CN114264240A - 一种检测双层膜的各膜层厚度均匀性的方法 - Google Patents

一种检测双层膜的各膜层厚度均匀性的方法 Download PDF

Info

Publication number
CN114264240A
CN114264240A CN202111398137.3A CN202111398137A CN114264240A CN 114264240 A CN114264240 A CN 114264240A CN 202111398137 A CN202111398137 A CN 202111398137A CN 114264240 A CN114264240 A CN 114264240A
Authority
CN
China
Prior art keywords
film
layer
thickness
double
initial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111398137.3A
Other languages
English (en)
Other versions
CN114264240B (zh
Inventor
李定
李钱陶
熊长新
郝力凯
金天义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
717th Research Institute of CSIC
Original Assignee
717th Research Institute of CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 717th Research Institute of CSIC filed Critical 717th Research Institute of CSIC
Priority to CN202111398137.3A priority Critical patent/CN114264240B/zh
Publication of CN114264240A publication Critical patent/CN114264240A/zh
Application granted granted Critical
Publication of CN114264240B publication Critical patent/CN114264240B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明涉及一种检测双层膜的各膜层厚度均匀性的方法,包括如下步骤:Y1、初始参数组的设定;Y2、制备双层膜;Y3、极值波长的确定;Y4、形成数据表;Y5、建立表达式;Y6、厚度计算;Y7、均匀性分析;该方法采用简单的膜系结构,能够同时完成两种不同材料薄膜的均匀性计算,显著提高膜厚均匀性修正的效率。

Description

一种检测双层膜的各膜层厚度均匀性的方法
技术领域
本发明涉及光学薄膜检测技术领域,具体涉及一种检测双层膜的各膜层厚度均匀性的方法。
背景技术
随着光学技术的发展,光学系统设计日益精密,对光学元件的性能要求越来越高,为此通常需要在光学元件表面镀制光学薄膜,以获得高反射率、高透过率、高偏振比等特殊光学性能要求。对于较大口径光学镀膜镜片而言,通光口径范围内的膜层厚度均匀性是其主要技术指标之一,膜厚均匀性不好,不仅会导致镜片上不同位置光学性能不一致,同时会导致光学元件光谱波前及面型变差。因此,必须严格控制光学元件的厚度分布。
IBS(离子束溅射)沉积系统采用高能离子束轰击靶材,通过动量传递的方式将能量传递给靶材粒子,使其脱离靶材表面并以较高能量沉积在镀膜基板上,其优点是膜层致密、沉积速率稳定。但由于离子源口径有限,且离子束分布不均匀,导致基板不同位置的膜厚存在较大差异。传统的修正膜厚均匀性的方法,采用镀制单层膜,通过光谱拟合的方法来计算膜厚均匀性。针对不同的材料,需单独镀制膜层,效率低,成本高。
发明内容
基于上述表述,本发明提供了一种检测双层膜的各膜层厚度均匀性的方法,能够在一次镀膜实验中同时对两种不同材料的薄膜厚度均匀性进行检测计算,为膜厚均匀性的修正提供依据。
本发明解决上述技术问题的技术方案如下:
一种检测双层膜的各膜层厚度均匀性的方法,包括如下步骤:
Y1、初始参数组的设定,根据所需制备的双层膜各膜层的厚度范围值,形成初始参数组的第一数据表;
Y2、制备双层膜,根据Y1中的一组初始参数在透明的基片上形成制备双层膜;
Y3、极值波长的确定,选取采样点,在特定的波段范围内测量并绘制采样点处的透过率曲线,并通过计算机标注出两个相邻的透过率极大值对应的极值波长λ1和λ2
Y4、形成数据表,重复Y2-Y3,检测出所有初始参数组对应的λ1和λ2,形成对应的第二数据表;
Y5、建立表达式,通过线性拟合建立双层膜的膜层厚度基于λ1和λ2的线性表达式;
Y6、厚度计算,在待测双层膜基片上等间隔选取检测点,测量每一个检测点在特定的波段范围内的λ1和λ2,并将其代入Y5中的线性表达式中,计算得到双层膜的各膜层厚度;
Y7、均匀性分析,以待测双层膜基片上的采样点位置为横坐标,双层膜的各膜层厚度为纵坐标,绘制膜层厚度分布图并分析膜层厚度均匀性。
与现有技术相比,本申请的技术方案具有以下有益技术效果:
该方法采用简单的膜系结构,能够同时完成两种不同材料薄膜的均匀性计算,显著提高膜厚均匀性修正的效率。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步的,所述双层膜包括依次沉积在透明基底上的一层第一材料膜层和一层第二材料膜层构成,将第一材料膜层的实际厚度记为d1,第二材料膜层的实际厚度记为d2,所述初始数据表包括以d1为变量,d2为定量的第一初始参数组和以d1为定量,d2为变量的第二初始参数组。
进一步的,将第一材料膜层的标准光学厚度记为D1,第二材料膜层的标准光学厚度记为D2,第一材料的折射率为n1,第二材料的折射率为n2,则有第一材料膜层的实际光学厚度D1=d1*n1,第二材料膜层的实际光学厚度D2=d2*n2,所述第一初始参数组包括使D1在D1的一定范围内变化的d1值和保持D2=D2不变的d2值;所述第二初始参数组包括保持D1=D1不变的d1值和使D2在D2的一定范围内变化的d2值。
进一步的,所述建立表达式包括:
Y51、基于第一初始参数组,以d1为横坐标,以λ1和λ2的值为纵坐标,线性拟合得到两条拟合直线;
Y52、基于第二初始参数组,以d2为横坐标,以λ1和λ2的值为纵坐标,线性拟合得到两条拟合直线;
Y53、基于Y51和Y52得到的拟合直线,计算以d1、d2作为自变量,λ1和λ2作为因变量的方程组,得到d1和d2表达式。
进一步的,透过率通过分光光度计测量而得。
进一步的,所述特定的波长范围内有且仅有两个相邻的透过率极大值。
进一步的,第一材料的折射率n1大于第二材料的折射率n2。
附图说明
图1为本发明实施例一种检测双层膜的各膜层厚度均匀性的方法的步骤示意图;
图2为本发明实施例所检测的双层膜的结构示意图;
图3为第一初始参数组的数据下对应的极值波长散点图;
图4为第二初始参数组的数据下对应的极值波长散点图;
图5为基片不同部位d1分布图;
图6为基片不同部位d2分布图;
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使本申请的公开内容更加透彻全面。
本申请实施例提供了一种检测双层膜的各膜层厚度均匀性的方法,包括如下步骤:
第一步Y1:初始参数组的设定,根据所需制备的双层膜各膜层的厚度范围值,形成初始参数组的第一数据表。
其中,所述双层膜包括依次沉积在透明基底上的一层第一材料膜层和一层第二材料膜层构成,将第一材料膜层的实际厚度记为d1,第二材料膜层的实际厚度记为d2,所述初始数据表包括以d1为变量,d2为定量的第一初始参数组和以d1为定量,d2为变量的第二初始参数组。
为了便于d1和d2的确定,将第一材料膜层的标准光学厚度记为D1,第二材料膜层的标准光学厚度记为D2,第一材料的折射率为n1,第二材料的折射率为n2,则有第一材料膜层的实际光学厚度D1=d1*n1,第二材料膜层的实际光学厚度D2=d2*n2,所述第一初始参数组包括使D1在D1的一定范围内变化的d1值和保持D2=D2不变的d2值;所述第二初始参数组包括保持D1=D1不变的d1值和使D2在D2的一定范围内变化的d2值。
本实施例中,λ0为参考波长,本实验中取λ0=633nm,取D1=D2=0.75λ0=474nm,第一材料为Ta2O5,折射率n1=2.1,第二材料为SiO2,折射率为1.48。
则,d1的初始厚度为225nm,d2的初始厚度320nm。
使D1在D1的一定范围内变化的d1值在本实验中,预设D1在D1±5%的范围以1%的步长递增,即可得出d1值同样在初始厚度225nm±5%的范围以1%的步长递增。因而第一初始参数组如下表1所示:
d1/nm 213.7 216 218.3 220.5 222.8 225 227.3 229.5 231.7 234 236.2
d2/nm 320 320 320 320 320 320 320 320 320 320 320
表1:第一初始参数组表同理,可以得出第二初始参数组如下表2所示
d1/nm 225 225 225 225 225 225 225 225 225 225 225
d2/nm 304 307.2 310.4 313.6 316.8 320 323.2 326.4 329.6 332.8 336
表2:第二初始参数组表
第二步Y2:制备双层膜,根据第一步Y1中的一组初始参数在透明的基片上形成制备双层膜,其中,本实验中采用透明石英玻璃作为透明基片。
第三步Y3:极值波长的确定,选取采样点,在特定的波段范围内测量并绘制采样点处的透过率曲线,并通过计算机标注出两个相邻的透过率极大值对应的极值波长λ1和λ2
需要注意的是,为了防止波段范围过宽导致极大值数量的增加,导致实验出错,如图1所示,本申请实施例中特定的波段范围内双层膜有且仅有两个相邻的透过率极大值,本申请中选取[2/3λ0,6/5λ0]即[422,759]的波段范围内。
第四步Y4:形成数据表,重复Y2-Y3,检测出所有初始参数组对应的λ1和λ2,形成对应的第二数据表。
在第一初始参数组的数据下对应的λ1和λ2如下表3所示:
表3
d1/nm 213.7 216 218.3 220.5 222.8 225 227.3 229.5 231.7 234 236.2
d2/nm 320 320 320 320 320 320 320 320 320 320 320
λ<sub>1</sub>/nm 464 467.7 471.3 475 478.6 482.3 485.9 489.5 493.1 496.6 500.2
λ<sub>2</sub>/nm 626.1 627.7 629.3 630.9 632.5 634.1 635.7 637.3 638.9 640.5 642.1
其形成的散点图如图3所示。
在第二初始参数组的数据下对应的λ1和λ2如下表4所示:
表4
d1/nm 225 225 225 225 225 225 225 225 225 225 225
d2/nm 304 307.2 310.4 313.6 316.8 320 323.2 326.4 329.6 332.8 336
λ<sub>1</sub>/nm 476.1 477.3 478.6 479.8 481.1 482.3 483.4 484.6 485.8 486.9 488.1
λ<sub>2</sub>/nm 610.4 615.1 619.9 624.6 629.3 634.1 638.8 643.6 648.3 653.1 657.8
其形成的对应散点图如图4所示。
第五步Y5:建立表达式,通过线性拟合建立双层膜的膜层厚度基于λ1和λ2的线性表达式;
具体的,包括:
Y51、基于第一初始参数组,以d1为横坐标,以λ1和λ2的值为纵坐标,线性拟合得到两条拟合直线;
具体的,首先初步建立λ1和λ2基于d1的直线方程:
Figure BDA0003370862100000061
其中a1,a2分别为两条拟合直线的斜率,
根据表3和图3线性拟合得到,
Figure BDA0003370862100000062
Y52、基于第二初始参数组,以d2为横坐标,以λ1和λ2的值为纵坐标,线性拟合得到两条拟合直线;
同理,首先初步建立λ1和λ2基于d2的直线方程:
Figure BDA0003370862100000063
其中b1,b2分别为两条拟合直线的斜率,
根据表4和图4线性拟合得到,
Figure BDA0003370862100000064
Figure BDA0003370862100000076
Y53、基于Y51和Y52得到的拟合直线,计算以d1、d2作为自变量,λ1和λ2作为因变量的方程组,得到d1和d2表达式。
首先建立方程组:
Figure BDA0003370862100000071
将d1、d2作为自变量解以上线性方程组,得到:
Figure BDA0003370862100000072
将上述a1,a2和b1,b2代入,即:
Figure BDA0003370862100000073
Figure BDA0003370862100000074
即为d1和d2基于λ1和λ2的线性表达式。
第六步Y6:厚度计算,在待测双层膜基片上等间隔选取检测点,测量每一个检测点在特定的波段范围内的λ1和λ2,并将其代入Y5中的线性表达式中,计算得到双层膜的各膜层厚度。
本实施例中以起点位置为0等间隔10mm取检测点,然后采用分光光度计测量采样点处的透过率曲线,波段范围[422,759],并采用分光光度计数据分析软件自带的峰值标记功能标注出两个峰值对应波长λ1和λ2,形成下表5:
表5
Figure BDA0003370862100000075
将表5的数据代入Y5中的线性表达式中,计算出各检测点处d1和d2的数值,形成下表6:
表6
Figure BDA0003370862100000081
第七步Y7:均匀性分析,以待测双层膜基片上的采样点位置为横坐标,双层膜的各膜层厚度为纵坐标,绘制膜层厚度分布图并分析膜层厚度均匀性。
基于图6绘制基片不同部位d1分布图(图5)和基片不同部位d2分布图(图6),然后工作人员就可以根据图5和图6数据分析双层膜各膜层的厚度均匀性。
该方法采用简单的膜系结构,能够同时完成两种不同材料薄膜的均匀性计算,显著提高膜厚均匀性修正的效率。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种检测双层膜的各膜层厚度均匀性的方法,其特征在于,包括如下步骤:
Y1、初始参数组的设定,根据所需制备的双层膜各膜层的厚度范围值,形成初始参数组的第一数据表;
Y2、制备双层膜,根据Y1中的一组初始参数在透明的基片上形成制备双层膜;
Y3、极值波长的确定,选取采样点,在特定的波段范围内测量并绘制采样点处的透过率曲线,并通过计算机标注出两个相邻的透过率极大值对应的极值波长λ1和λ2
Y4、形成数据表,重复Y2-Y3,检测出所有初始参数组对应的λ1和λ2,形成对应的第二数据表;
Y5、建立表达式,通过线性拟合建立双层膜的膜层厚度基于λ1和λ2的线性表达式;
Y6、厚度计算,在待测双层膜基片上等间隔选取检测点,测量每一个检测点在特定的波段范围内的λ1和λ2,并将其代入Y5中的线性表达式中,计算得到双层膜的各膜层厚度;
Y7、均匀性分析,以待测双层膜基片上的采样点位置为横坐标,双层膜的各膜层厚度为纵坐标,绘制膜层厚度分布图并分析膜层厚度均匀性。
2.根据权利要求1所述的检测双层膜的各膜层厚度均匀性的方法,其特征在于,所述双层膜包括依次沉积在透明基底上的一层第一材料膜层和一层第二材料膜层构成,将第一材料膜层的实际厚度记为d1,第二材料膜层的实际厚度记为d2,所述初始数据表包括以d1为变量,d2为定量的第一初始参数组和以d1为定量,d2为变量的第二初始参数组。
3.根据权利要求2所述的检测双层膜的各膜层厚度均匀性的方法,其特征在于,将第一材料膜层的标准光学厚度记为D1,第二材料膜层的标准光学厚度记为D2,第一材料的折射率为n1,第二材料的折射率为n2,则有第一材料膜层的实际光学厚度D1=d1*n1,第二材料膜层的实际光学厚度D2=d2*n2,所述第一初始参数组包括使D1在D1的一定范围内变化的d1值和保持D2=D2不变的d2值;所述第二初始参数组包括保持D1=D1不变的d1值和使D2在D2的一定范围内变化的d2值。
4.根据权利要求3所述的检测双层膜的各膜层厚度均匀性的方法,其特征在于,所述建立表达式包括:
Y51、基于第一初始参数组,以d1为横坐标,以λ1和λ2的值为纵坐标,线性拟合得到两条拟合直线;
Y52、基于第二初始参数组,以d2为横坐标,以λ1和λ2的值为纵坐标,线性拟合得到两条拟合直线;
Y53、基于Y51和Y52得到的拟合直线,计算以d1、d2作为自变量,λ1和λ2作为因变量的方程组,得到d1和d2表达式。
5.根据权利要求1所述的检测双层膜的各膜层厚度均匀性的方法,其特征在于,透过率通过分光光度计测量而得。
6.根据权利要求1所述的检测双层膜的各膜层厚度均匀性的方法,其特征在于,所述特定的波长范围内有且仅有两个相邻的透过率极大值。
7.根据权利要求1所述的检测双层膜的各膜层厚度均匀性的方法,其特征在于,第一材料的折射率n1大于第二材料的折射率n2。
CN202111398137.3A 2021-11-24 2021-11-24 一种检测双层膜的各膜层厚度均匀性的方法 Active CN114264240B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111398137.3A CN114264240B (zh) 2021-11-24 2021-11-24 一种检测双层膜的各膜层厚度均匀性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111398137.3A CN114264240B (zh) 2021-11-24 2021-11-24 一种检测双层膜的各膜层厚度均匀性的方法

Publications (2)

Publication Number Publication Date
CN114264240A true CN114264240A (zh) 2022-04-01
CN114264240B CN114264240B (zh) 2024-03-22

Family

ID=80825522

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111398137.3A Active CN114264240B (zh) 2021-11-24 2021-11-24 一种检测双层膜的各膜层厚度均匀性的方法

Country Status (1)

Country Link
CN (1) CN114264240B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114577126A (zh) * 2022-04-29 2022-06-03 西安地山视聚科技有限公司 一种非接触式双层复合石英坩埚壁厚检测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121117A (ja) * 2001-10-15 2003-04-23 Nippon Telegr & Teleph Corp <Ntt> 膜厚モニタリング装置および方法
US20040008435A1 (en) * 2002-03-25 2004-01-15 Haruo Takahashi Optical film thickness controlling method, optical film thickness controlling apparatus, dielectric multilayer film manufacturing apparatus, and dielectric multilayer film manufactured using the same controlling apparatus or manufacturing apparatus
CN1687807A (zh) * 2005-04-22 2005-10-26 吉林大学 一种ZnS红外窗口增透保护膜及其制备方法
CN101876537A (zh) * 2010-05-18 2010-11-03 杭州科汀光学技术有限公司 具有高、低两种折射率的多层光学薄膜厚度的校准方法
CN102620664A (zh) * 2011-01-28 2012-08-01 中国科学院理化技术研究所 一种检测光学镀膜机镀膜膜厚均匀性的方法
CN104593723A (zh) * 2015-01-21 2015-05-06 中国科学院光电技术研究所 一种提高热蒸发制备AlF3薄膜的深紫外以及真空紫外波段时效性的方法
CN107726987A (zh) * 2017-10-19 2018-02-23 重庆理工大学 一种光学薄膜的膜厚监控方法
CN112881341A (zh) * 2021-01-15 2021-06-01 中国科学院光电技术研究所 一种确定有机薄膜光学常数和厚度的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121117A (ja) * 2001-10-15 2003-04-23 Nippon Telegr & Teleph Corp <Ntt> 膜厚モニタリング装置および方法
US20040008435A1 (en) * 2002-03-25 2004-01-15 Haruo Takahashi Optical film thickness controlling method, optical film thickness controlling apparatus, dielectric multilayer film manufacturing apparatus, and dielectric multilayer film manufactured using the same controlling apparatus or manufacturing apparatus
CN1687807A (zh) * 2005-04-22 2005-10-26 吉林大学 一种ZnS红外窗口增透保护膜及其制备方法
CN101876537A (zh) * 2010-05-18 2010-11-03 杭州科汀光学技术有限公司 具有高、低两种折射率的多层光学薄膜厚度的校准方法
CN102620664A (zh) * 2011-01-28 2012-08-01 中国科学院理化技术研究所 一种检测光学镀膜机镀膜膜厚均匀性的方法
CN104593723A (zh) * 2015-01-21 2015-05-06 中国科学院光电技术研究所 一种提高热蒸发制备AlF3薄膜的深紫外以及真空紫外波段时效性的方法
CN107726987A (zh) * 2017-10-19 2018-02-23 重庆理工大学 一种光学薄膜的膜厚监控方法
CN112881341A (zh) * 2021-01-15 2021-06-01 中国科学院光电技术研究所 一种确定有机薄膜光学常数和厚度的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
余刚等: "基于遗传算法的Low-E膜系中透明介质膜层均匀性在线分析", 材料科学与工程学报, vol. 36, no. 03, 20 June 2018 (2018-06-20), pages 365 - 369 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114577126A (zh) * 2022-04-29 2022-06-03 西安地山视聚科技有限公司 一种非接触式双层复合石英坩埚壁厚检测方法

Also Published As

Publication number Publication date
CN114264240B (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
CN103673905B (zh) 一种磁控溅射镀光学膜膜厚监控方法
JP2008512730A (ja) 薄膜干渉フィルタ及び干渉フィルタの堆積工程制御のためのブートストラップ法
CN107893216B (zh) 一种修正石英监控法制备宽带增透膜沉积误差的方法
CN114264240A (zh) 一种检测双层膜的各膜层厚度均匀性的方法
CN104655278A (zh) 一种波长定标仪
CN111189397A (zh) 一种透明薄膜厚度测量装置及方法
CN105568227A (zh) 一种同质双层氧化铪减反膜及其制备方法
CN105132881B (zh) 一种用于大口径曲率半径比透镜的光学薄膜膜系设计方法
CN103022260B (zh) 一种调整减反射膜厚度和折射率的方法
CN104849861B (zh) 一种用于制备光学薄膜的方法
CN101876537B (zh) 具有高、低两种折射率的多层光学薄膜厚度的校准方法
CN115219435B (zh) 一种宽光谱椭偏测量与仿真模拟相结合的偏振检测方法
CN107102388A (zh) 一种漫反射板的制作方法及漫反射板
CN111781148B (zh) 一种薄膜纵向不均匀性检测方法、装置及终端和检测系统
Von Rottkay Influence of stoichiometry on the electrochromic cerium-titanium oxide compounds
CN113281266A (zh) 膜层物质的光谱联用分析方法及其应用
CN111650163B (zh) 一种高功率激光增透膜透过率测量方法及其测量装置
CN106324740B (zh) 一种宽带吸收薄膜及其制备方法
CN115790412A (zh) 一种膜厚测试和均匀性调节方法
CN109406106B (zh) 光学材料折射率均匀性的评价方法
CN113267454A (zh) 薄膜品质检测方法、装置、电子设备及存储介质
CN104237979A (zh) 一种膜层具有折射率非均匀性的激光减反膜设计方法
CN106066498B (zh) 一种修正薄膜高低折射率材料相对厚度配比的膜系
CN107314839A (zh) 基于穆勒矩阵的应力检测装置及方法
CN111623714A (zh) 膜层厚度的确定方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant