CN114221551A - 一种传导电感式稳压器 - Google Patents

一种传导电感式稳压器 Download PDF

Info

Publication number
CN114221551A
CN114221551A CN202111491838.1A CN202111491838A CN114221551A CN 114221551 A CN114221551 A CN 114221551A CN 202111491838 A CN202111491838 A CN 202111491838A CN 114221551 A CN114221551 A CN 114221551A
Authority
CN
China
Prior art keywords
inductance
voltage
coupled
compensation inductor
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111491838.1A
Other languages
English (en)
Inventor
邵航
傅电波
黄道成
赵涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Monolithic Power Systems Co Ltd
Original Assignee
Chengdu Monolithic Power Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Monolithic Power Systems Co Ltd filed Critical Chengdu Monolithic Power Systems Co Ltd
Publication of CN114221551A publication Critical patent/CN114221551A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1566Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with means for compensating against rapid load changes, e.g. with auxiliary current source, with dual mode control or with inductance variation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0077Plural converter units whose outputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

公开了传导电感式稳压器。传导电感式稳压器包括多个变压器、多个电压调节块、以及非线性补偿电感。每个变压器的第一绕组作为一个电压调节块的输出电感,将电压调节块耦接至输出电容。非线性补偿电感与每个变压器的第二绕组串联连接,当流过非线性补偿电感的电流所对应的传导电感式稳压器提供至负载的负载电流处于稳定状态时,非线性补偿电感具有第一电感值,以及当流过非线性补偿电感的电流所对应的负载电流处于瞬时变化状态时,非线性补偿电感具有第二电感值。

Description

一种传导电感式稳压器
技术领域
本发明的实施例涉及一种电子电路,更具体地说,尤其涉及一种稳压器。
背景技术
传导电感式稳压器(Trans-inductor Voltage Regulator,TLVR)是一种使用变压器绕组作为输出电感的稳压器。在多相传导电感式稳压器电路中,变压器的一个绕组作为其中一相的输出电感,变压器的其它绕组串联耦接至参考地。由于这些串联耦接的绕组,负载电流的变化对每一相电路都能产生影响,从而多相传导电感式稳压器电路与传统的电压调节电路相比,可以实现更快的瞬态响应。
然而,多相传导电感式稳压器电路仍然需要平衡负载处于瞬时变化状态下和稳定状态下的性能。
发明内容
为解决上述技术问题,本发明提供一种具有非线性补偿电感的传导电感式稳压器。
根据本发明的实施例,提出了一种传导电感式稳压器,包括:多个变压器,每个变压器包括第一绕组和第二绕组,所述多个变压器的第二绕组串联连接;多个电压调节块,每个电压调节块提供传导电感式稳压器中的一相,以及每个电压调节块通过输出电感耦接至传导电感式稳压器的输出电容,其中所述输出电感包括相应的变压器的第一绕组;以及非线性补偿电感,与所述多个变压器的第二绕组串联连接,当流过所述非线性补偿电感的电流所对应的传导电感式稳压器提供至负载的负载电流处于稳定状态时,所述非线性补偿电感具有第一电感值,以及当流过所述非线性补偿电感的电流所对应的负载电流处于瞬时变化状态时,所述非线性补偿电感具有第二电感值,第一电感值大于第二电感值。
根据本发明的实施例,提出了一种一种传导电感式稳压器,包括:第一电压调节块,包括耦接至输入电压的第一上侧开关管、以及和第一上侧开关管形成第一开关节点的第一下侧开关管,所述第一开关节点通过第一变压器的第一绕组耦接到所述传导电感式稳压器的输出电压,其中所述第一电压调节块组成所述传导电感式稳压器的第一相;第二电压调节块,包括耦接至输入电压的第二上侧开关管、以及和第二上侧开关管形成第二开关节点的第二下侧开关管,所述第二开关节点通过第二变压器的第一绕组耦接到所述传导电感式稳压器的输出电压,其中所述第二电压调节块组成所述传导电感式稳压器的第二相;以及非线性补偿电感,串联耦接至第一变压器的第二绕组和第二变压器的第二绕组,当流过非线性补偿电感的电流所对应的传导电感式稳压器提供的负载电流处于稳定状态时,所述非线性补偿电感具有第一电感值,以及当流过所述非线性补偿电感的电流所对应的负载电流处于瞬时变化状态时,所述非线性补偿电感具有第二电感值,第一电感值至少大于第二电感值的三倍。
附图说明
为了更好的理解本发明,将根据以下附图对本发明进行详细描述。其中相同的元件具有相同的附图标记。
图1示出了根据本发明一实施例的传导电感式稳压器100的电路示意图;
图2示出了根据本发明一实施例的传导电感式稳压器100在负载电流处于稳定状态时的时序图;
图3示出了传导电感式稳压器在负载电流处于瞬时变化状态时的时序图;
图4-7示出了根据本发明实施例的非线性补偿电感Lc的电感特性曲线图;
图8示出了根据本发明一实施例的传导电感式稳压器100在负载电流处于瞬时变化状态时的时序图。
具体实施方式
下面将详细描述本发明的具体实施例,应当注意,这里描述的实施例只用于举例说明,并不用于限制本发明。在以下描述中,为了提供对本发明的透彻理解,阐述了大量特定细节。然而,对于本领域普通技术人员显而易见的是:不必采用这些特定细节来实行本发明。在其他实例中,为了避免混淆本发明,未具体描述公知的电路、材料或方法。
图1示出了根据本发明一实施例的传导电感式稳压器(TLVR)100的电路示意图。在图1所示的实施例中,传导电感式稳压器100以四相电路为例进行说明。本领域技术人员可以理解,在其它实施例中,传导电感式稳压器100也可以包括比图1所示的实施例更多相或更少相。
在图1所示的实施例中,传导电感式稳压器100包括多个电压调节块110(例如110-1、110-2…),每个电压调节块用于一相电路。电压调节块110-1、110-2、110-3、以及110-4分别用于第一相、第二相、第三相和第四相。电压调节块110例如可以是降压调节器,包括上侧开关管M1和下侧开关管M2。上侧开关管M1的第一端耦接至输入电压VIN。下侧开关管M2的第一端耦接至上侧开关管M1的第二端形成开关节点,开关管M2的第二端耦接至参考地。每个电压调节块110中的上侧开关管M1和下侧开关管M2由相应的脉宽调制(PWM)信号驱动。由多个脉宽调制信号控制多个电压调节块110交错导通,从而对输出电容C1交错充电,形成输出电压VOUT。
在图1所示的实施例中,每个电压调节块110具有与之对应的变压器,其初级绕组作为电压调节块110的输出电感。以电压调节块110-1为例,变压器T1的初级绕组的第一端耦接至上侧开关管M1和下侧开关管M2之间的开关节点,变压器T1的初级绕组的第二端耦接至输出电容C1,在输出电容C1两端提供输出电压VOUT。变压器T1的次级绕组和变压器T2~T4的次级绕组串联耦接。补偿电感Lc和变压器T1~T4的次级绕组串联耦接。补偿电感回路(也就是串联耦接的补偿电感Lc以及变压器T1~T4的次级绕组)耦接至参考地。每个变压器的初级绕组和次级绕组之间的匝比例如可以是1:1。
在一个实施例中,补偿电感Lc为非线性电感,补偿电感Lc的电感值在传导电感式稳压器100的工作区间内并不是恒定的。补偿电感Lc的电感值根据负载的状况而变化。更具体的,当流过补偿电感Lc的电流较小时,补偿电感Lc的电感值较大,以及当流过补偿电感Lc的电流较大时,补偿电感Lc的电感值较小。在负载电流处于稳定状态时(也就是当负载抽取的电流在稳定水平上不变时),流过补偿电感Lc的电流一般较小。在负载电流处于瞬时变化状态时,流过补偿电感Lc的电流较大。负载电流瞬时变化状态例如包括:负载需要的电流突然增加。当负载电流处于稳定状态时,流过补偿电感Lc的电流较小,通过增大补偿电感Lc的电感值,输出电压VOUT上的纹波减小。当流过补偿电感Lc的电流较大时,通过减小补偿电感Lc的电感值,传导电感式稳压器100可以实现对负载瞬时变化状态更快速的响应。
在图1所示的实施例中,为描述方便,传导电感式稳压器100中的变压器包括一个原边绕组和一个副边绕组。本领域技术人员可以理解,传导电感式稳压器100也可以包括具有不同绕组个数的变压器,例如多个原边绕组和多个副边绕组。
图2示出了根据本发明一实施例的传导电感式稳压器100在负载电流处于稳定状态时的时序图。图2的时序图从上至下依次为脉宽调制信号PWM1(用于驱动电压调节块110-1)、脉宽调制信号PWM2(用于驱动电压调节模块110-2)、脉宽调制信号PWM3(用于驱动电压调节块110-3)、脉宽调制信号PWM4(用于驱动电压调节模块110-4)、补偿电感Lc两端的电压VLc、流过补偿电感Lc的电流iLc、电流iPhase_1(电压调节块110-1的输出电流)、电流iPhase_2(电压调节块110-2的输出电流)、电流iPhase_3(电压调节块110-3的输出电流)、电流iPhase_4(电压调节块110-4的输出电流)、以及电流iSum。其中电流iSum是电流iPhase_1、iPhase_2、iPhase_3、iPhase_4之和。变压器副边绕组串联耦接,使得每一相电路的电流纹波都被叠加且反映在输出电压VOUT上。
图3示出了传导电感式稳压器在负载电流处于瞬时变化状态时的时序图。在图3所示的实施例中,补偿电感Lc的电感值恒定。图3的时序图从上至下依次为叠加在负载电流iLoad(负载从传导电感式稳压器中抽取的电流)上的电流iSum、脉宽调制信号PWM1、脉宽调制信号PWM2、脉宽调制信号PWM3、脉宽调制信号PWM4、补偿电感Lc两端的电压VLc、流过补偿电感Lc的电流iLc。
当负载电流iLoad快速增大时,负载电流处于瞬时变化状态。为保持输出电压VOUT稳定,传导电感式稳压器增大脉宽调制信号PWM1~4的占空比。脉宽调制信号PWM1~4占空比的增加反映在相应的变压器的二次绕组上,从而导致流过补偿电感的电流iLc增加。当补偿电感Lc的电感值在传导式稳压器的运行范围内保持恒定时,选择较小的电感值可以允许负载电流iLoad更快的变化,提高瞬态响应,但稳定状态下的电流iSum以及输出电压VOUT的纹波较大。另一方面,若选择较大的电感值,在稳定状态下的电流iSum以及输出电压VOUT的纹波较小,但瞬态响应的速度会降低。
图4示出了根据本发明实施例的非线性补偿电感Lc的电感特性曲线310。在图4所示的实施例中,纵坐标代表了非线性补偿电感Lc的电感值,单位是纳亨(nH),横坐标代表了流过补偿电感的电流iLc,单位是安培(A)。在电流iLc小于电流阈值时,非线性补偿电感Lc的电感值较大,以及当电流iLc大于电流阈值时,非线性补偿电感Lc的电感值迅速减小。在图4所示的实施例中,电流阈值为20A,电流iLc小于20A时,非线性补偿电感Lc的电感值至少等于200nH,电流iLc大于20A之后,例如在30A到饱和之间,非线性补偿电感Lc的电感值急剧减小至大约等于50-60nH。
电感特性曲线310仅作说明之用,根据本发明实施例,本领域技术人员可知,非线性补偿电感Lc的电感特性曲线可以为满足传导电感式稳压器100的需求任意配置。例如,非线性补偿电感Lc可以配置为如图5所示的在较低的电流iLc处开始急剧减小(如电流阈值为10A)。又例如非线性补偿电感Lc可以配置为如图6所示的在较高的电流iLc处开始急剧减小(如电流阈值为30A)。
在一些实施例中,非线性补偿电感Lc的电感特性曲线为线性的,如图7所示,此处“线性”是指电感特性曲线的形状。本领域技术人员可以理解,传导电感式稳压器100中的非线性电感Lc可以具有随着负载的变化而电感值线性变化的电感特性曲线。
非线性电感Lc的电感值和电流iLc成负相关,当流过非线性补偿电感Lc的电流iLc所对应的负载电流处于稳定状态时,非线性补偿电感Lc具有较大的电感值,以及当流过非线性补偿电感Lc的电流iLc所对应的负载电流处于瞬时变化状态时,非线性补偿电感Lc具有较小的电感值。例如负载电流处于稳定状态时的非线性补偿电感Lc的电感值至少大于负载电流处于瞬时变化状态时的非线性补偿电感Lc的电感值的三倍。在一些实施例中,负载电流处于稳定状态时的非线性补偿电感Lc的电感值也可以是负载电流处于瞬时变化状态时的非线性补偿电感Lc的电感值的1.5倍或两倍大。
非线性补偿电感Lc的电感特性曲线可以通过使用合适的磁芯来配置。例如,非线性补偿电感Lc的磁芯可以采用铁粉、混合材料、或不同材料的多个磁芯部件来代替铁氧体磁芯。一般来说,电感供应商可以根据本发明使用各种技术来实现本发明所需的非线性补偿电感Lc的电感特性曲线,而不影响本发明的优点。
图8示出了根据本发明一实施例的传导电感式稳压器100在负载电流处于瞬时变化状态时的时序图。图8的时序图从上至下依次为脉宽调制信号PWM1、脉宽调制信号PWM2、脉宽调制信号PWM3、脉宽调制信号PWM4、补偿电感Lc两端的电压VLc、流过补偿电感Lc的电流iLc、非线性补偿电感Lc的电感值Lc、以及叠加在负载电流iLoad上的电流iSum。
在时刻371之前,负载电流iLoad处于稳定状态(如351),流过补偿电感Lc的电流iLc较小(如352),电感值Lc较大(如353),因此此时电流iLc和电流iSum的纹波较小。在时刻371,负载处于瞬时变化状态,负载电流iLoad以较快的速率增大(如354),当电流iLc增大至电流阈值时(如355),相应的电感值Lc迅速减小(如356),从而传导电感式稳压器100可以对负载的瞬时变化做出快速响应。在时刻372,负载电流iLoad和电流iSum开始趋向于恢复至稳定状态(如357),电流iLc减小(如358),当电流iLc减小至小于电流阈值时(如358),相应的电感值Lc增大(如359)。最终在负载稳定状态下(如时刻373),电感值Lc增大至一个较大值(如360),从而负载处于稳定状态时,减小了输出电压VOUT上的纹波。
虽然已参照几个典型实施例描述了本发明,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本发明能够以多种形式具体实施而不脱离发明的精神或实质,所以应当理解,上述实施例不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

Claims (11)

1.一种传导电感式稳压器,包括:
多个变压器,每个变压器包括第一绕组和第二绕组,所述多个变压器的第二绕组串联连接;
多个电压调节块,每个电压调节块提供传导电感式稳压器中的一相,以及每个电压调节块通过输出电感耦接至传导电感式稳压器的输出电容,其中所述输出电感包括相应的变压器的第一绕组;以及
非线性补偿电感,与所述多个变压器的第二绕组串联连接,当流过所述非线性补偿电感的电流所对应的传导电感式稳压器提供至负载的负载电流处于稳定状态时,所述非线性补偿电感具有第一电感值,以及当流过所述非线性补偿电感的电流所对应的负载电流处于瞬时变化状态时,所述非线性补偿电感具有第二电感值,第一电感值大于第二电感值。
2.如权利要求1所述的传导电感式稳压器,其中所述非线性补偿电感的磁芯由铁粉制成。
3.如权利要求1所述的传导电感式稳压器,其中每个电压调节块包括:
上侧开关管和下侧开关管,相应的变压器的第一绕组的第一端耦接至上侧开关管和下侧开关管之间的开关节点,相应的变压器的第一绕组的第二端耦接至输出电容。
4.如权利要求3所述的传导电感式稳压器,其中上侧开关管耦接至一输入电压。
5.如权利要求1所述的传导电感式稳压器,其中所述非线性补偿电感包括第一端和第二端,所述串联耦接的多个变压器的第二绕组的一端耦接至参考地,另一端耦接至非线性补偿电感的第一端,非线性补偿电感的第二端耦接至参考地。
6.如权利要求1所述的传导电感式稳压器,其中所述非线性补偿电感在流过非线性补偿电感的电流小于20安时的电感值至少为200纳亨,在流过非线性补偿电感的电流大于30安时的电感值小于60纳亨。
7.一种传导电感式稳压器,包括:
第一电压调节块,包括耦接至输入电压的第一上侧开关管、以及和第一上侧开关管形成第一开关节点的第一下侧开关管,所述第一开关节点通过第一变压器的第一绕组耦接到所述传导电感式稳压器的输出电压,其中所述第一电压调节块组成所述传导电感式稳压器的第一相;
第二电压调节块,包括耦接至输入电压的第二上侧开关管、以及和第二上侧开关管形成第二开关节点的第二下侧开关管,所述第二开关节点通过第二变压器的第一绕组耦接到所述传导电感式稳压器的输出电压,其中所述第二电压调节块组成所述传导电感式稳压器的第二相;以及
非线性补偿电感,串联耦接至第一变压器的第二绕组和第二变压器的第二绕组,当流过非线性补偿电感的电流所对应的传导电感式稳压器提供的负载电流处于稳定状态时,所述非线性补偿电感具有第一电感值,以及当流过所述非线性补偿电感的电流所对应的负载电流处于瞬时变化状态时,所述非线性补偿电感具有第二电感值,第一电感值至少大于第二电感值的三倍。
8.如权利要求7所述的传导电感式稳压器,其中所述非线性补偿电感的电感值在负载电流处于稳定状态时至少为200纳亨。
9.如权利要求7所述的传导电感式稳压器,其中所述非线性补偿电感在流过非线性补偿电感的电流小于20安时的电感值至少为200纳亨,在流过非线性补偿电感的电流大于30安时的电感值小于60纳亨。
10.如权利要求7所述的传导电感式稳压器,进一步包括:
第三电压调节块,包括耦接至输入电压的第三上侧开关管、以及和第三上侧开关管形成第三开关节点的第三下侧开关管,所述第三开关节点通过第三变压器的第一绕组耦接到所述传导电感式稳压器的输出电压,其中所述第三电压调节块组成所述传导电感式稳压器的第三相;以及
第四电压调节块,包括耦接至输入电压的第四上侧开关管、以及和第四上侧开关管形成第四开关节点的第四下侧开关管,所述第四开关节点通过第四变压器的第一绕组耦接到所述传导电感式稳压器的输出电压,其中所述第四电压调节块组成所述传导电感式稳压器的第四相;其中
非线性补偿电感、第一变压器的第二绕组、第二变压器的第二绕组、第三变压器的第二绕组、以及第四变压器的第二绕组串联耦接。
11.如权利要求7~10中任一项所述的传导电感式稳压器,其中所述非线性补偿电感的磁芯由铁粉制成。
CN202111491838.1A 2021-01-05 2021-12-08 一种传导电感式稳压器 Pending CN114221551A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/141,528 2021-01-05
US17/141,528 US11451145B2 (en) 2021-01-05 2021-01-05 Trans-inductor voltage regulator with nonlinear compensation inductor

Publications (1)

Publication Number Publication Date
CN114221551A true CN114221551A (zh) 2022-03-22

Family

ID=80700221

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111491838.1A Pending CN114221551A (zh) 2021-01-05 2021-12-08 一种传导电感式稳压器

Country Status (3)

Country Link
US (1) US11451145B2 (zh)
CN (1) CN114221551A (zh)
TW (1) TWI825533B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114362540A (zh) * 2021-01-07 2022-04-15 成都芯源系统有限公司 传导电感式稳压器及多相稳压器的控制电路和控制方法
CN116455235A (zh) * 2023-06-01 2023-07-18 广东工业大学 一种具有快速瞬态响应的多相交错电压调节器及其控制电路

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11876445B2 (en) * 2020-10-05 2024-01-16 Infineon Technologies Austria Ag Trans-inductance multi-phase power converters and control

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170248996A1 (en) * 2016-02-29 2017-08-31 Kejiu Zhang Voltage Regulator And Method Of Controlling A Voltage Regulator Comprising A Variable Inductor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8294544B2 (en) * 2008-03-14 2012-10-23 Volterra Semiconductor Corporation Method for making magnetic components with M-phase coupling, and related inductor structures
US7791321B2 (en) 2007-02-23 2010-09-07 Virginia Tech Intellectual Properties, Inc. Coupled-inductor multi-phase buck converters
TWI430553B (zh) * 2009-07-28 2014-03-11 Thx Ltd 電源供應器
US9019063B2 (en) * 2009-08-10 2015-04-28 Volterra Semiconductor Corporation Coupled inductor with improved leakage inductance control
US10031538B2 (en) 2015-06-29 2018-07-24 Intel Corporation Low-power, high-performance regulator devices, systems, and associated methods
US10347303B2 (en) 2017-08-01 2019-07-09 Micron Technology, Inc. Phase control between regulator outputs
JP7031983B2 (ja) 2018-03-27 2022-03-08 エイブリック株式会社 ボルテージレギュレータ
US10831220B2 (en) 2018-03-28 2020-11-10 Qualcomm Incorporated Methods and apparatuses for voltage regulation using precharge rails
KR102545301B1 (ko) 2018-09-10 2023-06-16 삼성전자주식회사 반도체 회로
WO2020077553A1 (en) 2018-10-17 2020-04-23 Texas Instruments Incorporated A voltage regulator with an adaptive off-time generator
CN209823646U (zh) * 2019-06-21 2019-12-20 深圳市鑫汇科股份有限公司 开关电源电路
US10831221B1 (en) 2019-07-11 2020-11-10 Qorvo Us, Inc. Low drop-out (LDO) voltage regulator with direct and indirect compensation circuit
US10845835B1 (en) 2019-09-05 2020-11-24 Winbond Electronics Corp. Voltage regulator device and control method for voltage regulator device
US10845833B1 (en) 2019-10-15 2020-11-24 Texas Instruments Incorporated Method and system for buck converter current re-use for minimum switching frequency pulse-skip operation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170248996A1 (en) * 2016-02-29 2017-08-31 Kejiu Zhang Voltage Regulator And Method Of Controlling A Voltage Regulator Comprising A Variable Inductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114362540A (zh) * 2021-01-07 2022-04-15 成都芯源系统有限公司 传导电感式稳压器及多相稳压器的控制电路和控制方法
CN116455235A (zh) * 2023-06-01 2023-07-18 广东工业大学 一种具有快速瞬态响应的多相交错电压调节器及其控制电路

Also Published As

Publication number Publication date
TWI825533B (zh) 2023-12-11
US20220216793A1 (en) 2022-07-07
TW202245396A (zh) 2022-11-16
US11451145B2 (en) 2022-09-20

Similar Documents

Publication Publication Date Title
CN114221551A (zh) 一种传导电感式稳压器
US10855181B2 (en) PWM/PFM drive scheme for mutually coupled inductive coils
US5508903A (en) Interleaved DC to DC flyback converters with reduced current and voltage stresses
CN108933515B (zh) 反激式转换器控制器、反激式转换器及其操作方法
US7310249B2 (en) Switching power supply circuit
US5122728A (en) Coupled inductor type dc to dc converter with single magnetic component
TWI796071B (zh) 傳導電感式穩壓器及用於多相穩壓器的控制電路和控制方法
JP3199423B2 (ja) 共振形フォワードコンバ−タ
CN101753024A (zh) 用于改进调压器的瞬态响应的pwm时钟发生系统和方法
US10193463B2 (en) Insulated DC/DC converter
JP6745911B2 (ja) 電力変換装置
EP1598927A2 (en) Voltage regulator
EP3451518A1 (en) Llc resonant converter
US6198644B1 (en) Rectifying/smoothing circuit and double-ended converter
CN114123800A (zh) 一种传导电感式稳压器
US20090284990A1 (en) Voltage-converter circuit and method for clocked supply of energy to an energy storage
TWI825778B (zh) 傳導電感式穩壓器
US7199502B2 (en) Voltage booster circuit for powering a piezoelectric actuator of an injector
JPH05130768A (ja) Dc−dcコンバータ
Rajguru et al. Analysis and peak current mode control of active clamp forward converter with center tap transformer
Sharma Soft Switched Multi-Output PWM DC-DC Converter
CA2276656C (en) Blocking time maintenance circuit for zvs converters
CN113852272B (zh) 通量校正开关电源转换器
CN116388540A (zh) 一种稳压器及相关组件
CN118232698A (zh) 一种电压转换电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination