CN114316750B - 一种提高乙烯基树脂耐腐蚀性的方法 - Google Patents

一种提高乙烯基树脂耐腐蚀性的方法 Download PDF

Info

Publication number
CN114316750B
CN114316750B CN202210007628.9A CN202210007628A CN114316750B CN 114316750 B CN114316750 B CN 114316750B CN 202210007628 A CN202210007628 A CN 202210007628A CN 114316750 B CN114316750 B CN 114316750B
Authority
CN
China
Prior art keywords
vinyl resin
corrosion resistance
resin
mxene nanosheet
nanosheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210007628.9A
Other languages
English (en)
Other versions
CN114316750A (zh
Inventor
方亨
戴雨润
魏嫣莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Meiheng New Material Technology Co ltd
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202210007628.9A priority Critical patent/CN114316750B/zh
Priority to PCT/CN2022/081092 priority patent/WO2023279763A1/zh
Priority to GB2218607.6A priority patent/GB2614963B/en
Publication of CN114316750A publication Critical patent/CN114316750A/zh
Application granted granted Critical
Publication of CN114316750B publication Critical patent/CN114316750B/zh
Priority to US18/078,715 priority patent/US11692103B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • C09D163/10Epoxy resins modified by unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1438Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing oxygen
    • C08G59/1455Monocarboxylic acids, anhydrides, halides, or low-molecular-weight esters thereof
    • C08G59/1461Unsaturated monoacids
    • C08G59/1466Acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1494Polycondensates modified by chemical after-treatment followed by a further chemical treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3218Carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • C08J3/095Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/80Processes for incorporating ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Emergency Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Paints Or Removers (AREA)

Abstract

本发明公开了一种提高乙烯基树脂耐腐蚀性的方法,属于高分子材料技术领域;向MXene纳米片溶液中加入乙烯基树脂并蒸干溶剂;之后依次加入异辛酸钴盐促进剂和过氧化丁酮引发剂,脱泡后静置固化,然后加热即可;利用MXene纳米片改性乙烯基树脂的耐腐蚀,其机理在于:纳米片与树脂结合后提升了树脂涂层对腐蚀性液体的隔绝效果,有效提升了树脂涂层的疏水性,同时改性后能够有效提升树脂涂层对腐蚀性离子的隔绝效果;本发明首次利用二维MXene纳米片对乙烯基树脂进行耐腐蚀性能改性,制备过程简单,纳米片的添加量少,且能够很好地提升乙烯基树脂的耐腐蚀性能。

Description

一种提高乙烯基树脂耐腐蚀性的方法
技术领域
本发明属于高分子材料技术领域,具体涉及一种提高乙烯基树脂耐腐蚀性的方法。
背景技术
乙烯基树脂是由甲基丙烯酸与双酚A环氧树脂反应合成的一种热固性树脂,能够在常温下快速固化,同时兼具了环氧树脂的良好机械性能。乙烯基树脂作为一种性能较为良好的防腐材料,具有稳定的化学性能、良好的附着力以及较好的耐腐蚀性能等特点,已被广泛应用于金属等材料的表面防腐。但一旦水、氧、酸碱及盐离子等腐蚀性物质通过扩散到达金属/树脂界面并开始逐渐腐蚀金属表面,涂层便会逐渐失去附着力,最终失去防护作用。在pH较为恶劣的强酸强碱环境下,需要保护涂层的耐腐蚀性能非常高。
为提高乙烯基树脂在极端pH值环境下的防腐性能,延长保护涂层的使用寿命,需对其进行改性以提高其耐腐蚀性能。
发明内容
本发明针对现有技术存在的上述不足,提出一种提高乙烯基树脂耐腐蚀性的方法。
为实现上述目的,本发明提供了如下技术方案:
本发明提供了一种提高乙烯基树脂耐腐蚀性的方法,包括以下步骤:
向MXene纳米片溶液中加入乙烯基树脂并蒸干溶剂;之后依次加入异辛酸钴盐促进剂和过氧化丁酮引发剂,脱泡后静置固化,然后加热即可。
进一步地,所述MXene纳米片溶液为MXene纳米片乙醇溶液,所述MXene纳米片的质量为所述乙烯基树脂质量的0.001~100%。
更进一步地,所述蒸干溶剂的方法具体为:水浴条件下,在50~200℃的温度下将乙醇蒸干。
进一步地,所述向MXene纳米片溶液中加入乙烯基树脂后还包括搅拌及超声分散的步骤。
进一步地,所述异辛酸钴盐和过氧化丁酮的添加量均为乙烯基树脂质量的0.5~1.5%。
进一步地,所述加入异辛酸钴盐促进剂及所述加入过氧化丁酮引发剂后均包括搅拌1~60min的操作。
进一步地,所述脱泡在真空环境下进行,温度为50~200℃,时间为1~60min,所述静置时间为24~72h。
进一步地,所述加热温度为50~200℃,时间为24~72h。
本发明还提供了一种根据上述方法制备得到的改性乙烯基树脂。
与现有技术相比,本发明具有以下有益效果:
利用MXene纳米片改性乙烯基树脂的耐腐蚀,其机理在于:纳米片与树脂结合后提升了树脂涂层对腐蚀性液体、气体等的阻隔性能,有效提升了树脂涂层的疏水性,同时改性后能够有效提升树脂涂层对腐蚀性离子的隔绝效果。
本发明首次利用二维MXene纳米片对乙烯基树脂进行耐腐蚀性能改性,制备过程简单,纳米片的添加量少,且能够很好地提升乙烯基树脂的耐腐蚀性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为乙烯基树脂及实施例1制备得到的改性乙烯基树脂的水接触角示意图。
具体实施方式
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。
另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见的。本发明说明书和实施例仅是示例性的。
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
以下实施例中所采用的乙烯基树脂为甲基丙烯酸与双酚A环氧树脂反应合成的标准型双酚A环氧乙烯基树脂树脂。
实施例1
一种利用二维MXene纳米片增强乙烯基树脂耐腐蚀性的方法,包括以下步骤:
(1)向25ml,0.25mg/mL的MXene纳米片乙醇溶液中加入5g乙烯基树脂,机械搅拌混合10min,超声分散30min。
(2)将步骤(1)得到的分散复合体在78℃的温度条件下水浴加热,蒸干乙醇;随后加入0.05g异辛酸钴盐促进剂,机械搅拌10min;再加入0.05g过氧化丁酮引发剂,机械搅拌10min。
(3)将步骤(2)处理得到的纳米片/树脂复合体于80℃的温度条件下真空脱泡10min,脱泡后的纳米片/树脂复合体均匀涂抹在规格为50*50*1mm的q235钢板上,静置24h,于80℃的温度条件下加热2h,得到待测样品。
实施例2
一种利用二维MXene纳米片增强乙烯基树脂耐腐蚀性的方法,包括以下步骤:
(1)向200ml,0.25mg/ml的MXene纳米片乙醇溶液中加入5g乙烯基树脂,机械搅拌混合30min,超声分散60min。
(2)将步骤(1)得到的分散复合体在78℃的温度条件下水浴加热,蒸干乙醇。随后加入0.025g异辛酸钴盐促进剂,机械搅拌15min;再加入0.025g过氧化丁酮引发剂,机械搅拌15min。
(3)将步骤(2)处理得到的树脂复合体于200℃的温度条件下真空脱泡30min,脱泡后的复合体均匀涂抹在规格为100*100*1mm的q235钢板上,静置24h,于100℃的温度条件下加热4h,得到待测样品。
实施例3
一种利用二维MXene纳米片增强乙烯基树脂耐腐蚀性的方法,包括以下步骤:
(1)向2000ml,0.5mg/ml的MXene纳米片乙醇溶液中加入500g乙烯基树脂,机械搅拌混合60min,超声分散60min。
(2)将步骤(1)得到的分散复合体在85℃的温度条件下水浴加热,蒸干乙醇。随后加入7.5g异辛酸钴盐促进剂,机械搅拌15min;再加入7.5g过氧化丁酮引发剂,机械搅拌15min。
(3)将步骤(2)处理得到的树脂复合体于80℃的温度条件下真空脱泡20min,脱泡后的复合体均匀涂抹在规格为100*100*1mm的q235钢板上,静置24h,于100℃的温度条件下加热4h,得到待测样品。
对比例1
(1)向25mL乙醇溶液中加入5g乙烯基树脂,机械搅拌10min,超声分散30min,在78℃的温度条件下水浴加热蒸干乙醇,之后向其中加入0.05g异辛酸钴盐促进剂,机械搅拌10min,再加入0.05g过氧化丁酮引发剂,机械搅拌10min。
(2)在80℃的温度条件下对步骤(1)所得混合物进行真空脱泡处理,脱泡时间为10min。随后将脱泡后的树脂均匀涂抹在规格为50*50*1mm的q235钢板上,静置24h,于80℃的温度条件下加热2h,得到待测样品。
效果验证
对未处理的乙烯基树脂、实施例1~3制备得到的改性乙烯基树脂及对比例1制备得到的待测样品的耐腐蚀性进行测试:将各样品置于3.5wt%的NaCl溶液中浸泡两天后,利用三电极电化学工作站对其开路电位进行测试,所得结果如表1所示。
表1
组别 开路电位
乙烯基树脂(未经处理) 21.4mv
实施例1 41.3mv
实施例2 40.6mv
实施例3 45.1mv
对比例1 22.6mv
开路电位越大,则表明样品的受腐蚀程度越小,由表1可以看出:本发明通过采用MXene纳米片对乙烯基树脂进行改性处理,显著提升了其耐腐蚀性。
利用表面接触角测试仪对浸泡后的各组样品的水接触角进行测定,以测试样品的亲/疏水性能,所得各组样品的水接触角如表2所示;未处理的乙烯基树脂及实施例1制备的改性树脂的水接触角测试结果图如图1所示。
表2
组别 水接触角/°
乙烯基树脂(未经处理) 69.7
实施例1 93.6
实施例2 91.2
实施例3 88.7
对比例1 64.5
由表2可以看出:未改性的乙烯基树脂样品在3.5wt%的NaCl溶液中浸泡两天后进行水接触角测试,测得其水接触角为69.7°,利用MXene纳米片改性后的乙烯基树脂样品在3.5wt%的NaCl溶液中浸泡两天后进行水接触角测试,其水接触角达到90°以上,可见改性后树脂对液体的隔绝性能有明显提升。
由表1和表2可以看出:本发明利用二维MXene纳米片对乙烯基树脂进行改性得到的改性树脂样品在3.5wt%的NaCl溶液中表现出更为良好的耐腐蚀性能,同时改性树脂样品的疏水性能更好。
以上所述,仅为本发明较佳的具体实施方式,本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围内。

Claims (6)

1.一种提高乙烯基树脂耐腐蚀性的方法,其特征在于,包括以下步骤:
向MXene纳米片溶液中加入乙烯基树脂并蒸干溶剂;之后依次加入异辛酸钴盐促进剂和过氧化丁酮引发剂,脱泡后静置固化,然后加热即可;
所述MXene纳米片溶液为MXene纳米片乙醇溶液,所述MXene纳米片的质量为所述乙烯基树脂质量的0.001~100%;
所述异辛酸钴盐和过氧化丁酮的添加量均为乙烯基树脂质量的0.5~1.5%。
2.根据权利要求1所述的方法,其特征在于,所述向MXene纳米片溶液中加入乙烯基树脂后还包括搅拌及超声分散的步骤。
3.根据权利要求1所述的方法,其特征在于,所述加入异辛酸钴盐促进剂及所述加入过氧化丁酮引发剂后均包括搅拌1~60min的操作。
4.根据权利要求1所述的方法,其特征在于,所述脱泡在真空环境下进行,温度为50~200℃,时间为1~60min,所述静置时间为24~72h。
5.根据权利要求1所述的方法,其特征在于,所述加热温度为50~200℃,时间为24~72h。
6.一种根据权利要求1~5任一项所述的方法制备得到的改性乙烯基树脂。
CN202210007628.9A 2022-01-05 2022-01-05 一种提高乙烯基树脂耐腐蚀性的方法 Active CN114316750B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202210007628.9A CN114316750B (zh) 2022-01-05 2022-01-05 一种提高乙烯基树脂耐腐蚀性的方法
PCT/CN2022/081092 WO2023279763A1 (zh) 2022-01-05 2022-03-16 一种提高乙烯基树脂耐腐蚀性的方法
GB2218607.6A GB2614963B (en) 2022-01-05 2022-03-16 Method for improving corrosion resistance of vinyl ester resin
US18/078,715 US11692103B1 (en) 2022-01-05 2022-12-09 Method for improving corrosion resistance of vinyl ester resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210007628.9A CN114316750B (zh) 2022-01-05 2022-01-05 一种提高乙烯基树脂耐腐蚀性的方法

Publications (2)

Publication Number Publication Date
CN114316750A CN114316750A (zh) 2022-04-12
CN114316750B true CN114316750B (zh) 2022-06-07

Family

ID=81024204

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210007628.9A Active CN114316750B (zh) 2022-01-05 2022-01-05 一种提高乙烯基树脂耐腐蚀性的方法

Country Status (4)

Country Link
US (1) US11692103B1 (zh)
CN (1) CN114316750B (zh)
GB (1) GB2614963B (zh)
WO (1) WO2023279763A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108384448A (zh) * 2017-05-17 2018-08-10 东华大学 一种仿贝壳结构的复合纳米防腐涂层及其制备方法
WO2019220225A1 (en) * 2018-05-17 2019-11-21 King Abdullah University Of Science And Technology Water vapor harvesting materials and devices
CN113004736A (zh) * 2021-03-09 2021-06-22 中山大学 一种改性氮化硼纳米片的制备方法及其在提高水性有机防护涂料耐腐蚀性能中的应用
EP3857700A1 (en) * 2018-09-24 2021-08-04 Universidade do Porto Thermionic capacitor chargeable by soret-effect using a gradient temperature

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105694658B (zh) * 2014-11-28 2019-06-07 中国科学院金属研究所 一种耐高温石墨烯/乙烯基树脂防腐涂料及其制备方法
WO2019126031A1 (en) * 2017-12-22 2019-06-27 Drexel University Crumpled mesoporous mxene powders synthesized by acid-, base-, or salt-induced crumpling
KR102238702B1 (ko) * 2018-01-25 2021-04-08 주식회사 엘지화학 코팅 조성물, 코팅 필름, 및 전자파 차폐용 복합체
JP7053544B2 (ja) * 2018-10-02 2022-04-12 コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー 飽和または不飽和炭化水素を含む官能基で表面改質された2次元マキシン(MXene)粒子及びその製造方法及び用途
CN112552801A (zh) * 2020-12-25 2021-03-26 南京大学 一种含Ti3C2TX(MXene)/聚苯胺的水性防腐涂料及其制备方法
CN113621300B (zh) * 2021-08-10 2023-02-17 中山大学 一种纳米片复合涂料及其制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108384448A (zh) * 2017-05-17 2018-08-10 东华大学 一种仿贝壳结构的复合纳米防腐涂层及其制备方法
WO2019220225A1 (en) * 2018-05-17 2019-11-21 King Abdullah University Of Science And Technology Water vapor harvesting materials and devices
EP3857700A1 (en) * 2018-09-24 2021-08-04 Universidade do Porto Thermionic capacitor chargeable by soret-effect using a gradient temperature
CN113004736A (zh) * 2021-03-09 2021-06-22 中山大学 一种改性氮化硼纳米片的制备方法及其在提高水性有机防护涂料耐腐蚀性能中的应用

Also Published As

Publication number Publication date
US11692103B1 (en) 2023-07-04
GB2614963A (en) 2023-07-26
CN114316750A (zh) 2022-04-12
GB2614963B (en) 2024-02-14
WO2023279763A1 (zh) 2023-01-12
US20230212407A1 (en) 2023-07-06
GB202218607D0 (en) 2023-01-25

Similar Documents

Publication Publication Date Title
Pebere et al. Evaluation of corrosion performance of coated steel by the impedance technique
Hsissou et al. Elaboration and electrochemical studies of the coating behavior of a new nanofunctional epoxy polymer on E24 steel in 3.5% NaCl
Deflorian et al. Degradation of epoxy coatings on phosphatized zinc-electroplated steel
CN109856037B (zh) 一种金属双极板长期稳定性的测定方法
CN113004736A (zh) 一种改性氮化硼纳米片的制备方法及其在提高水性有机防护涂料耐腐蚀性能中的应用
CN111636085A (zh) 一种防腐涂层及其制备方法
Zhong et al. Effects of chromium on the corrosion and electrochemical behaviors of ultra high strength steels
Yahyaei et al. Toughening mechanisms of rubber modified thin film epoxy resins: Part 2—Study of abrasion, thermal and corrosion resistance
CN114316750B (zh) 一种提高乙烯基树脂耐腐蚀性的方法
CN114854240B (zh) 一种基于Mxene的导电、吸波、防腐为一体的涂料的制备方法
Monetta et al. The effect of graphene on the protective properties of water‐based epoxy coatings on Al2024‐T3
Yan et al. Preparation and properties of epoxy/basalt flakes anticorrosive coatings
Miao et al. Mussel-inspired superhydrophobic surfaces on 316L stainless steel with enhanced corrosion resistance
Xuan et al. Effects of fluoride ions on corrosion performance and surface properties of SS304 in simulated PEMFC cathodic environments
Proença et al. Trivalent chromium conversion coating on AA2024‐T3 used in aeronautical and aerospace industry
CN106323861B (zh) 一种彩涂板有机涂层聚合性能的评价方法
Bravo‐Anagua et al. Influence of cerium ions and shelf‐life of hybrid solution as pretreatment for AA 2024 aluminum alloy on its anticorrosion performance
Yang et al. Effects of immersion temperature on the performance of a marine epoxy-based organic coating for ballast tanks
Luo et al. Study on the sorption of water into epoxy resins by means of electrochemical impedance spectroscopy
CN114410182A (zh) 一种快速固化的导电防腐复合涂层的制备工艺
Hsieh et al. Application of carbon coated stainless steel for bipolar plate in proton exchange membrane fuel cell
CN117363148B (zh) 一种石墨烯防腐涂料
Rujin et al. Surface stability and conductivity of a high Cr and Ni austenitic stainless steel plates for PEMFC
CN107760157A (zh) 一种具有导电性能的环氧防腐涂料的制备方法
CN112414883B (zh) 用于质子交换膜燃料电池催化剂浆料稳定性测试的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230619

Address after: 513000 No. 11, Jinnan Third Road, fine chemical base, overseas Chinese Industrial Park, Donghua Town, Yingde City, Qingyuan City, Guangdong Province

Patentee after: Guangdong meiheng New Material Technology Co.,Ltd.

Patentee after: SOUTH CHINA University OF TECHNOLOGY

Address before: 513000 No. 11, Jinnan Third Road, fine chemical base, overseas Chinese Industrial Park, Donghua Town, Yingde City, Qingyuan City, Guangdong Province

Patentee before: Fang Heng

Patentee before: SOUTH CHINA University OF TECHNOLOGY