TWI825533B - 傳導電感式穩壓器 - Google Patents
傳導電感式穩壓器 Download PDFInfo
- Publication number
- TWI825533B TWI825533B TW110147912A TW110147912A TWI825533B TW I825533 B TWI825533 B TW I825533B TW 110147912 A TW110147912 A TW 110147912A TW 110147912 A TW110147912 A TW 110147912A TW I825533 B TWI825533 B TW I825533B
- Authority
- TW
- Taiwan
- Prior art keywords
- inductor
- conductive
- regulator
- voltage
- coupled
- Prior art date
Links
- 238000004804 winding Methods 0.000 claims abstract description 48
- 230000001052 transient effect Effects 0.000 claims abstract description 22
- 230000033228 biological regulation Effects 0.000 claims abstract description 13
- 239000003990 capacitor Substances 0.000 claims abstract description 9
- 230000001939 inductive effect Effects 0.000 claims description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 3
- 239000013078 crystal Substances 0.000 claims 2
- 239000003381 stabilizer Substances 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 12
- 230000007423 decrease Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 239000000306 component Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/1566—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with means for compensating against rapid load changes, e.g. with auxiliary current source, with dual mode control or with inductance variation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1584—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
- H02M3/1586—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0064—Magnetic structures combining different functions, e.g. storage, filtering or transformation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/0077—Plural converter units whose outputs are connected in series
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/14—Arrangements for reducing ripples from dc input or output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1584—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
公開了傳導電感式穩壓器。傳導電感式穩壓器包括多個變壓器、多個電壓調節塊、以及非線性補償電感。每個變壓器的第一繞組作為一個電壓調節塊的輸出電感,將電壓調節塊耦接至輸出電容。非線性補償電感與每個變壓器的第二繞組串聯連接,當流過非線性補償電感的電流所對應的傳導電感式穩壓器提供至負載的負載電流處於穩定狀態時,非線性補償電感具有第一電感值,以及當流過非線性補償電感的電流所對應的負載電流處於暫態變化狀態時,非線性補償電感具有第二電感值。
Description
本發明的實施例涉及一種電子電路,更具體地說,尤其涉及一種穩壓器。
傳導電感式穩壓器(Trans-inductor Voltage Regulator, TLVR)是一種使用變壓器繞組作為輸出電感的穩壓器。在多相傳導電感式穩壓器電路中,變壓器的一個繞組作為其中一相的輸出電感,變壓器的其它繞組串聯耦接至參考地。由於這些串聯耦接的繞組,負載電流的變化對每一相電路都能產生影響,從而多相傳導電感式穩壓器電路與傳統的電壓調節電路相比,可以實現更快的瞬態回應。
然而,多相傳導電感式穩壓器電路仍然需要平衡負載處於暫態變化狀態下和穩定狀態下的性能。
為解決上述技術問題,本發明提供一種具有非線性補償電感的傳導電感式穩壓器。
根據本發明的實施例,提出了一種傳導電感式穩壓器,包括:多個變壓器,每個變壓器包括第一繞組和第二繞組,所述多個變壓器的第二繞組串聯連接;多個電壓調節塊,每個電壓調節塊提供傳導電感式穩壓器中的一相,以及每個電壓調節塊通過輸出電感耦接至傳導電感式穩壓器的輸出電容,其中所述輸出電感包括相應的變壓器的第一繞組;以及非線性補償電感,與所述多個變壓器的第二繞組串聯連接,當流過所述非線性補償電感的電流所對應的傳導電感式穩壓器提供至負載的負載電流處於穩定狀態時,所述非線性補償電感具有第一電感值,以及當流過所述非線性補償電感的電流所對應的負載電流處於暫態變化狀態時,所述非線性補償電感具有第二電感值,第一電感值大於第二電感值。
根據本發明的實施例,提出了一種傳導電感式穩壓器,包括:第一電壓調節塊,包括耦接至輸入電壓的第一上側開關電晶體、以及和第一上側開關電晶體形成第一開關節點的第一下側開關電晶體,所述第一開關節點通過第一變壓器的第一繞組耦接到所述傳導電感式穩壓器的輸出電壓,其中所述第一電壓調節塊組成所述傳導電感式穩壓器的第一相;第二電壓調節塊,包括耦接至輸入電壓的第二上側開關電晶體、以及和第二上側開關電晶體形成第二開關節點的第二下側開關電晶體,所述第二開關節點通過第二變壓器的第一繞組耦接到所述傳導電感式穩壓器的輸出電壓,其中所述第二電壓調節塊組成所述傳導電感式穩壓器的第二相;以及非線性補償電感,串聯耦接至第一變壓器的第二繞組和第二變壓器的第二繞組,當流過非線性補償電感的電流所對應的傳導電感式穩壓器提供的負載電流處於穩定狀態時,所述非線性補償電感具有第一電感值,以及當流過所述非線性補償電感的電流所對應的負載電流處於暫態變化狀態時,所述非線性補償電感具有第二電感值,第一電感值至少大於第二電感值的三倍。
下面將詳細描述本發明的具體實施例,應當注意,這裡描述的實施例只用於舉例說明,並不用於限制本發明。在以下描述中,為了提供對本發明的透徹理解,闡述了大量特定細節。然而,對於本領域普通技術人員顯而易見的是:不必採用這些特定細節來實行本發明。在其他實例中,為了避免混淆本發明,未具體描述公知的電路、材料或方法。
圖1示出了根據本發明一實施例的傳導電感式穩壓器(TLVR)100的電路示意圖。在圖1所示的實施例中,傳導電感式穩壓器100以四相電路為例進行說明。本領域技術人員可以理解,在其它實施例中,傳導電感式穩壓器100也可以包括比圖1所示的實施例更多相或更少相。
在圖1所示的實施例中,傳導電感式穩壓器100 包括多個電壓調節塊110(例如110-1、110-2…),每個電壓調節塊用於一相電路。電壓調節塊110-1、110-2、110-3、以及110-4分別用於第一相、第二相、第三相和第四相。電壓調節塊110例如可以是降壓調節器,包括上側開關電晶體M1和下側開關電晶體M2。上側開關電晶體M1的第一端耦接至輸入電壓VIN。下側開關電晶體M2的第一端耦接至上側開關電晶體M1的第二端形成開關節點,開關電晶體M2的第二端耦接至參考地。每個電壓調節塊110中的上側開關電晶體M1和下側開關電晶體M2由相應的脈寬調變(PWM)信號驅動。由多個脈寬調變信號控制多個電壓調節塊110交錯導通,從而對輸出電容C1交錯充電,形成輸出電壓VOUT。
在圖1所示的實施例中,每個電壓調節塊110具有與之對應的變壓器,其初級繞組作為電壓調節塊110的輸出電感。以電壓調節塊110-1為例,變壓器T1的初級繞組的第一端耦接至上側開關電晶體M1和下側開關電晶體M2之間的開關節點,變壓器T1的初級繞組的第二端耦接至輸出電容C1,在輸出電容C1兩端提供輸出電壓VOUT。變壓器T1的次級繞組和變壓器T2~T4的次級繞組串聯耦接。補償電感Lc和變壓器T1~T4的次級繞組串聯耦接。補償電感回路(也就是串聯耦接的補償電感Lc以及變壓器T1~T4的次級繞組)耦接至參考地。每個變壓器的初級繞組和次級繞組之間的匝比例如可以是1:1。
在一個實施例中,補償電感Lc為非線性電感,補償電感Lc的電感值在傳導電感式穩壓器100的工作區間內並不是恆定的。補償電感Lc的電感值根據負載的狀況而變化。更具體的,當流過補償電感Lc的電流較小時,補償電感Lc的電感值較大,以及當流過補償電感Lc的電流較大時,補償電感Lc的電感值較小。在負載電流處於穩定狀態時(也就是當負載抽取的電流在穩定水準上不變時),流過補償電感Lc的電流一般較小。在負載電流處於暫態變化狀態時,流過補償電感Lc的電流較大。負載電流暫態變化狀態例如包括:負載需要的電流突然增加。當負載電流處於穩定狀態時,流過補償電感Lc的電流較小,通過增大補償電感Lc的電感值,輸出電壓VOUT上的漣波減小。當流過補償電感Lc的電流較大時,通過減小補償電感Lc的電感值,傳導電感式穩壓器100可以實現對負載暫態變化狀態更快速的回應。
在圖1所示的實施例中,為描述方便,傳導電感式穩壓器100中的變壓器包括一個原邊繞組和一個副邊繞組。本領域技術人員可以理解,傳導電感式穩壓器100也可以包括具有不同繞組個數的變壓器,例如多個原邊繞組和多個副邊繞組。
圖2示出了根據本發明一實施例的傳導電感式穩壓器100在負載電流處於穩定狀態時的時序圖。圖2的時序圖從上至下依次為脈寬調變信號PWM1(用於驅動電壓調節塊110-1)、脈寬調變信號PWM2(用於驅動電壓調節模組110-2)、脈寬調變信號PWM3(用於驅動電壓調節塊110-3)、脈寬調變信號PWM4(用於驅動電壓調節模組110-4)、補償電感Lc兩端的電壓VLc、流過補償電感Lc的電流iLc、電流iPhase_1(電壓調節塊110-1的輸出電流)、電流iPhase_2(電壓調節塊110-2的輸出電流)、電流iPhase_3(電壓調節塊110-3的輸出電流)、電流iPhase_4(電壓調節塊110-4的輸出電流)、以及電流iSum。其中電流iSum是電流iPhase_1、iPhase_2、iPhase_3、iPhase_4之和。變壓器副邊繞組串聯耦接,使得每一相電路的電流漣波都被疊加且反映在輸出電壓VOUT上。
圖3示出了傳導電感式穩壓器在負載電流處於暫態變化狀態時的時序圖。在圖3所示的實施例中,補償電感Lc的電感值恆定。圖3的時序圖從上至下依次為疊加在負載電流iLoad(負載從傳導電感式穩壓器中抽取的電流)上的電流iSum、脈寬調變信號PWM1、脈寬調變信號PWM2、脈寬調變信號PWM3、脈寬調變信號PWM4、補償電感Lc兩端的電壓VLc、流過補償電感Lc的電流iLc。
當負載電流iLoad快速增大時,負載電流處於暫態變化狀態。為保持輸出電壓VOUT穩定,傳導電感式穩壓器增大脈寬調變信號PWM1~4的工作週期。脈寬調變信號PWM1~4工作週期的增加反映在相應的變壓器的二次繞組上,從而導致流過補償電感的電流iLc增加。當補償電感Lc的電感值在傳導式穩壓器的運行範圍內保持恆定時,選擇較小的電感值可以允許負載電流iLoad更快的變化,提高瞬態回應,但穩定狀態下的電流iSum以及輸出電壓VOUT的漣波較大。另一方面,若選擇較大的電感值,在穩定狀態下的電流iSum以及輸出電壓VOUT的漣波較小,但瞬態回應的速度會降低。
圖4示出了根據本發明實施例的非線性補償電感Lc的電感特性曲線310。在圖4所示的實施例中,縱坐標代表了非線性補償電感Lc的電感值,單位是奈亨(nH),橫坐標代表了流過補償電感的電流iLc,單位是安培(A)。在電流iLc小於電流閾值時,非線性補償電感Lc的電感值較大,以及當電流iLc大於電流閾值時,非線性補償電感Lc的電感值迅速減小。在圖4所示的實施例中,電流閾值為20A,電流iLc小於20A時,非線性補償電感Lc的電感值至少等於200 nH,電流iLc大於20A之後,例如在30A到飽和之間,非線性補償電感Lc的電感值急劇減小至大約等於50-60nH。
電感特性曲線310僅作說明之用,根據本發明實施例,本領域技術人員可知,非線性補償電感Lc的電感特性曲線可以為滿足傳導電感式穩壓器100的需求任意配置。例如,非線性補償電感Lc可以配置為如圖5所示的在較低的電流iLc處開始急劇減小(如電流閾值為10A)。又例如非線性補償電感Lc可以配置為如圖6所示的在較高的電流iLc處開始急劇減小(如電流閾值為30A)。
在一些實施例中,非線性補償電感Lc的電感特性曲線為線性的,如圖7所示,此處“線性”是指電感特性曲線的形狀。本領域技術人員可以理解,傳導電感式穩壓器100中的非線性電感Lc可以具有隨著負載的變化而電感值線性變化的電感特性曲線。
非線性電感Lc的電感值和電流iLc成負相關,當流過非線性補償電感Lc的電流iLc所對應的負載電流處於穩定狀態時,非線性補償電感Lc具有較大的電感值,以及當流過非線性補償電感Lc的電流iLc所對應的負載電流處於暫態變化狀態時,非線性補償電感Lc具有較小的電感值。例如負載電流處於穩定狀態時的非線性補償電感Lc的電感值至少大於負載電流處於暫態變化狀態時的非線性補償電感Lc的電感值的三倍。在一些實施例中,負載電流處於穩定狀態時的非線性補償電感Lc的電感值也可以是負載電流處於暫態變化狀態時的非線性補償電感Lc的電感值的1.5倍或兩倍大。
非線性補償電感Lc的電感特性曲線可以通過使用合適的磁芯來配置。例如,非線性補償電感Lc的磁芯可以採用鐵粉、混合材料、或不同材料的多個磁芯部件來代替鐵氧體磁芯。一般來說,電感供應商可以根據本發明使用各種技術來實現本發明所需的非線性補償電感Lc的電感特性曲線,而不影響本發明的優點。
圖8示出了根據本發明一實施例的傳導電感式穩壓器100在負載電流處於暫態變化狀態時的時序圖。圖8的時序圖從上至下依次為脈寬調變信號PWM1、脈寬調變信號PWM2、脈寬調變信號PWM3、脈寬調變信號PWM4、補償電感Lc兩端的電壓VLc、流過補償電感Lc的電流iLc、非線性補償電感Lc的電感值Lc、以及疊加在負載電流iLoad上的電流iSum。
在時刻371之前,負載電流iLoad處於穩定狀態(如351),流過補償電感Lc的電流iLc較小(如352),電感值Lc較大(如353),因此此時電流iLc和電流iSum的漣波較小。在時刻371,負載處於暫態變化狀態,負載電流iLoad以較快的速率增大(如354),當電流iLc增大至電流閾值時(如355),相應的電感值Lc迅速減小(如356),從而傳導電感式穩壓器100可以對負載的暫態變化做出快速回應。在時刻372,負載電流iLoad和電流iSum開始趨向於恢復至穩定狀態(如357),電流iLc減小(如358),當電流iLc減小至小於電流閾值時(如358),相應的電感值Lc增大(如359)。最終在負載穩定狀態下(如時刻373),電感值Lc增大至一個較大值(如360),從而負載處於穩定狀態時,減小了輸出電壓VOUT上的漣波。
雖然已參照幾個典型實施例描述了本發明,但應當理解,所用的術語是說明和示例性、而非限制性的術語。由於本發明能夠以多種形式具體實施而不脫離發明的精神或實質,所以應當理解,上述實施例不限於任何前述的細節,而應在隨附申請專利範圍所限定的精神和範圍內廣泛地解釋,因此落入申請專利範圍或其等效範圍內的全部變化和改型都應為隨附申請專利範圍所涵蓋。
100:傳導電感式穩壓器
110:電壓調節塊
110-1,110-2,110-3,110-4:電壓調節塊
310:電感特性曲線
C1:輸出電容
Lc:補償電感
M1:上側開關電晶體
M2:下側開關電晶體
T1-T4:變壓器
VIN:輸入電壓
VOUT:輸出電壓
為了更好的理解本發明,將根據以下圖式對本發明進行詳細描述。其中相同的元件具有相同的圖式標記。
[圖1]示出了根據本發明一實施例的傳導電感式穩壓器100的電路示意圖;
[圖2]示出了根據本發明一實施例的傳導電感式穩壓器100在負載電流處於穩定狀態時的時序圖;
[圖3]示出了傳導電感式穩壓器在負載電流處於暫態變化狀態時的時序圖;
[圖4-7]示出了根據本發明實施例的非線性補償電感Lc的電感特性曲線圖;
[圖8]示出了根據本發明一實施例的傳導電感式穩壓器100在負載電流處於暫態變化狀態時的時序圖。
100:傳導電感式穩壓器
110-1,110-2,110-3,110-4:電壓調節塊
C1:輸出電容
Lc:補償電感
M1:上側開關電晶體
M2:下側開關電晶體
T1-T4:變壓器
VIN:輸入電壓
VLc:補償電感兩端的電壓
VOUT:輸出電壓
Claims (11)
- 一種傳導電感式穩壓器,包括:多個變壓器,每個變壓器包括第一繞組和第二繞組,所述多個變壓器的第二繞組串聯連接;多個電壓調節塊,每個電壓調節塊提供傳導電感式穩壓器中的一相,以及每個電壓調節塊通過輸出電感耦接至傳導電感式穩壓器的輸出電容,其中所述輸出電感包括相應的變壓器的第一繞組;以及非線性補償電感,與所述多個變壓器的第二繞組串聯連接,當流過所述非線性補償電感的電流所對應的傳導電感式穩壓器提供至負載的負載電流處於穩定狀態時,所述非線性補償電感具有第一電感值,以及當流過所述非線性補償電感的電流所對應的負載電流處於暫態變化狀態時,所述非線性補償電感具有第二電感值,第一電感值大於第二電感值。
- 如請求項1所述的傳導電感式穩壓器,其中所述非線性補償電感的磁芯由鐵粉製成。
- 如請求項1所述的傳導電感式穩壓器,其中每個電壓調節塊包括:上側開關電晶體和下側開關電晶體,相應的變壓器的第一繞組的第一端耦接至上側開關電晶體和下側開關電晶體之間的開關節點,相應的變壓器的第一繞組的第二端耦接至所述輸出電容。
- 如請求項3所述的傳導電感式穩壓器,其 中上側開關電晶體耦接至一輸入電壓。
- 如請求項1所述的傳導電感式穩壓器,其中所述非線性補償電感包括第一端和第二端,所述串聯耦接的多個變壓器的第二繞組的一端耦接至參考地,另一端耦接至非線性補償電感的第一端,非線性補償電感的第二端耦接至參考地。
- 如請求項1所述的傳導電感式穩壓器,其中所述非線性補償電感在流過非線性補償電感的電流小於20安時的電感值至少為200奈亨,在流過非線性補償電感的電流大於30安時的電感值小於60奈亨。
- 一種傳導電感式穩壓器,包括:第一電壓調節塊,包括耦接至輸入電壓的第一上側開關電晶體、以及和第一上側開關電晶體形成第一開關節點的第一下側開關電晶體,所述第一開關節點通過第一變壓器的第一繞組耦接到所述傳導電感式穩壓器的輸出電壓,其中所述第一電壓調節塊組成所述傳導電感式穩壓器的第一相;第二電壓調節塊,包括耦接至輸入電壓的第二上側開關電晶體、以及和第二上側開關電晶體形成第二開關節點的第二下側開關電晶體,所述第二開關節點通過第二變壓器的第一繞組耦接到所述傳導電感式穩壓器的輸出電壓,其中所述第二電壓調節塊組成所述傳導電感式穩壓器的第二相;以及非線性補償電感,串聯耦接至第一變壓器的第二繞組 和第二變壓器的第二繞組,當流過非線性補償電感的電流所對應的傳導電感式穩壓器提供的負載電流處於穩定狀態時,所述非線性補償電感具有第一電感值,以及當流過所述非線性補償電感的電流所對應的負載電流處於暫態變化狀態時,所述非線性補償電感具有第二電感值,第一電感值至少大於第二電感值的三倍。
- 如請求項7所述的傳導電感式穩壓器,其中所述非線性補償電感的電感值在負載電流處於穩定狀態時至少為200奈亨。
- 如請求項7所述的傳導電感式穩壓器,其中所述非線性補償電感在流過非線性補償電感的電流小於20安時的電感值至少為200奈亨,在流過非線性補償電感的電流大於30安時的電感值小於60奈亨。
- 如請求項7所述的傳導電感式穩壓器,進一步包括:第三電壓調節塊,包括耦接至輸入電壓的第三上側開關電晶體、以及和第三上側開關電晶體形成第三開關節點的第三下側開關電晶體,所述第三開關節點通過第三變壓器的第一繞組耦接到所述傳導電感式穩壓器的輸出電壓,其中所述第三電壓調節塊組成所述傳導電感式穩壓器的第三相;以及第四電壓調節塊,包括耦接至輸入電壓的第四上側開關電晶體、以及和第四上側開關電晶體形成第四開關節點的第四下側開關電晶體,所述第四開關節點通過第四變壓 器的第一繞組耦接到所述傳導電感式穩壓器的輸出電壓,其中所述第四電壓調節塊組成所述傳導電感式穩壓器的第四相;其中所述非線性補償電感、所述第一變壓器的第二繞組、所述第二變壓器的第二繞組、所述第三變壓器的第二繞組、以及所述第四變壓器的第二繞組串聯耦接。
- 如請求項7~10中任一項所述的傳導電感式穩壓器,其中所述非線性補償電感的磁芯由鐵粉製成。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/141,528 US11451145B2 (en) | 2021-01-05 | 2021-01-05 | Trans-inductor voltage regulator with nonlinear compensation inductor |
US17/141,528 | 2021-01-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202245396A TW202245396A (zh) | 2022-11-16 |
TWI825533B true TWI825533B (zh) | 2023-12-11 |
Family
ID=80700221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110147912A TWI825533B (zh) | 2021-01-05 | 2021-12-21 | 傳導電感式穩壓器 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11451145B2 (zh) |
CN (1) | CN114221551A (zh) |
TW (1) | TWI825533B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11876445B2 (en) * | 2020-10-05 | 2024-01-16 | Infineon Technologies Austria Ag | Trans-inductance multi-phase power converters and control |
US11303204B1 (en) * | 2021-01-07 | 2022-04-12 | Monolithic Power Systems, Inc. | Control circuit for multi-phase voltage regulator and associated control method |
CN116455235A (zh) * | 2023-06-01 | 2023-07-18 | 广东工业大学 | 一种具有快速瞬态响应的多相交错电压调节器及其控制电路 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201117544A (en) * | 2009-07-28 | 2011-05-16 | Thx Ltd | Power supply |
US20170248996A1 (en) * | 2016-02-29 | 2017-08-31 | Kejiu Zhang | Voltage Regulator And Method Of Controlling A Voltage Regulator Comprising A Variable Inductor |
CN209823646U (zh) * | 2019-06-21 | 2019-12-20 | 深圳市鑫汇科股份有限公司 | 开关电源电路 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7791321B2 (en) | 2007-02-23 | 2010-09-07 | Virginia Tech Intellectual Properties, Inc. | Coupled-inductor multi-phase buck converters |
WO2009114872A1 (en) * | 2008-03-14 | 2009-09-17 | Volterra Semiconductor Corporation | Magnetic components with m-phase coupling, and related inductor structures |
US9019063B2 (en) * | 2009-08-10 | 2015-04-28 | Volterra Semiconductor Corporation | Coupled inductor with improved leakage inductance control |
US10031538B2 (en) | 2015-06-29 | 2018-07-24 | Intel Corporation | Low-power, high-performance regulator devices, systems, and associated methods |
US10347303B2 (en) | 2017-08-01 | 2019-07-09 | Micron Technology, Inc. | Phase control between regulator outputs |
JP7031983B2 (ja) | 2018-03-27 | 2022-03-08 | エイブリック株式会社 | ボルテージレギュレータ |
US10831220B2 (en) | 2018-03-28 | 2020-11-10 | Qualcomm Incorporated | Methods and apparatuses for voltage regulation using precharge rails |
KR102545301B1 (ko) | 2018-09-10 | 2023-06-16 | 삼성전자주식회사 | 반도체 회로 |
WO2020077553A1 (en) | 2018-10-17 | 2020-04-23 | Texas Instruments Incorporated | A voltage regulator with an adaptive off-time generator |
US10831221B1 (en) | 2019-07-11 | 2020-11-10 | Qorvo Us, Inc. | Low drop-out (LDO) voltage regulator with direct and indirect compensation circuit |
US10845835B1 (en) | 2019-09-05 | 2020-11-24 | Winbond Electronics Corp. | Voltage regulator device and control method for voltage regulator device |
US10845833B1 (en) | 2019-10-15 | 2020-11-24 | Texas Instruments Incorporated | Method and system for buck converter current re-use for minimum switching frequency pulse-skip operation |
-
2021
- 2021-01-05 US US17/141,528 patent/US11451145B2/en active Active
- 2021-12-08 CN CN202111491838.1A patent/CN114221551A/zh active Pending
- 2021-12-21 TW TW110147912A patent/TWI825533B/zh active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201117544A (en) * | 2009-07-28 | 2011-05-16 | Thx Ltd | Power supply |
US20170248996A1 (en) * | 2016-02-29 | 2017-08-31 | Kejiu Zhang | Voltage Regulator And Method Of Controlling A Voltage Regulator Comprising A Variable Inductor |
CN209823646U (zh) * | 2019-06-21 | 2019-12-20 | 深圳市鑫汇科股份有限公司 | 开关电源电路 |
Also Published As
Publication number | Publication date |
---|---|
US20220216793A1 (en) | 2022-07-07 |
US11451145B2 (en) | 2022-09-20 |
TW202245396A (zh) | 2022-11-16 |
CN114221551A (zh) | 2022-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI825533B (zh) | 傳導電感式穩壓器 | |
US7482793B2 (en) | Ripple generation in buck regulator using fixed on-time control to enable the use of output capacitor having any ESR | |
US10355591B2 (en) | Multilevel boost DC to DC converter circuit | |
US10855181B2 (en) | PWM/PFM drive scheme for mutually coupled inductive coils | |
US9013165B2 (en) | Switching regulator including a configurable multi-mode PWM controller implementing multiple control schemes | |
KR102027802B1 (ko) | 전력 변환 장치 및 이의 동작 방법 | |
KR101584169B1 (ko) | 스위칭 조정기 및 이를 이용한 전압을 조정하는 방법 | |
US10263528B2 (en) | Resonant converter with adaptive switching frequency and the method thereof | |
TWI796071B (zh) | 傳導電感式穩壓器及用於多相穩壓器的控制電路和控制方法 | |
US8593125B1 (en) | Buck DC-DC converter with dual feedback control | |
CN108933515B (zh) | 反激式转换器控制器、反激式转换器及其操作方法 | |
US8773231B2 (en) | Multiphase power converters involving controllable inductors | |
CN204119034U (zh) | 开关变换器及其控制电路 | |
EP1598927A2 (en) | Voltage regulator | |
US11711016B2 (en) | Power regulator with variable rate integrator | |
US20150168983A1 (en) | Power conversion device, isolated driving circuit, and isolated driving method | |
US11476763B2 (en) | Trans-inductor voltage regulator with nonlinear transformer | |
US11705824B2 (en) | Simple stabilization of half-bridge converter over its operating temperatures | |
TWI825778B (zh) | 傳導電感式穩壓器 | |
US20110140684A1 (en) | Power controller having externally adjustable duty cycle | |
Terashi et al. | Stability and dynamic response improvement of flyback DC-DC converter by a novel control scheme | |
Rajguru et al. | Analysis and peak current mode control of active clamp forward converter with center tap transformer | |
CN116388540A (zh) | 一种稳压器及相关组件 | |
US20140028273A1 (en) | Arrangement for generating an output voltage | |
Nabeshima | Buck Converter for Low-Voltage Application |