WO2023279763A1 - 一种提高乙烯基树脂耐腐蚀性的方法 - Google Patents

一种提高乙烯基树脂耐腐蚀性的方法 Download PDF

Info

Publication number
WO2023279763A1
WO2023279763A1 PCT/CN2022/081092 CN2022081092W WO2023279763A1 WO 2023279763 A1 WO2023279763 A1 WO 2023279763A1 CN 2022081092 W CN2022081092 W CN 2022081092W WO 2023279763 A1 WO2023279763 A1 WO 2023279763A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl resin
corrosion resistance
resin
vinyl
mxene nanosheet
Prior art date
Application number
PCT/CN2022/081092
Other languages
English (en)
French (fr)
Inventor
方亨
魏嫣莹
戴雨润
Original Assignee
方亨
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 方亨, 华南理工大学 filed Critical 方亨
Priority to GB2218607.6A priority Critical patent/GB2614963B/en
Priority to US18/078,715 priority patent/US11692103B1/en
Publication of WO2023279763A1 publication Critical patent/WO2023279763A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1438Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing oxygen
    • C08G59/1455Monocarboxylic acids, anhydrides, halides, or low-molecular-weight esters thereof
    • C08G59/1461Unsaturated monoacids
    • C08G59/1466Acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1494Polycondensates modified by chemical after-treatment followed by a further chemical treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3218Carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • C08J3/095Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • C09D163/10Epoxy resins modified by unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/80Processes for incorporating ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the invention belongs to the technical field of polymer materials, and in particular relates to a method for improving the corrosion resistance of vinyl resins.
  • Vinyl resin is a thermosetting resin synthesized by the reaction of methacrylic acid and bisphenol A epoxy resin. It can be cured quickly at room temperature and has good mechanical properties of epoxy resin.
  • vinyl resin As a kind of anti-corrosion material with relatively good performance, vinyl resin has the characteristics of stable chemical properties, good adhesion and good corrosion resistance, and has been widely used in the surface anti-corrosion of metal and other materials.
  • corrosive substances such as water, oxygen, acid and alkali, and salt ions reach the metal/resin interface through diffusion and gradually corrode the metal surface, the coating will gradually lose its adhesion and eventually lose its protective effect. In the environment of strong acid and strong alkali with harsh pH, the corrosion resistance of the protective coating is very high.
  • the present invention aims at the above-mentioned shortcomings existing in the prior art, and proposes a method for improving the corrosion resistance of vinyl resins.
  • the present invention provides the following technical solutions:
  • the invention provides a method for improving the corrosion resistance of vinyl resins, comprising the following steps:
  • the MXene nanosheet solution is an MXene nanosheet ethanol solution, and the mass of the MXene nanosheet is 0.001-100% of the mass of the vinyl resin.
  • the method for evaporating the solvent to dryness specifically includes: evaporating ethanol to dryness at a temperature of 50-200° C. under the condition of a water bath.
  • the addition amounts of the cobalt isooctanoate and butanone peroxide are both 0.5-1.5% of the mass of the vinyl resin.
  • cobalt isooctanoate accelerator and the addition of methyl ethyl ketone peroxide initiator both include the operation of stirring for 1-60 minutes.
  • the defoaming is carried out in a vacuum environment, the temperature is 50-200° C., the time is 1-60 minutes, and the standing time is 24-72 hours.
  • the heating temperature is 50-200° C.
  • the heating time is 24-72 hours.
  • the present invention also provides a modified vinyl resin prepared according to the above method.
  • the present invention has the following beneficial effects:
  • the corrosion resistance of vinyl resin modified by using MXene nanosheets is that the combination of nanosheets and resin improves the barrier performance of the resin coating to corrosive liquids and gases, effectively improves the hydrophobicity of the resin coating, and at the same time After modification, the insulation effect of the resin coating on corrosive ions can be effectively improved.
  • the invention uses two-dimensional MXene nanosheets for the first time to modify the corrosion resistance of the vinyl resin, the preparation process is simple, the addition of the nanosheets is small, and the corrosion resistance of the vinyl resin can be well improved.
  • Figure 1 is a schematic diagram of the water contact angle of the vinyl resin and the modified vinyl resin prepared in Example 1.
  • the vinyl resin used in the following examples is a standard bisphenol A epoxy vinyl resin resin synthesized by the reaction of methacrylic acid and bisphenol A epoxy resin.
  • a method utilizing two-dimensional MXene nanosheets to enhance the corrosion resistance of vinyl resins comprising the steps of:
  • step (2) Heat the dispersion complex obtained in step (1) in a water bath at a temperature of 78° C., and evaporate the ethanol to dryness; then add 0.05 g of cobalt isooctanoate promoter, and stir mechanically for 10 min; then add 0.05 g of methyl ethyl ketone peroxide Initiator, mechanically stirred for 10min.
  • step (3) Vacuum defoam the nanosheet/resin composite obtained in step (2) at a temperature of 80°C for 10 minutes, and spread the defoamed nanosheet/resin composite evenly on a 50*50*1mm q235 steel plate, let it stand for 24 hours, and heat it at 80°C for 2 hours to obtain the sample to be tested.
  • a method utilizing two-dimensional MXene nanosheets to enhance the corrosion resistance of vinyl resins comprising the steps of:
  • step (2) Heat the dispersion complex obtained in step (1) in a water bath at a temperature of 78° C., and evaporate ethanol to dryness. Then add 0.025g cobalt isooctanoic acid accelerator and stir mechanically for 15 minutes; then add 0.025g methyl ethyl ketone peroxide initiator and stir mechanically for 15 minutes.
  • step (3) Degas the resin composite obtained in step (2) in vacuum for 30 minutes at a temperature of 200°C, apply the defoamed composite evenly on a q235 steel plate with a specification of 100*100*1mm, and let it stand for 24 hours , heated at 100°C for 4h to obtain the sample to be tested.
  • a method utilizing two-dimensional MXene nanosheets to enhance the corrosion resistance of vinyl resins comprising the steps of:
  • step (2) Heat the dispersion complex obtained in step (1) in a water bath at a temperature of 85° C., and evaporate the ethanol to dryness. Then add 7.5g cobalt isooctanoic acid accelerator and stir mechanically for 15 minutes; then add 7.5g butanone peroxide initiator and stir mechanically for 15 minutes.
  • step (3) Degas the resin composite obtained in step (2) in vacuum for 20 minutes at a temperature of 80°C, apply the defoamed composite evenly on a q235 steel plate with a specification of 100*100*1mm, and let it stand for 24 hours , heated at 100°C for 4h to obtain the sample to be tested.
  • step (2) Under the temperature condition of 80° C., the mixture obtained in step (1) was subjected to vacuum defoaming treatment, and the defoaming time was 10 min. Then spread the degassed resin evenly on the q235 steel plate with the specification of 50*50*1mm, let it stand for 24 hours, and heat it at 80°C for 2 hours to obtain the sample to be tested.
  • each sample was placed in a 3.5wt% NaCl solution After soaking for two days, the open circuit potential was tested using a three-electrode electrochemical workstation, and the results are shown in Table 1.
  • the modified resin sample obtained by modifying vinyl resin by using two-dimensional MXene nanosheets in the present invention shows better corrosion resistance in 3.5wt% NaCl solution, and at the same time The hydrophobic properties of the modified resin samples are better.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Emergency Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Paints Or Removers (AREA)

Abstract

一种提高乙烯基树脂耐腐蚀性的方法,包括步骤为:向MXene纳米片溶液中加入乙烯基树脂并蒸干溶剂;之后依次加入异辛酸钴盐促进剂和过氧化丁酮引发剂,脱泡后静置固化,然后加热即可。利用二维MXene纳米片对乙烯基树脂进行耐腐蚀性能改性,制备过程简单,纳米片的添加量少,能够很好地提升乙烯基树脂的耐腐蚀性能。

Description

一种提高乙烯基树脂耐腐蚀性的方法 技术领域
本发明属于高分子材料技术领域,具体涉及一种提高乙烯基树脂耐腐蚀性的方法。
背景技术
乙烯基树脂是由甲基丙烯酸与双酚A环氧树脂反应合成的一种热固性树脂,能够在常温下快速固化,同时兼具了环氧树脂的良好机械性能。乙烯基树脂作为一种性能较为良好的防腐材料,具有稳定的化学性能、良好的附着力以及较好的耐腐蚀性能等特点,已被广泛应用于金属等材料的表面防腐。但一旦水、氧、酸碱及盐离子等腐蚀性物质通过扩散到达金属/树脂界面并开始逐渐腐蚀金属表面,涂层便会逐渐失去附着力,最终失去防护作用。在pH较为恶劣的强酸强碱环境下,需要保护涂层的耐腐蚀性能非常高。
为提高乙烯基树脂在极端pH值环境下的防腐性能,延长保护涂层的使用寿命,需对其进行改性以提高其耐腐蚀性能。
发明内容
本发明针对现有技术存在的上述不足,提出一种提高乙烯基树脂耐腐蚀性的方法。
为实现上述目的,本发明提供了如下技术方案:
本发明提供了一种提高乙烯基树脂耐腐蚀性的方法,包括以下步骤:
向MXene纳米片溶液中加入乙烯基树脂并蒸干溶剂;之后依次加入异辛酸钴盐促进剂和过氧化丁酮引发剂,脱泡后静置固化,然后加热即可。
进一步地,所述MXene纳米片溶液为MXene纳米片乙醇溶液,所述MXene纳米片的质量为所述乙烯基树脂质量的0.001~100%。
更进一步地,所述蒸干溶剂的方法具体为:水浴条件下,在50~200℃的温度下将乙醇蒸干。
进一步地,所述向MXene纳米片溶液中加入乙烯基树脂后还包括搅拌及超声分散的步骤。
进一步地,所述异辛酸钴盐和过氧化丁酮的添加量均为乙烯基树脂质量的 0.5~1.5%。
进一步地,所述加入异辛酸钴盐促进剂及所述加入过氧化丁酮引发剂后均包括搅拌1~60min的操作。
进一步地,所述脱泡在真空环境下进行,温度为50~200℃,时间为1~60min,所述静置时间为24~72h。
进一步地,所述加热温度为50~200℃,时间为24~72h。
本发明还提供了一种根据上述方法制备得到的改性乙烯基树脂。
与现有技术相比,本发明具有以下有益效果:
利用MXene纳米片改性乙烯基树脂的耐腐蚀,其机理在于:纳米片与树脂结合后提升了树脂涂层对腐蚀性液体、气体等的阻隔性能,有效提升了树脂涂层的疏水性,同时改性后能够有效提升树脂涂层对腐蚀性离子的隔绝效果。
本发明首次利用二维MXene纳米片对乙烯基树脂进行耐腐蚀性能改性,制备过程简单,纳米片的添加量少,且能够很好地提升乙烯基树脂的耐腐蚀性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为乙烯基树脂及实施例1制备得到的改性乙烯基树脂的水接触角示意图。
具体实施方式
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。
另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见的。本发明说明书和实施例仅是示例性的。
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
以下实施例中所采用的乙烯基树脂为甲基丙烯酸与双酚A环氧树脂反应合成的标准型双酚A环氧乙烯基树脂树脂。
实施例1
一种利用二维MXene纳米片增强乙烯基树脂耐腐蚀性的方法,包括以下步骤:
(1)向25ml,0.25mg/mL的MXene纳米片乙醇溶液中加入5g乙烯基树脂,机械搅拌混合10min,超声分散30min。
(2)将步骤(1)得到的分散复合体在78℃的温度条件下水浴加热,蒸干乙醇;随后加入0.05g异辛酸钴盐促进剂,机械搅拌10min;再加入0.05g过氧化丁酮引发剂,机械搅拌10min。
(3)将步骤(2)处理得到的纳米片/树脂复合体于80℃的温度条件下真空脱泡10min,脱泡后的纳米片/树脂复合体均匀涂抹在规格为50*50*1mm的q235钢板上,静置24h,于80℃的温度条件下加热2h,得到待测样品。
实施例2
一种利用二维MXene纳米片增强乙烯基树脂耐腐蚀性的方法,包括以下步骤:
(1)向200ml,0.25mg/ml的MXene纳米片乙醇溶液中加入5g乙烯基树脂,机械搅拌混合30min,超声分散60min。
(2)将步骤(1)得到的分散复合体在78℃的温度条件下水浴加热,蒸干乙醇。随后加入0.025g异辛酸钴盐促进剂,机械搅拌15min;再加入0.025g过氧化丁酮引发剂,机械搅拌15min。
(3)将步骤(2)处理得到的树脂复合体于200℃的温度条件下真空脱泡30min,脱泡后的复合体均匀涂抹在规格为100*100*1mm的q235钢板上,静置24h,于100℃的温度条件下加热4h,得到待测样品。
实施例3
一种利用二维MXene纳米片增强乙烯基树脂耐腐蚀性的方法,包括以下步骤:
(1)向2000ml,0.5mg/ml的MXene纳米片乙醇溶液中加入500g乙烯基树脂,机械搅拌混合60min,超声分散60min。
(2)将步骤(1)得到的分散复合体在85℃的温度条件下水浴加热,蒸干乙醇。随后加入7.5g异辛酸钴盐促进剂,机械搅拌15min;再加入7.5g过氧化丁酮引发剂,机械搅拌15min。
(3)将步骤(2)处理得到的树脂复合体于80℃的温度条件下真空脱泡20min,脱泡后的复合体均匀涂抹在规格为100*100*1mm的q235钢板上,静置24h,于100℃的温度条件下加热4h,得到待测样品。
对比例1
(1)向25mL乙醇溶液中加入5g乙烯基树脂,机械搅拌10min,超声分散30min,在78℃的温度条件下水浴加热蒸干乙醇,之后向其中加入0.05g异辛酸钴盐促进剂,机械搅拌10min,再加入0.05g过氧化丁酮引发剂,机械搅拌10min。
(2)在80℃的温度条件下对步骤(1)所得混合物进行真空脱泡处理,脱泡时间为10min。随后将脱泡后的树脂均匀涂抹在规格为50*50*1mm的q235钢板上,静置24h,于80℃的温度条件下加热2h,得到待测样品。
效果验证
对未处理的乙烯基树脂、实施例1~3制备得到的改性乙烯基树脂及对比例1制备得到的待测样品的耐腐蚀性进行测试:将各样品置于3.5wt%的NaCl溶液中浸泡两天后,利用三电极电化学工作站对其开路电位进行测试,所得结果如 表1所示。
表1
组别 开路电位
乙烯基树脂(未经处理) 21.4mv
实施例1 41.3mv
实施例2 40.6mv
实施例3 45.1mv
对比例1 22.6mv
开路电位越大,则表明样品的受腐蚀程度越小,由表1可以看出:本发明通过采用MXene纳米片对乙烯基树脂进行改性处理,显著提升了其耐腐蚀性。
利用表面接触角测试仪对浸泡后的各组样品的水接触角进行测定,以测试样品的亲/疏水性能,所得各组样品的水接触角如表2所示;未处理的乙烯基树脂及实施例1制备的改性树脂的水接触角测试结果图如图1所示。
表2
组别 水接触角/°
乙烯基树脂(未经处理) 69.7
实施例1 93.6
实施例2 91.2
实施例3 88.7
对比例1 64.5
由表2可以看出:未改性的乙烯基树脂样品在3.5wt%的NaCl溶液中浸泡两天后进行水接触角测试,测得其水接触角为69.7°,利用MXene纳米片改性后的乙烯基树脂样品在3.5wt%的NaCl溶液中浸泡两天后进行水接触角测试,其水接触角达到90°以上,可见改性后树脂对液体的隔绝性能有明显提升。
由表1和表2可以看出:本发明利用二维MXene纳米片对乙烯基树脂进行改性得到的改性树脂样品在3.5wt%的NaCl溶液中表现出更为良好的耐腐蚀性能,同时改性树脂样品的疏水性能更好。
以上所述,仅为本发明较佳的具体实施方式,本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,根据本发明的 技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围内。

Claims (8)

  1. 一种提高乙烯基树脂耐腐蚀性的方法,其特征在于,包括以下步骤:
    向MXene纳米片溶液中加入乙烯基树脂并蒸干溶剂;之后依次加入异辛酸钴盐促进剂和过氧化丁酮引发剂,脱泡后静置固化,然后加热即可。
  2. 根据权利要求1所述的方法,其特征在于,所述MXene纳米片溶液为MXene纳米片乙醇溶液,所述MXene纳米片的质量为所述乙烯基树脂质量的0.001~100%。
  3. 根据权利要求1所述的方法,其特征在于,所述向MXene纳米片溶液中加入乙烯基树脂后还包括搅拌及超声分散的步骤。
  4. 根据权利要求1所述的方法,其特征在于,所述异辛酸钴盐和过氧化丁酮的添加量均为乙烯基树脂质量的0.5~1.5%。
  5. 根据权利要求1所述的方法,其特征在于,所述加入异辛酸钴盐促进剂及所述加入过氧化丁酮引发剂后均包括搅拌1~60min的操作。
  6. 根据权利要求1所述的方法,其特征在于,所述脱泡在真空环境下进行,温度为50~200℃,时间为1~60min,所述静置时间为24~72h。
  7. 根据权利要求1所述的方法,其特征在于,所述加热温度为50~200℃,时间为24~72h。
  8. 一种根据权利要求1~7任一项所述的方法制备得到的改性乙烯基树脂。
PCT/CN2022/081092 2022-01-05 2022-03-16 一种提高乙烯基树脂耐腐蚀性的方法 WO2023279763A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB2218607.6A GB2614963B (en) 2022-01-05 2022-03-16 Method for improving corrosion resistance of vinyl ester resin
US18/078,715 US11692103B1 (en) 2022-01-05 2022-12-09 Method for improving corrosion resistance of vinyl ester resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210007628.9 2022-01-05
CN202210007628.9A CN114316750B (zh) 2022-01-05 2022-01-05 一种提高乙烯基树脂耐腐蚀性的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/078,715 Continuation US11692103B1 (en) 2022-01-05 2022-12-09 Method for improving corrosion resistance of vinyl ester resin

Publications (1)

Publication Number Publication Date
WO2023279763A1 true WO2023279763A1 (zh) 2023-01-12

Family

ID=81024204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081092 WO2023279763A1 (zh) 2022-01-05 2022-03-16 一种提高乙烯基树脂耐腐蚀性的方法

Country Status (4)

Country Link
US (1) US11692103B1 (zh)
CN (1) CN114316750B (zh)
GB (1) GB2614963B (zh)
WO (1) WO2023279763A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116716022B (zh) * 2023-05-04 2024-06-07 湖北工业大学 一种仿贝壳结构乙烯基树脂的高渗透性混凝土防护材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105694658A (zh) * 2014-11-28 2016-06-22 中国科学院金属研究所 一种耐高温石墨烯/乙烯基树脂防腐涂料及其制备方法
CN108384448A (zh) * 2017-05-17 2018-08-10 东华大学 一种仿贝壳结构的复合纳米防腐涂层及其制备方法
US20200015391A1 (en) * 2018-01-25 2020-01-09 Lg Chem, Ltd. Coating Composition, Coating Film, and EMI Shielding Composite
US20200102444A1 (en) * 2018-10-02 2020-04-02 Korea Institute Of Science And Technology 2-dimensional mxene particle surface-modified with functional group containing saturated or unsaturated hydrocarbon, preparation method thereof and use thereof
CN112552801A (zh) * 2020-12-25 2021-03-26 南京大学 一种含Ti3C2TX(MXene)/聚苯胺的水性防腐涂料及其制备方法
CN113621300A (zh) * 2021-08-10 2021-11-09 中山大学 一种纳米片复合涂料及其制备方法与应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019126031A1 (en) * 2017-12-22 2019-06-27 Drexel University Crumpled mesoporous mxene powders synthesized by acid-, base-, or salt-induced crumpling
CN114809190A (zh) * 2018-05-17 2022-07-29 阿卜杜拉国王科技大学 收集水蒸气的装置
PT115035A (pt) * 2018-09-24 2020-04-27 Univ Do Porto Condensador termoiónico carregável por efeito soret utilizando um gradiente de temperatura
CN113004736A (zh) * 2021-03-09 2021-06-22 中山大学 一种改性氮化硼纳米片的制备方法及其在提高水性有机防护涂料耐腐蚀性能中的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105694658A (zh) * 2014-11-28 2016-06-22 中国科学院金属研究所 一种耐高温石墨烯/乙烯基树脂防腐涂料及其制备方法
CN108384448A (zh) * 2017-05-17 2018-08-10 东华大学 一种仿贝壳结构的复合纳米防腐涂层及其制备方法
US20200015391A1 (en) * 2018-01-25 2020-01-09 Lg Chem, Ltd. Coating Composition, Coating Film, and EMI Shielding Composite
US20200102444A1 (en) * 2018-10-02 2020-04-02 Korea Institute Of Science And Technology 2-dimensional mxene particle surface-modified with functional group containing saturated or unsaturated hydrocarbon, preparation method thereof and use thereof
CN112552801A (zh) * 2020-12-25 2021-03-26 南京大学 一种含Ti3C2TX(MXene)/聚苯胺的水性防腐涂料及其制备方法
CN113621300A (zh) * 2021-08-10 2021-11-09 中山大学 一种纳米片复合涂料及其制备方法与应用

Also Published As

Publication number Publication date
GB2614963A (en) 2023-07-26
GB202218607D0 (en) 2023-01-25
CN114316750B (zh) 2022-06-07
US20230212407A1 (en) 2023-07-06
CN114316750A (zh) 2022-04-12
US11692103B1 (en) 2023-07-04
GB2614963B (en) 2024-02-14

Similar Documents

Publication Publication Date Title
Gao et al. Fluorine‐phosphate copolymerization waterborne acrylic resin coating with enhanced anticorrosive performance
WO2023279763A1 (zh) 一种提高乙烯基树脂耐腐蚀性的方法
CN113004736A (zh) 一种改性氮化硼纳米片的制备方法及其在提高水性有机防护涂料耐腐蚀性能中的应用
CN109486416B (zh) 一种氧化膜硅烷化处理方法
CN108707886A (zh) 一种氧化石墨烯增强硅烷膜的制备方法
Monetta et al. The Effect of Graphene on the Protective Properties of Water‐Based Epoxy Coatings on Al2024‐T3
CN109486461A (zh) 一种高稳定性led封装用导电银胶及其制备方法
CN103305852B (zh) 一种提高镁合金表面耐腐蚀性能的前处理液及其处理方法
CN112126306B (zh) 一种防锈防腐蚀乳液及其制备方法
Yang et al. Effects of immersion temperature on the performance of a marine epoxy-based organic coating for ballast tanks
Bravo‐Anagua et al. Influence of cerium ions and shelf‐life of hybrid solution as pretreatment for AA 2024 aluminum alloy on its anticorrosion performance
CN115572518A (zh) 一种水系混凝土防护涂料组合物及其制备方法
CN112876925B (zh) 一种耐低温抗拉伸防腐涂料的制备方法
Luo et al. Study on the sorption of water into epoxy resins by means of electrochemical impedance spectroscopy
CN112853336A (zh) 一种铝罐盖包装材料用无铬表面处理剂及其制备方法、钝化工艺
Liu et al. Effect of high-temperature mechanochemistry method modified TiO2 on the dispersibility and corrosion resistance of TiO2-epoxy coatings
CN114437605A (zh) 一种功能化碳纳米管改性环氧丙烯酸树脂涂料的制备方法
CN117363148B (zh) 一种石墨烯防腐涂料
CN116410648B (zh) 一种快速固化的酚醛环氧涂料
Meng et al. A novel anticorrosive performance coating through introducing epoxidized hydroxyl terminated polybutadiene
Liu et al. Influence of cyanate ester modifier on the thermal, mechanical, and corrosive properties of epoxy composite coating
CN112662096B (zh) 一种含氟耐腐蚀材料及其制备方法
CN116239928B (zh) 一种油气管道内改性环氧树脂修复涂层中改性材料最佳配比的预测方法
CN107974143A (zh) 耐腐蚀玻璃鳞片树脂
CN113088038B (zh) 一种硬度高耐腐蚀的合成树脂及其制备方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202218607

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220316

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22836523

Country of ref document: EP

Kind code of ref document: A1