CN114210977B - 一种制备细粒径粉末高温合金热等静压制件的装置及方法 - Google Patents

一种制备细粒径粉末高温合金热等静压制件的装置及方法 Download PDF

Info

Publication number
CN114210977B
CN114210977B CN202210165377.7A CN202210165377A CN114210977B CN 114210977 B CN114210977 B CN 114210977B CN 202210165377 A CN202210165377 A CN 202210165377A CN 114210977 B CN114210977 B CN 114210977B
Authority
CN
China
Prior art keywords
powder
sheath
fine
hot isostatic
isostatic pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210165377.7A
Other languages
English (en)
Other versions
CN114210977A (zh
Inventor
宋嘉明
刘海浪
白瑞敏
瞿宗宏
陈蕾蕾
赖运金
王庆相
梁书锦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Ouzhong Materials Technology Co.,Ltd.
Original Assignee
Xi'an Sino Euro Materials Technologies Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an Sino Euro Materials Technologies Co ltd filed Critical Xi'an Sino Euro Materials Technologies Co ltd
Priority to CN202210165377.7A priority Critical patent/CN114210977B/zh
Publication of CN114210977A publication Critical patent/CN114210977A/zh
Application granted granted Critical
Publication of CN114210977B publication Critical patent/CN114210977B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • B22F2003/153Hot isostatic pressing apparatus specific to HIP
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明属于高温合金技术领域,涉及一种制备细粒径粉末高温合金热等静压制件的装置及方法,通过CO在高温下对粉末进行还原,有效地去除了粉末颗粒表面吸附的O2和H2O,从而解决了热等静压制件中的原始颗粒边界问题;另一方面,CO与O2、H2O反应的过程中,会使得粉末颗粒间形成烧结径,能够避免运输过程中低频振动造成的粉末分层,保证了粉末在包套内的均匀分布。利用本发明提供的方法,可以有效解决细粒径粉末热等静压成型过程中出现的原始颗粒边界问题,有利于后续的热挤压过程中获得晶粒细小、组织均匀的挤压制件并提高热挤压工序的成品率。

Description

一种制备细粒径粉末高温合金热等静压制件的装置及方法
技术领域
本发明属于高温合金技术领域,涉及一种制备细粒径粉末高温合金热等静压制件的装置及方法。
背景技术
镍基高温合金主要用于制造涡轮盘等发动机热端部件,随着发动机性能的提升,推重比、涡轮前燃气温度以及压气机增压比不断提高,而压气机和涡轮级数却逐渐减小,使单级负荷不断增大,零件的应力水平越来越高,工作状况越趋恶劣,对材料的高温强度、疲劳性能以及耐久等有着更为苛刻的要求。在高温合金制备过程中只有通过不断增加合金元素的组分来提高其使用性能,但是高组分合金在铸造过程中往往会出现成分元素偏析、晶粒尺寸粗大等现象导致热工艺性能恶化。
随着航空发动机涡轮盘制备技术的不断进步,特别是民用航空发动机的迅猛发展,对涡轮盘等热端部件的性能提出了更高的要求,损伤容限概念的提出使得细粒径粉末在航空发动机的应用越来越广泛,欧美国家采用细粒径粉末+热等静压+热挤压+超塑性等温锻造工艺路线制备的粉末高温合金盘广泛应用于民用和军用航空发动,其中热挤压和超塑性等温锻造可有效破碎热等静压过程产生的原始颗粒边界。近三十年我国在细粒径粉末盘制备方面进行了大量研究,掌握了制备技术,但是由于母合金质量欠缺以及缺乏大型挤压机等限制,存在细粒径粉末盘成品率低、原始颗粒边界问题导致盘件性能恶化等问题,严重制约了我国民用和军用航空发动机的突破性发展。
此外,细粒径粉末由于比表面积高,粉末颗粒表面吸附的O2、H2O等气体含量极具增加,同时在粉末制备过程中,粉末表面也会偏聚O、C、Al等元素,在后续的热等静压过程中,这些吸附的O2、H2O以及偏聚的O、C、Al等元素会与粉末颗粒表面的MC′等反应生成氮氧化物,这些氮氧化物在晶界聚集从而产生原始颗粒边界。原始颗粒边界的出现会使得粉末盘件的塑性明显下降,造成缺口敏感性。同时在后续的热挤压过程中,大部分挤压能量用于破碎原始粉末颗粒边界,使得挤压过程中变形不充分,部分变形区域组织的再结晶驱动力不足,造成挤压后的制件组织不均匀,从而降低了成品率。虽然使用更大的挤压力可以有效去除密集原始颗粒边界,但这又与我国缺乏大型挤压机的基本现状相冲突。因此,如何使用细粒径合金粉末制备出无原始粉末颗粒边界的制件成为了制备涡轮盘等热端核心部件的关键。
发明内容
本发明的目的在于克服上述现有技术的缺点,提供一种制备细粒径粉末高温合金热等静压制件的装置及方法,可有效解决细粒径粉末热等静压成型过程中出现的原始颗粒边界问题,有利于后续的热挤压过程中获得晶粒细小、组织均匀的挤压制件并提高热挤压工序的成品率。
为实现上述目的,本发明提供了如下技术方案:
一方面,本发明提供了一种制备细粒径粉末高温合金热等静压制件的装置,包括装置本体和位于其内部的包套,所述装置本体的上方设置有装粉料罐,所述装粉料罐通过下粉管与包套相连;所述包套的外部设置有加热机构,所述包套的底部连接有振动机构,所述振动机构与加热机构均位于装置本体内;所述装置本体还连接有用于对装置本体内抽真空的真空泵组,所述装置本体的一侧还设置有通入CO气体的充气口。
进一步,所述加热机构包括套设在所述包套周壁外的圆筒形基体,所述圆筒形基体上分布有加热带。
进一步,所述加热带缠绕于圆筒形基体的外壁。
进一步,所述加热带为蛇形加热带,且蛇形加热带沿圆筒形基体的周向分布。
进一步,所述振动机构包括异步电机,所述异步电机的转轴连接有曲柄连杆机构,所述曲柄连杆机构在异步电机的驱动下带动包套进行运动。
另一方面,本发明还提供了一种应用如上部分或全部所述的装置制备细粒径粉末高温合金热等静压制件的方法,利用CO气体进行还原以去除细粒径粉末颗粒表面的O2和H2O。
进一步,上述方法具体包括以下步骤:
1)制备细粒径高温合金粉末;
2)利用装粉料罐将所述细粒径高温合金粉末通过下粉管装入包套中;
3)待所述包套装满细粒径高温合金粉末后,关闭真空泵组再充入CO气体至装置本体内的压强为0.02~0.03MPa;启动加热机构使包套升温至600~900℃,保温2~3h;
4)再次启动真空泵组直至装置本体内的真空度小于0.01Pa,包套降温至500~600℃,保温7~9h;
5)利用热等静压设备完成包套内粉末的致密化处理。
进一步,所述步骤1)中细粒径高温合金粉末可通过气雾化法或等离子旋转电极法制备获得。
进一步,所述步骤2)中,在将所述细粒径高温合金粉末装入包套前,控制所述装置本体内的真空度小于0.01Pa,所述包套的保温温度为500~600℃;在将所述细粒径高温合金粉末装入包套的过程中,所述下粉管的下粉速率为20~30kg/h,所述振动机构的振动频率为30~50Hz。
与现有技术相比,本发明提供的技术方案包括以下有益效果:该方法,通过CO在高温下对粉末进行还原,有效地去除了粉末颗粒表面吸附的O2和H2O,从而解决了热等静压制件中的原始颗粒边界问题;另一方面,CO与O2、H2O反应的过程中,会使得粉末颗粒间形成烧结径,能够避免运输过程中低频振动造成的粉末分层,保证了粉末在包套内的均匀分布。
同时,本发明在使用CO将O2、H2O还原的过程中处于600~900℃的高温环境,该高温环境下保温可以使粉末表面偏析的O、C、Al等元素会发生扩散,降低粉末表面偏析的同时还会使粉末颗粒表面的不稳定MC′转变为稳定的MC,进一步抑制碳化物在晶界析出形成原始颗粒边界。
故利用本发明提供的方法,可以有效地解决细粒径粉末热等静压成型过程中出现的原始颗粒边界问题,有利于后续的热挤压过程中获得晶粒细小、组织均匀的挤压制件并提高热挤压工序的成品率。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,与说明书一起用于解释本发明的原理。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的一种制备细粒径粉末高温合金热等静压制件的装置结构图;
图2为常规制备方法制备的细粒径粉末高温合金热等静压制件的金相组织图;
图3为采用本发明提供的方法制备的细粒径粉末高温合金热等静压制件的金相组织图。
其中:1、装粉料罐;2、下粉管;3、装置本体;4、加热带;5、真空泵组;6、充气口;7、包套;8、振动机构;9、圆筒形基体。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与所附权利要求书中所详述的、本发明的一些方面相一致的装置、方法的例子。
参见图1所示,本发明提供了一种制备细粒径粉末高温合金热等静压制件的装置,包括装置本体3和位于其内部的包套7,所述装置本体3的上方设置有装粉料罐1,所述装粉料罐1通过下粉管2与包套7相连;所述包套7的外部设置有加热机构,所述包套7的底部连接有振动机构8,所述振动机构8与加热机构均位于装置本体3内;所述装置本体3还连接有用于对装置本体3内抽真空的真空泵组5,所述装置本体的一侧还设置有通入CO气体的充气口6。
进一步,所述装置还包括温度传感器、压力传感器及控制器,所述控制器分别与温度传感器、压力传感器连接;温度传感器用于监测包套7的实时温度数据信息,压力传感器用于监测装置本体3内的真空度及压强数据信息。
进一步,所述加热机构包括套设在所述包套7周壁外的圆筒形基体9,所述圆筒形基体9上分布有加热带4。
进一步,所述加热带4缠绕于圆筒形基体9的外壁。
进一步,所述加热带4为蛇形加热带,且蛇形加热带沿圆筒形基体9的周向分布。
进一步,所述振动机构8包括异步电机,所述异步电机的转轴连接有曲柄连杆机构,所述曲柄连杆机构在异步电机的驱动下带动包套7进行运动。
此外,本发明还提供了一种应用如上部分或全部所述的装置制备细粒径粉末高温合金热等静压制件的方法,利用CO气体进行还原以去除细粒径粉末颗粒表面的O2和H2O。
进一步,所述方法具体包括以下步骤:
1)制备细粒径高温合金粉末;
2)利用装粉料罐1将所述细粒径高温合金粉末通过下粉管2装入包套7中;
3)待所述包套7装满细粒径高温合金粉末后,关闭真空泵组5再充入CO气体至装置本体3内的压强为0.02~0.03MPa;启动加热机构使包套7升温至600~900℃,保温2~3h;
4)再次启动真空泵组5直至装置本体3内的真空度小于0.01Pa,包套7降温至500~600℃,保温7~9h;
5)利用热等静压设备完成包套7内粉末的致密化处理。
进一步,CO气体的纯度大于或等于99.999%。
进一步,所述步骤1)中细粒径高温合金粉末可通过气雾化法或等离子旋转电极法制备获得。
进一步,所述步骤2)中,在将细粒径高温合金粉末装入包套7前,控制装置本体3内的真空度小于0.01 Pa,包套7的保温温度为500~600℃;在将所述细粒径高温合金粉末装入包套7的过程中,所述下粉管2的下粉速率为20~30kg/h,所述振动机构8的振动频率为30~50Hz。
上述方法,在利用CO进行还原反应后,消除原始颗粒边界的原理如下:由于原始颗粒边界的形成,是热等静压的加热过程中,合金粉末表面析出的一层MC′型碳化物以及粉末表面偏聚的O、C、Al等元素,由于氧化而形成了碳-氮-氧化物薄膜而阻碍粉末颗粒之间的扩散连接,从而降低了合金的性能。因此,去除粉末颗粒表面的O2和H2O可避免其与MC′型碳化物形成碳-氮-氧化物薄膜是消除原始颗粒边界的关键;CO与O2和H2O反应的方程式如下:
CO+H2O=CO2+H2
2CO+O2=2CO2
高温下CO与O2和H2O反应生产CO2和H2,反应生产的CO2不再参与反应,后续加热抽真空过程可以全部排出。反应生产的H2也可以进一步与O2反应生成H2O,从而消耗粉末颗粒表面的氧气,同时产生的水气不再以吸附态存在,可以通过后续的加热抽真空过程排出。在一连串的反应下,可以大幅度地消耗粉末颗粒表面残留的O2和H2O,并使合金表面偏聚的O、C、Al等元素发生扩散从而达到去除O2和H2O、消除粉末表面偏析的效果,实现制备无原始颗粒边界制件的目的。
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合附图及实施例对本发明作进一步详细描述。
实施例1
本实施例提供了一种应用上述装置制备细粒径粉末高温合金热等静压制件的方法,其具体包括如下步骤:
步骤1:采用气雾化法或者等离子旋转电极法制备细粒径高温合金粉末;
步骤2:利用装粉料罐1将细粒径高温合金粉末通过下粉管2装入包套7,粉末装入包套7时装置本体3内的真空度小于0.01Pa,包套7的保温温度为500℃,下粉速率为20kg/h,振动频率为30Hz;
步骤3:粉末装满后关闭真空泵组5并充入CO气体至装置本体3内的压强为0.02MPa,包套7升温至600℃,保温3h;其中,CO气体的纯度大于或等于99.999%;
步骤4:再次启动真空泵组5直至装置本体3内的真空度小于0.01Pa,包套7降温至500℃,保温9h;
步骤5:利用热等静压设备完成包套7内粉末的致密化处理。其中,所得热等静压制件的微观结构组织图参见图3,可以看出该组织与常规制备方法制得的热等静压制件的微观结构组织图(参考图2)相比,无原始颗粒边界,晶粒大小更为均匀。
实施例2
本实施例提供了一种应用上述装置制备细粒径粉末高温合金热等静压制件的方法,其具体包括如下步骤:
步骤1:采用气雾化法或者等离子旋转电极法制备细粒径高温合金粉末;
步骤2:利用装粉料罐1将细粒径高温合金粉末通过下粉管2装入包套7,粉末装入包套7时装置本体3内的真空度小于0.01Pa,包套7的保温温度为550℃,下粉速率为25kg/h,振动频率为40Hz;
步骤3:粉末装满后关闭真空泵组5并充入CO气体至装置本体3内的压强为0.025MPa,包套7升温至700℃,保温2.5h;其中,CO气体的纯度大于或等于99.999%;
步骤4:再次启动真空泵组5直至装置本体3内的真空度小于0.01Pa,包套7降温至550℃,保温8h;
步骤5:利用热等静压设备完成包套7内粉末的致密化处理。
实施例3
本实施例提供了一种应用上述装置制备细粒径粉末高温合金热等静压制件的方法,其具体包括如下步骤:
步骤1:采用气雾化法或者等离子旋转电极法制备细粒径高温合金粉末;
步骤2:利用装粉料罐1将细粒径高温合金粉末通过下粉管2装入包套,粉末装入包套7时装置本体3内的真空度小于0.01Pa,包套7的保温温度为600℃,下粉速率为30kg/h,振动频率为50Hz;
步骤3:粉末装满后关闭真空泵组5并充入CO气体至装置本体3内的压强为0.03MPa,包套7升温至900℃,保温2h;其中,CO气体的纯度大于或等于99.999%;
步骤4:再次启动真空泵组5直至装置本体3内的真空度小于0.01Pa,包套7降温至600℃,保温7h;
步骤5:利用热等静压设备完成包套7内粉末的致密化处理。
综上,本发明提供的这种制备方法,通过CO在高温下对粉末进行还原,有效地去除了粉末颗粒表面吸附的O2和H2O,从而解决了热等静压制件中的原始颗粒边界问题;另一方面,CO与O2、H2O反应的过程中,会使得粉末颗粒间形成烧结径,能够避免运输过程中低频振动造成的粉末分层,保证了粉末在包套内的均匀分布。利用本发明提供的方法,可以有效解决细粒径粉末热等静压成型过程中出现的原始颗粒边界问题,有利于后续的热挤压过程中获得晶粒细小、组织均匀的挤压制件并提高热挤压工序的成品率。
以上所述仅是本发明的具体实施方式,使本领域技术人员能够理解或实现本发明。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。
应当理解的是,本发明并不局限于上述已经描述的内容,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (7)

1.一种制备细粒径粉末高温合金热等静压制件的方法,其特征在于,利用CO气体进行还原以去除细粒径粉末颗粒表面的O2和H2O,具体包括以下步骤:
1)制备细粒径高温合金粉末;
2)利用装粉料罐(1)将所述细粒径高温合金粉末通过下粉管(2)装入包套(7)中;
3)待所述包套(7)装满细粒径高温合金粉末后,关闭真空泵组(5)再充入CO气体至装置本体(3)内的压强为0.02~0.03MPa;启动加热机构使包套(7)升温至600~900℃,保温2~3h;
4)再次启动真空泵组(5)直至装置本体(3)内的真空度小于0.01Pa,包套(7)降温至500~600℃,保温7~9h;
5)利用热等静压设备完成包套(7)内粉末的致密化处理;
其中,所述装粉料罐(1)位于装置本体(3)的上方,所述装置本体(3)的内部设置有包套(7),所述装粉料罐(1)通过下粉管(2)与包套(7)相连;所述包套(7)的外部设置有加热机构,所述包套(7)的底部连接有振动机构(8),所述振动机构(8)与加热机构均位于装置本体(3)内;所述装置本体(3)还连接有用于对装置本体(3)内抽真空的真空泵组(5),所述装置本体(3)的一侧还设置有通入CO气体的充气口(6)。
2.根据权利要求1所述的制备细粒径粉末高温合金热等静压制件的方法,其特征在于,所述步骤1)中细粒径高温合金粉末通过气雾化法或等离子旋转电极法制备获得。
3.根据权利要求1所述的制备细粒径粉末高温合金热等静压制件的方法,其特征在于,所述步骤2)中,
将所述细粒径高温合金粉末装入包套(7)前,控制所述装置本体(3)内的真空度小于0.01Pa,所述包套(7)的保温温度为500~600℃;
将所述细粒径高温合金粉末装入包套(7)的过程中,所述下粉管(2)的下粉速率为20~30kg/h,所述振动机构(8)的振动频率为30~50Hz。
4.根据权利要求1所述的制备细粒径粉末高温合金热等静压制件的方法,其特征在于,所述加热机构包括套设在所述包套(7)周壁外的圆筒形基体(9),所述圆筒形基体(9)上分布有加热带(4)。
5.根据权利要求4所述的制备细粒径粉末高温合金热等静压制件的方法,其特征在于,所述加热带(4)缠绕于圆筒形基体(9)的外壁。
6.根据权利要求5所述的制备细粒径粉末高温合金热等静压制件的方法,其特征在于,所述加热带(4)为蛇形加热带,且蛇形加热带沿圆筒形基体(9)的周向分布。
7.根据权利要求1所述的制备细粒径粉末高温合金热等静压制件的方法,其特征在于,所述振动机构(8)包括异步电机,所述异步电机的转轴连接有曲柄连杆机构,所述曲柄连杆机构在异步电机的驱动下带动包套(7)进行运动。
CN202210165377.7A 2022-02-23 2022-02-23 一种制备细粒径粉末高温合金热等静压制件的装置及方法 Active CN114210977B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210165377.7A CN114210977B (zh) 2022-02-23 2022-02-23 一种制备细粒径粉末高温合金热等静压制件的装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210165377.7A CN114210977B (zh) 2022-02-23 2022-02-23 一种制备细粒径粉末高温合金热等静压制件的装置及方法

Publications (2)

Publication Number Publication Date
CN114210977A CN114210977A (zh) 2022-03-22
CN114210977B true CN114210977B (zh) 2022-05-17

Family

ID=80709334

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210165377.7A Active CN114210977B (zh) 2022-02-23 2022-02-23 一种制备细粒径粉末高温合金热等静压制件的装置及方法

Country Status (1)

Country Link
CN (1) CN114210977B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115213412A (zh) * 2022-07-20 2022-10-21 中国航发北京航空材料研究院 一种大直径钛铝铌合金坯体的成形装置及使用方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04141501A (ja) * 1990-10-01 1992-05-15 Ube Ind Ltd Al合金粉末成形材の製造方法
WO2021103381A1 (zh) * 2019-11-25 2021-06-03 宁波江丰电子材料股份有限公司 一种钽硅合金溅射靶材及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144805A (en) * 1977-05-24 1978-12-16 Kobe Steel Ltd Hermetically sealing method in metallic capsule for material to be treated in hot static pressure pressing method
US4693863A (en) * 1986-04-09 1987-09-15 Carpenter Technology Corporation Process and apparatus to simultaneously consolidate and reduce metal powders
JPS63206404A (ja) * 1987-02-20 1988-08-25 Kobe Steel Ltd 熱間静水圧加圧処理用カプセル容器の脱気密封装置
US5039476A (en) * 1989-07-28 1991-08-13 Ube Industries, Ltd. Method for production of powder metallurgy alloy
JPH0397803A (ja) * 1989-09-08 1991-04-23 Kobe Steel Ltd 原料粉末のカプセル内充填方法および充填装置
SE527417C2 (sv) * 2004-10-07 2006-02-28 Sandvik Intellectual Property Metod för att kontrollera syrehalten i ett pulver och metod att framställa en kropp av metallpulver
CN105268981A (zh) * 2014-05-28 2016-01-27 深圳市铂科新材料股份有限公司 一种减少和抑制水雾化制粉中金属粉末氧化的方法
CN110666175B (zh) * 2019-10-31 2022-03-04 西安欧中材料科技有限公司 一种镍基高温合金粉末的热等静压成型方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04141501A (ja) * 1990-10-01 1992-05-15 Ube Ind Ltd Al合金粉末成形材の製造方法
WO2021103381A1 (zh) * 2019-11-25 2021-06-03 宁波江丰电子材料股份有限公司 一种钽硅合金溅射靶材及其制备方法

Also Published As

Publication number Publication date
CN114210977A (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
CN114210977B (zh) 一种制备细粒径粉末高温合金热等静压制件的装置及方法
WO2021027824A1 (zh) 一种钨基合金材料及其制备方法
CN104313380B (zh) 一种分步烧结制备高致密度纳米晶硬质合金的方法
CN111534712A (zh) 一种石墨烯增强fcc类高熵合金的制备方法
CN103938005A (zh) 气流磨氢化钛粉制备超细晶粒钛及钛合金的方法
CN110605353B (zh) 高效钛及钛合金铸锭短流程精锻开坯工艺
JP2008254052A (ja) Ti合金鋳造品の製造方法
US5768679A (en) Article made of a Ti-Al intermetallic compound
JPH04505777A (ja) 改良された熱機械的作業用ニツケルベーススーパアロイ粉末の処理法
CN115106527B (zh) 基于放电等离子体烧结的高强钛合金零件的多级烧结方法
CN111197147B (zh) 一种铝合金及其加工方法
CN113523278B (zh) 一种低应力硬质合金模具材料烧结方法
CN1157586A (zh) 制造一种金属结构的方法
CN111659894B (zh) 粉末高温合金棒材及盘件的制备方法
CN111215623A (zh) 一种Ti-Al系合金的粉末冶金致密化无压烧结方法
CN106591614B (zh) 一种高寿命隔热屏用弧形钼板的制造工艺
CN105755312B (zh) 一种钛基合金汽车刹车盘材料的制备方法
JP2001279303A (ja) Ti−Al金属間化合物部材の製造方法
CN116287827B (zh) 一种异质性可调的异质结构铝合金及其制备方法
CN217252828U (zh) 一种提高钨粉压坯强度的生产装置
JPH03236403A (ja) TiAl基合金製機械部品の製造方法
JP2596205B2 (ja) Al合金粉末成形材の製造方法
JP3771127B2 (ja) 高密度TiAl金属間化合物の常圧燃焼合成方法
RU2750298C2 (ru) Способ получения реакционного композиционного порошка округлой формы для применения в аддитивных технологиях
CN117418151A (zh) 一种三维梯度结构多主元合金材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 710018 No. 45, Fengcheng Second Road, Xi'an Economic and Technological Development Zone, Xi'an City, Shaanxi Province

Patentee after: Xi'an Ouzhong Materials Technology Co.,Ltd.

Address before: 710018 No. 45, Fengcheng Second Road, Xi'an Economic and Technological Development Zone, Xi'an City, Shaanxi Province

Patentee before: XI'AN SINO-EURO MATERIALS TECHNOLOGIES Co.,Ltd.

CP03 Change of name, title or address