业平台底盘自主调平系统建模方法
CN112769364A (zh) * 2020-12-14 2021-05-07 南京理工大学 一种直流电机伺服系统的快速自适应抗扰控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110117521A (ko) * 2010-04-21 2011-10-27 김현희 아웃트리거 수평조절장치
CN104485866A (zh) * 2014-12-15 2015-04-01 南京理工大学 基于高阶滑模微分器的电机间接自适应鲁棒输出反馈控制方法
CN106094880A (zh) * 2016-06-16 2016-11-09 南京理工大学 基于十二点支撑的垂直发射平台姿态调平控制方法
CN106125572A (zh) * 2016-06-16 2016-11-16 南京理工大学 十二点支撑垂直发射平台姿态调平系统建模方法
CN106740729A (zh) * 2016-12-19 2017-05-31 三汽车制造有限公司 支腿调平方法、控制系统及工程车辆
CN109367525A (zh) * 2018-09-20 2019-02-22 西安海康普德智能装备有限公司 一种基于六点支撑的大型车体自动调平系统及方法
CN110398903A (zh) * 2019-08-05 2019-11-01 河海大学常州校区 一种高空作业平台底盘自主调平系统建模方法
CN112769364A (zh) * 2020-12-14 2021-05-07 南京理工大学 一种直流电机伺服系统的快速自适应抗扰控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郭庆贺: "基于主动悬挂的车载稳定平台调平系统设计与试验", 《农业机械学报》 *

Also Published As

Publication number Publication date
CN114326432B (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
CN108303885B (zh) 一种基于干扰观测器的电机位置伺服系统自适应控制方法
CN108710302B (zh) 无源性全方位移动机器人轨迹跟踪自抗扰控制方法
CN109747434B (zh) 分布式驱动电动汽车转矩矢量分配控制方法
Xia et al. Active disturbance rejection control for active suspension system of tracked vehicles with gun
CN107992681B (zh) 一种电动汽车主动前轮转向系统的复合控制方法
CN105159076B (zh) 基于融合型自适应鲁棒的电液负载模拟器力控制方法
CN108597058B (zh) 基于伪量测信息的分布式驱动电动汽车状态级联估计方法
CN107121932B (zh) 电机伺服系统误差符号积分鲁棒自适应控制方法
Li et al. Vibration control of uncertain multiple launch rocket system using radial basis function neural network
CN107976904B (zh) 磁流变半主动悬架泰勒级数-二重h2时滞补偿控制方法
CN109884894B (zh) 电液助力转向系统神经网络积分滑模控制方法
CN109426150B (zh) 基于扩张状态观测器的负载模拟器反步控制方法
CN110826143A (zh) 一种基于切换控制的汽车主动悬架系统的容错控制方法
Zhu et al. An improved method combined SMC and MLESO for impedance control of legged robots’ electro-hydraulic servo system
CN108032698B (zh) 磁流变半主动悬架泰勒级数-三重h2时滞补偿控制方法
Ni et al. Parameters uncertainty analysis of posture control of a four-wheel-legged robot with series slow active suspension system
Wang et al. Adaptive Sliding Mode Fixed‐Time Tracking Control Based on Fixed‐Time Sliding Mode Disturbance Observer with Dead‐Zone Input
CN114326432A (zh) 一种基于交叉耦合控制的特种车辆快速调平方法
He et al. Design of a model predictive trajectory tracking controller for mobile robot based on the event-triggering mechanism
Ba et al. Fuzzy terminal sliding mode control with compound reaching law and time delay estimation for HDU of legged robot
CN106289693B (zh) 一种液压振动系统的低频拓展控制方法
Sini et al. Trajectory tracking of 3-DOF lab helicopter by robust LQR
CN112859843B (zh) 无人驾驶车辆的横纵向控制方法及系统
Gao et al. Lateral path tracking control of autonomous land vehicle based on active disturbance rejection control
Lin et al. ADRC-based active front steering strategy for path tracking of a farm vehicle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant