CN114252094A - 一种基于法诺共振增强的光电探测结构及其制备方法 - Google Patents

一种基于法诺共振增强的光电探测结构及其制备方法 Download PDF

Info

Publication number
CN114252094A
CN114252094A CN202111443060.7A CN202111443060A CN114252094A CN 114252094 A CN114252094 A CN 114252094A CN 202111443060 A CN202111443060 A CN 202111443060A CN 114252094 A CN114252094 A CN 114252094A
Authority
CN
China
Prior art keywords
nanospheres
gold
molybdenum disulfide
substrate
nanosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111443060.7A
Other languages
English (en)
Inventor
龚天巡
严博远
蒋翠翠
黄文�
张晓升
孙润宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202111443060.7A priority Critical patent/CN114252094A/zh
Publication of CN114252094A publication Critical patent/CN114252094A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3615Coatings of the type glass/metal/other inorganic layers, at least one layer being non-metallic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3628Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a sulfide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3649Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • C03C2218/156Deposition methods from the vapour phase by sputtering by magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明属于光学领域,具体提供一种基于法诺共振增强的光电探测结构及其制备方法,用以克服现有基于法诺共振增强的光电探测器存在的制备复杂、成本过高、均一性差等问题。本发明中的光电探测结构通过七个纳米球和金膜的局部表面等离子共振产生不对称曲线特征的法诺共振;利用分子间作用力,使二硫化钼和七个纳米球之间,七个纳米球和金膜之间,进行物理结合,结合力较高,结构稳定且不易脱落;并且,能够通过改变七个纳米球结构的球径、七个纳米球之间的间距等参数调控法诺谷的光谱位置和强度。与现有技术相比,本发明提供具有结构简单、易于制备、成本较低、灵敏度较高、均一性较好等优点,可制备大尺寸的阵列式结构。

Description

一种基于法诺共振增强的光电探测结构及其制备方法
技术领域
本发明属于光学领域,涉及法诺共振增强二维材料光电性能的技术,具体为一种基于法诺共振增强的光电探测结构及其制备方法。
背景技术
Fano共振是由离散态与连续态相互作用而产生的量子干涉现象。由于波干涉现象在经典光学中也普遍存在,因此在支持辐射和亚辐射模式的人工纳米结构中也证明了法诺共振的存在。辐射模式中的光子对入射电磁波具有较大的辐射损耗,宽光谱带宽共振的品质因数较低。相反,亚辐射模式中的光子具有较小的辐射损耗,产生共振因子的质量高。通过光辐射模式研究的结果表明,宽的辐射模和窄的亚辐射模之间的干涉引起了Fano共振。Fano共振可以极大的增强近场范围内的电场强度,这使得Fano共振有着多种应用。利用各种加工方法加工出特定的能产生Fano共振的微结构,在光学领域一直是比较热门的话题。而现阶段普遍采用电子束光刻的方法来制造能产生Fano共振的微结构,例如:通过电子束光刻的方法制造出多聚体纳米圆盘、破缺纳米环-纳米盘、不对称金椭圆等结构。但是这种方法成本较高,所涉及到的设备较为复杂,且在几纳米到几十纳米的范围内,无法达到较高的精度。
二维材料特有的光电特性非常适合用于光电探测,二硫化钼就是其中比较典型的存在,但其本身对于光的响应较弱。因此,寻找一种可以增强二硫化钼光响应的方法尤为重要。利用电场的增强和热电子的注入可以有效提高二硫化钼的光响应性能。目前比较常见的方法是将二硫化钼与其它二维材料相结合形成异质结,通过两种材料的相互作用来提高整体的光电性能。但是,这种方法往往需要用到两种或两种以上的二维材料,且多种材料形成的重叠区,不具有均一性。
在光学领域利用Fano共振的特性,制备一种基于Fano共振且成本低、工艺简单、均一性高、增强效果好的光电探测结构有着广阔的应用前景。
发明内容
本发明的目的在于提供一种基于法诺共振增强的光电探测结构及其制备方法,以解决现有Fano共振类光电探测结构存在制作复杂、成本高、不具备均一性等问题。
为实现上述目的,本发明采用的技术方案为:
一种基于法诺共振增强的光电探测结构,该结构从上到下依次由过渡金属二卤化物材料层、纳米球和金膜组成,所述过渡金属二卤化物材料层与纳米球之间,纳米球与金膜之间,均通过分子间作用力连接;所述纳米球有七个且其中一个为中心球,其余6个纳米球以中心球为中心呈圆周阵列分布。
进一步的,所述过渡金属二卤化物材料层为二硫化钼膜。
更进一步的,所述二硫化钼膜为少层二硫化钼。
进一步的,所述七个纳米球为金纳米球,大小相等,纳米球直径为150~200nm,中心球与圆周上纳米球之间的间距为1~15nm。
进一步的,所述金膜的厚度为90nm~110nm。
上述基于法诺共振增强的光电探测结构的制备方法,包括以下步骤:
步骤1、准备一片有孔洞结构的干净基板,采用磁控溅射在基板表面和孔洞底部沉积得到金膜,并去除孔洞外多余的金膜,基板上单个孔洞的直径大于3倍纳米球直径,深度小于纳米球直径但大于纳米球半径;
步骤2、对步骤1所得基板等离子处理30~60秒后,将其置于加热装置上,使其保持在露点温度以上20~35℃范围内,然后向该基板滴加金纳米球溶液;步骤3、准备一片干净的压片,固定在步骤2所得基板上方,并使其压住金纳米球液滴;
步骤4、将步骤3所得结构按照1~5um/s的速度缓慢平行移动,使金纳米球液滴自发的进入孔洞结构中;
步骤5、去除步骤4所得结构中,除孔洞外的金纳米颗粒,以得到孔洞中七个纳米球及金膜;
步骤6、获取少层二硫化钼并转移到金纳米球的上表面,使其与金纳米球之间通过分子间作用力吸附。
进一步,所述金纳米球溶液为对浓度0.05~0.1mg/ml金纳米球溶液离心浓缩5~10倍后的溶液。
进一步的,所述步骤1中磁控溅射工艺具体如下:
选用金靶材,首先通过分子泵将气压抽到1×10-5Pa以下后通入氩气,在1.5~2Pa气压环境下、设置溅射功率为30W对金靶进行启辉,然后于0.5~0.6Pa气压环境下进行溅射。
进一步的,所述步骤2中,加热装置为恒温加热片,温度误差控制在正负0.5℃以内。
进一步的,所述步骤4中,位移台为微米级别位移台,速度误差控制在正负0.5微米每秒内。
进一步的,所述步骤6中,转移少层二硫化钼工艺具体如下:
将机械剥离好的少层二硫化钼,通过思高胶带与PDMS粘贴,将二硫化钼保留在PDMS上,在显微镜的观察下,确定少层二硫化钼的具体位置以及基板上待转移区的具体位置,之后通过上下位移台,精准的将二硫化钼转移至金纳米球上,并使其与金纳米球通过分子间作用力吸附在一起。
本发明的结构以分子间作用力物理连接,进而制备得到大面积法诺共振增强光电探测结构。结构中七个纳米球与金膜由于其局域表面等离子体间的强共振耦合作用,相邻两球之间会形成电流回路,从而产生不对称曲线特征的Fano共振。利用Fano共振产生的电场增强以及纳米球表面产生的热电子,注入二硫化钼,从而达到增强二硫化钼光电探测性能的效果。通过金属二卤化物材料与金纳米颗粒配合,并结合Fano共振,实现增强材料光响应强度,拓宽材料光响应范围。通过改变纳米球球径、球与球的间距、金膜厚度,可以实现调控Fano波谷(Fano dip)的光谱位置和强度。
与现有技术相比,本发明具有以下优点:
1、通过常规的孔洞硅基板、玻璃材料即可制备出法诺共振增强的光电探测结构,设备易于操作,且制作工艺简单。
2、本发明中的Fano共振微结构,其Fano dip位于可见光范围。对金属二卤化物材料,特别是二硫化钼光电探测性能有明显增强,整个器件灵敏度高、均一性好,方便制备大尺寸阵列结构,可重复性好,易于应用。
3、本发明的光电探测器,其Fano共振部分,采用液滴辅助自组装的手段,金属二卤化物材料部分,采用机械剥离二硫化钼块材而得到少层二硫化钼的手段,相较于传统的电子束光刻和气相沉积生长的手段,对设备依赖度较低,降低了制造成本。
附图说明
图1为本发明中,金膜-七个纳米球组成的Fano共振结构俯视图;
图2为本发明中,金膜-七个纳米球Fano共振结构侧视图;
图3为实施例的光电探测器结构示意图;
图4为实施例的光电探测器侧视图;
图5为本发明中七个纳米球结构的SEM图。
图6为实施例中,不同间隙下纳米球所产生的Fano波形拟合图。
图7为为实施例中,不同直径的纳米球所产生的Fano波形拟合图。
具体实施方式
下面结合附图和实施例进行更详细的说明。
本实施例提供的一种基于法诺共振增强的光电探测结构,其结构如图3、图4所示,该结构从上到下依次由二硫化钼膜、纳米球和金膜组成,所述二硫化钼膜与纳米球之间,纳米球与金膜之间,均通过分子间作用力连接。二硫化钼选用少层二硫化钼。纳米球有七个,七个纳米球均为金球,如图1、图2、图5所示,七个纳米球以其中一个为中心球,其余6个纳米球以中心球为中心呈圆周阵列分布。所述七个纳米球为金纳米球,大小相等,纳米球的直径为160nm,中心球与圆周上每个纳米球之间的间隙均为5-10nm,周向上的6个纳米球等距离排布。七个纳米球上方通过分子间作用力与少层二硫化钼进行物理连接,结合牢固不易脱落。
针对上述结构,本实施例还提供了上述基于法诺共振增强的光电探测结构的制备方法,材料准备:(1)1cm×1cm的孔洞硅片作为衬底;(2)金靶材;(3)丙酮溶液、无水乙醇、去离子水、金纳米球分散液、二硫化钼块材;其制备过程如下:
步骤1:清洗孔洞硅片及玻璃片;
将硅片依次放入丙酮溶液、无水乙醇、去离子水中超声清洗480s,氮气吹干,然后将硅片放在80℃的热台上烘5分钟,最后让硅片在室温下自然冷却;取一片厚度为1mm的普通石英玻璃片,依次在无水乙醇和去离子水中先后超声清洗480秒,然后氮气吹干,后将玻璃片放在80℃的热台上烘5分钟,最后让玻璃片在室温下自然冷却;
步骤2:磁控溅射制备金膜;
将步骤1的孔洞硅片放进磁控溅射仪中,利用分子泵将气压抽到1×10-5Pa后通入氩气,在气压1.5Pa的环境,功率30W对金靶进行启辉,然后将气压调到0.5Pa,在硅片上溅射210s,最后通入空气取出孔洞硅片,利用思高胶带粘去孔洞外多余金膜。
步骤3:浓缩金纳米分散液;
取浓度为0.1mg/ml,500ul量的水溶性金纳米球溶液于离心机中,按照2000r/min,5min的离心参数进行离心,离心结束后用移液枪抽取上清液400ul,保留100ul的浓缩液备用。
步骤4:搭建组装七聚体结构的环境;
将孔洞硅片等离子处理60s,增大孔洞硅片表面的亲水性,利用双面胶带将孔洞结构硅片固定在加热装置上。将浓缩的金纳米球溶液滴加至孔洞硅片上,再将洁净的玻璃片固定在孔洞硅片上方,使其压住金纳米液滴。
步骤5:组装七聚体结构;
打开加热台,加热台温度设置在露点温度以上30摄氏度,同时打开X轴电控位移台,位移速度设置为2um/s。组装结束后,将孔洞硅片取出,用胶带粘去硅片表面多余的金纳米颗粒,孔洞结构中的金膜-七聚体结构会保留其中。
步骤6:获取少层二硫化钼并制作光电探测结构;
取块状二硫化钼于胶带上,通过反复对折粘贴,获得大量二硫化钼碎片,将碎片转移至PDMS上,利用显微镜,确定少层二硫化钼的具体位置以及基板上待转移区的具体位置,之后通过上下位移台,将PDMS上的少层二硫化钼转移至金膜-七聚体结构上方,形成最终光电探测结构。至此,基于法诺共振增强的基于法诺共振增强的光电探测结构便制作完成。
图6为本实施例中,不同间隙下纳米球所产生的Fano波形拟合图。图7为为实施例中,不同直径的纳米球所产生的Fano波形拟合图。从图6、图7可以看出,本发明的7个金纳米球即使球之间隙不是严格均匀的、纳米球直径小幅度变动,其Fano共振依然存在,且Fano波谷(Fano dip)位于可见光范围。
由此可见,本发明的基于法诺共振增强的光电探测结构,能够利用Fano共振产生的电场增强以及纳米球表面产生的热电子,增强二硫化钼光电探测性能的效果。通过改变纳米球球径、球与球的间距、镀金厚度,来调控Fano dip的光谱位置和强度。

Claims (10)

1.一种基于法诺共振增强的光电探测结构,其特征在于:该结构从上到下依次由过渡金属二卤化物材料层、纳米球和金膜组成,所述渡金属二卤化物材料层与纳米球之间,纳米球与金膜之间,均通过分子间作用力连接;所述纳米球有七个且其中一个为中心球,其余6个纳米球以中心球为中心呈圆周阵列分布。
2.根据权利要求1所述的一种基于法诺共振增强的光电探测结构,其特征在于:所述过渡金属二卤化物材料层为二硫化钼膜。
3.根据权利要求2所述的一种基于法诺共振增强的光电探测结构,其特征在于:所述二硫化钼膜为少层二硫化钼。
4.根据权利要求1所述的一种基于法诺共振增强的光电探测结构,其特征在于:所述七个纳米球为金纳米球,大小相等,纳米球直径为150~200nm,中心球与圆周上纳米球之间的间距为1~15nm。
5.根据权利要求1所述的一种基于法诺共振增强的光电探测结构,其特征在于:所述金膜的厚度为90nm~110nm。
6.一种基于法诺共振增强的光电探测结构的制备方法,包括以下步骤:
步骤1、准备一片有孔洞结构的干净基板,采用磁控溅射在基板表面和孔洞底部沉积得到金膜,并去除孔洞外多余的金膜,基板上单个孔洞的直径大于3倍纳米球直径,深度小于纳米球直径但大于纳米球半径;
步骤2、对步骤1所得基板等离子处理30~60秒后,将其置于加热装置上,使其保持在露点温度以上20~35℃范围内,然后向该基板滴加金纳米球溶液;步骤3、准备一片干净的压片,固定在步骤2所得基板上方,并使其压住金纳米球液滴;
步骤4、将步骤3所得结构按照1~5um/s的速度缓平行移动,使金纳米球液滴自发的进入孔洞结构中;
步骤5、去除步骤4所得结构中,除孔洞外的金纳米颗粒,以得到孔洞中七个纳米球及金膜;
步骤6、获取少层二硫化钼并转移到金纳米球的上表面,使其与金纳米球之间通过分子间作用力吸附。
7.根据权利要求6所述的一种基于法诺共振增强的光电探测结构,其特征在于:金纳米球溶液为对浓度0.05~0.1mg/ml金纳米球溶液离心浓缩5~10倍后的溶液。
8.根据权利要求6所述的一种基于法诺共振增强的光电探测结构,其特征在于:所述磁控溅射工艺具体如下:
选用金靶材,首先通过分子泵将气压抽到1×10-5Pa以下后通入氩气,在1.5~2Pa气压环境下、设置溅射功率为30W对金靶进行启辉,然后于0.5~0.6Pa气压环境下进行溅射。
9.根据权利要求6所述的一种基于法诺共振增强的光电探测结构,其特征在于:所述步骤2中,加热装置为恒温加热片,温度误差控制在正负0.5摄氏度以内。
10.根据权利要求6所述的一种基于法诺共振增强的光电探测结构,其特征在于:所述步骤6中,转移少层二硫化钼工艺具体如下:
将机械剥离好的少层二硫化钼,通过思高胶带与PDMS粘贴,将二硫化钼保留在PDMS上,在显微镜的观察下,确定少层二硫化钼的具体位置以及基板上待转移区的具体位置,之后通过上下位移台,精准的将二硫化钼转移至金纳米球上,并使其与金纳米球通过分子间作用力吸附在一起。
CN202111443060.7A 2021-11-30 2021-11-30 一种基于法诺共振增强的光电探测结构及其制备方法 Pending CN114252094A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111443060.7A CN114252094A (zh) 2021-11-30 2021-11-30 一种基于法诺共振增强的光电探测结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111443060.7A CN114252094A (zh) 2021-11-30 2021-11-30 一种基于法诺共振增强的光电探测结构及其制备方法

Publications (1)

Publication Number Publication Date
CN114252094A true CN114252094A (zh) 2022-03-29

Family

ID=80791403

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111443060.7A Pending CN114252094A (zh) 2021-11-30 2021-11-30 一种基于法诺共振增强的光电探测结构及其制备方法

Country Status (1)

Country Link
CN (1) CN114252094A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110250464A1 (en) * 2010-04-08 2011-10-13 Wilson Robert J Directly fabricated nanoparticles for Raman scattering
US20130293884A1 (en) * 2012-05-01 2013-11-07 University Of Maryland, College Park Nanoparticle array with tunable nanoparticle size and separation
CN107069417A (zh) * 2017-05-08 2017-08-18 东南大学 一种基于二维材料的等离激元随机激光阵列器件
CN107116231A (zh) * 2017-06-01 2017-09-01 云南大学 一种单层自组装金纳米颗粒/二硫化钼复合膜的制备方法
CN113075189A (zh) * 2021-03-05 2021-07-06 电子科技大学 一种基于法诺共振的表面增强拉曼传感基底及其制备方法
CN113189178A (zh) * 2021-03-10 2021-07-30 山东大学齐鲁医院 金属纳米颗粒复合二维材料异质结构传感器及制备方法
CN113499743A (zh) * 2021-07-07 2021-10-15 电子科技大学 一种纳米微球七聚体及其制备方法、应用
CN113702286A (zh) * 2021-08-05 2021-11-26 北京大学 一种基于表面增强效应的手性分子探测器件、探测装置及方法
CN113702354A (zh) * 2021-09-02 2021-11-26 电子科技大学 一种基于阵列式微结构的柔性sers基底及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110250464A1 (en) * 2010-04-08 2011-10-13 Wilson Robert J Directly fabricated nanoparticles for Raman scattering
US20130293884A1 (en) * 2012-05-01 2013-11-07 University Of Maryland, College Park Nanoparticle array with tunable nanoparticle size and separation
CN107069417A (zh) * 2017-05-08 2017-08-18 东南大学 一种基于二维材料的等离激元随机激光阵列器件
CN107116231A (zh) * 2017-06-01 2017-09-01 云南大学 一种单层自组装金纳米颗粒/二硫化钼复合膜的制备方法
CN113075189A (zh) * 2021-03-05 2021-07-06 电子科技大学 一种基于法诺共振的表面增强拉曼传感基底及其制备方法
CN113189178A (zh) * 2021-03-10 2021-07-30 山东大学齐鲁医院 金属纳米颗粒复合二维材料异质结构传感器及制备方法
CN113499743A (zh) * 2021-07-07 2021-10-15 电子科技大学 一种纳米微球七聚体及其制备方法、应用
CN113702286A (zh) * 2021-08-05 2021-11-26 北京大学 一种基于表面增强效应的手性分子探测器件、探测装置及方法
CN113702354A (zh) * 2021-09-02 2021-11-26 电子科技大学 一种基于阵列式微结构的柔性sers基底及其制备方法

Similar Documents

Publication Publication Date Title
KR101331521B1 (ko) 그래핀 박막의 제조 방법
CN105951049B (zh) 一种具有纳米级间隙的金属颗粒制造方法
US20110267606A1 (en) Surface-enhanced raman spectroscopy device and a mold for creating and a method for making the same
CN109795979B (zh) 具有内嵌金属环的纳米孔阵列结构的制备方法
CN109300774B (zh) 一种微米级含有金属电极的石墨烯层的加工和转移的方法
CN109437095B (zh) 一种刻蚀方向可控的硅纳米孔结构制作方法
WO2015010605A1 (zh) 利用剥离-粘贴法在光纤端面制作金属微纳米结构的方法
Hou et al. Characterization of Sputtered Nano-Au Layer Deposition on Silicon Wafer
US10889914B2 (en) Location-specific growth and transfer of single crystalline TMD monolayer arrays
US9437823B2 (en) Production device for a graphene thin film
CN114252094A (zh) 一种基于法诺共振增强的光电探测结构及其制备方法
CN113295670A (zh) 一种基于sers基底的微流控芯片检测装置的制备方法
CN111613661A (zh) 隧道结、其制备方法和应用
CN111122543A (zh) 一种粗糙化硅柱阵列结构及其制备方法
CN113363709B (zh) 一种基于金属微纳天线的面内各向异性极化激元器件及其制备方法和激发方法
CN111845003B (zh) 纳米材料的可控性热压实现方法
Xu et al. Fabrication of SiC concave microlens array mold based on microspheres self-assembly
CN110426381B (zh) 一种六瓣状金属纳米结构sers基底的制备方法
US11152227B2 (en) Lift-off embedded micro and nanostructures
CN114113031A (zh) 一种三维sers基底及其制备方法和应用
CN114563838B (zh) 一种用于单光子探测的中红外波段高效吸收结构
CN109830430B (zh) 一种分布面积可控的硅纳米孔结构及其制备方法和应用
CN114920239B (zh) 一种基于水蒸气的二维材料转移或堆垛方法
CN110329987B (zh) 一种具有电磁场增强性能的连续月牙型纳微结构及其制备方法
CN108793066B (zh) 一种纳米器件的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220329