CN114210315B - 一种稀土铒改性花粉碳复合光催化剂的制备和应用 - Google Patents

一种稀土铒改性花粉碳复合光催化剂的制备和应用 Download PDF

Info

Publication number
CN114210315B
CN114210315B CN202111656044.6A CN202111656044A CN114210315B CN 114210315 B CN114210315 B CN 114210315B CN 202111656044 A CN202111656044 A CN 202111656044A CN 114210315 B CN114210315 B CN 114210315B
Authority
CN
China
Prior art keywords
rare earth
pollen
erbium
modified
composite photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111656044.6A
Other languages
English (en)
Other versions
CN114210315A (zh
Inventor
姜霞
陈燕鑫
周静文
卢灿忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen Institute of Rare Earth Materials
Original Assignee
Xiamen Institute of Rare Earth Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen Institute of Rare Earth Materials filed Critical Xiamen Institute of Rare Earth Materials
Priority to CN202111656044.6A priority Critical patent/CN114210315B/zh
Publication of CN114210315A publication Critical patent/CN114210315A/zh
Application granted granted Critical
Publication of CN114210315B publication Critical patent/CN114210315B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种稀土铒改性花粉碳复合光催化剂的制备方法,步骤如下:1)荷花花粉的前处理:称取一定量荷花花粉,在玛瑙研钵中充分研磨后按照质量与体积比1:10加入无水乙醇中,超声清洗后静置,去除清洗液后重复进行3次,60oC干燥过夜后得到黄色粉末状固体LP‑Et;2)先称取一定量Er(NO3)3·5H2O分散在100 mL H2O中,搅拌均匀后获得稀土前驱液,再称取与Er质量比为1:5的步骤1)制得的LP‑Et缓慢投入稀土前驱液中,继续搅拌后,用超纯水离心洗3次,60oC干燥过夜后焙烧,置于马弗炉中煅烧,随后转入管式炉中通氩气继续煅烧,得到稀土铒改性花粉碳复合光催化剂。本发明能在太阳能转化过程中的应用。

Description

一种稀土铒改性花粉碳复合光催化剂的制备和应用
技术领域
本发明属于一种稀土铒改性花粉碳复合光催化剂,具体涉及稀土铒改性花粉碳复合光催化剂的合成方法及其在光催化制氢中的应用,属于能源与环保技术领域。
背景技术
如今,由于环境问题的逐渐恶化和化石燃料价格的持续上涨,寻找可替代的绿色能源已成为必然趋势。氢作为一种重要的清洁能源得到了人们的广泛关注,具有无污染、可持续、能量利用率高等优势。利用可再生太阳能和水进行光催化水裂解是较有前途的制氢方法,光催化剂在光催化水裂解产氢机制中起着重要的作用,因此开发更为高效的新型光催化剂已成为科学家们的研究热点之一。
生物碳由于具有独特的物理化学性质,如大量的活性中心、半导体特性、高比表面积和丰富的氧空位,并且其本身存在的大量非金属元素(N、C、S和P等),为大规模生产高性能光催化剂提供了新的机会。在对多孔碳材料的改性中,稀土元素的研究较少。稀土元素具有特殊的电子结构,相对空的4f和5d轨道,有利于提高界面电荷转移效率,同时也可捕获电子;4f电子的定域化和不完全填充使稀土具有独特的光学和磁学特性,这些性质使稀土在催化领域中得到广泛应用。稀土作为催化剂具有较广的适用范围,对多孔生物碳材料进行稀土改性,可在可见光条件下实现高效的光催化水解制氢。
发明内容
本发明的目的是:针对目前可见光催化分解水制氢催化剂催化性能低、制备繁琐及不利于量产的问题,通过使用绿色经济的生物质和稀土材料为原料,利用天然生物质元素组成及孔结构丰富等特点实现碳材料与稀土元素的复合,简单绿色制备生物炭基-稀土复合材料,实现高性能光催化分解水制氢催化剂的获得。
为实现上述目的,本发明获得稀土铒改性花粉碳复合光催化剂的技术方案如下:
一种稀土铒改性花粉碳复合光催化剂的制备方法,其特征在于步骤如下:
1)荷花花粉的前处理:称取一定量荷花花粉,在玛瑙研钵中充分研磨后按照质量与体积比1:10加入无水乙醇中,超声清洗10 min后静置不少于10 min,去除清洗液后重复进行3次,60oC干燥过夜后得到黄色粉末状固体,标记为LP-Et;
2)稀土铒改性花粉碳的制备:先称取一定量Er(NO3)3·5H2O分散在100 mL H2O中,搅拌均匀后获得稀土前驱液,再称取与Er质量比为1:5的步骤1)制得的LP-Et缓慢投入稀土前驱液中,继续搅拌不少于24 h后,用超纯水离心洗3次,60oC干燥过夜后焙烧,置于300oC马弗炉中煅烧,升温速率为5oC/min,保温6小时;随后转入管式炉中通氩气继续煅烧,升温速率为10oC/min,保温3h;两次煅烧之后得到的黑色粉末状固体稀土铒改性花粉碳复合光催化剂即为Er/LP-C。
本发明上述方法制得的稀土铒改性花粉碳复合光催化剂在太阳能转化过程中的应用。
具体地说,本发明的技术方案为:
1)荷花花粉前处理:称取一定量荷花花粉,在玛瑙研钵中充分研磨后按照质量与体积比1:10加入无水乙醇溶液中,超声清洗10 min后静置不少于10 min,去除清洗液后重复进行3次,60oC干燥过夜后得到黄色粉末状固体,标记为LP-Et。
2)稀土铒改性花粉碳的制备:先称取一定量Er(NO3)3·5H2O分散在100 mL H2O中,搅拌均匀后,再称取与Er质量比为1:5的LP-Et缓慢投入稀土前驱液中,继续搅拌不少于24h后,用超纯水离心洗3次,60oC干燥过夜后焙烧,置于300oC马弗炉中煅烧,升温速率为5oC/min,保温6小时;随后转入管式炉中通氩气继续煅烧,升温速率为10oC/min,保温3h。两次煅烧之后得到的黑色粉末状固体即为Er/LP-C。
3)花粉碳的制备:将LP-Et先后置于马弗炉和管式炉中,按照2)中所述焙烧条件煅烧后获得,即为LP-C。
将本发明所制备的LP-C和稀土铒改性花粉碳复合光催化剂制成薄膜电极于FTO上,以测试其电化学参数。粉体材料分散在乙醇水溶液中用于测试光催化产氢。
与现有技术相比,本实施方式具有如下特点:
本发明采用荷花花粉为生物炭来源,将前驱体通过简单混合后干燥焙烧的方法,能大规模合成所需要的粉体光催化/光电催化材料。X射线粉末衍射的结果结合X射线光电子能谱和透射电镜的结果表明,本发明中铒元素没有掺杂入花粉碳中,而是以纳米级别的单质或氧化物的形式负载在花粉碳表面,由于稀土元素丰富的能级结构,与花粉碳可形成异质结,加快光生载流子分离,从整体上提升产氢效率。
附图说明
下面通过图例说明本发明的主要参数特征
图1为前处理后的荷花花粉、花粉碳及稀土铒改性花粉碳的SEM图。结果表明,所制备的样品保持荷花花粉状及表面沟壑,这些不规则的表面可以提高催化剂对光的利用率;图中:A和B是前处理后的荷花花粉SEM图,C和D是花粉碳的SEM图,E和F是稀土铒改性花粉碳的SEM图。
图2为花粉碳及稀土铒改性花粉碳的XRD谱图。结果表明,稀土铒改性后出现Er2O3的特征峰(PDF# 08-0050),说明铒是以Er2O3的形式存在,但不能排除单质Er的存在。
图3.1为稀土铒改性花粉碳的透射电子显微镜及粒径统计图。结果表明与生物炭复合的稀土材料呈现球形颗粒状约3.3 nm。
图3.2为稀土铒改性花粉碳的高角度环形暗场及Er、C、O、N和P元素的分布图。结果表明与生物炭复合的稀土材料中不仅含有Er,还含有C、O、N、P元素,且分布比较均匀。
图4为稀土铒改性花粉碳中Er的精细谱图。结果表明与生物炭复合的Er可能以单质和氧化物共存的形式存在,或者以氧化物的形式存在,但因为与生物炭作用,其电子结构发生了变化。
图5.1为花粉碳及稀土铒改性花粉碳在50%乙醇为牺牲试剂,光强为89 mW/cm2下的产氢速率图。结果表明,稀土铒的引入可以提高光催化水解产氢效率。
图5.2为稀土铒改性花粉碳在50%乙醇为牺牲试剂,光强为89 mW/cm2下的产氢稳定性图。结果表明,稀土铒改性花粉碳拥有较好的产氢稳定性。
图6为花粉碳及稀土铒改性花粉碳的光电转换效率(IPCE)图。结果表明,稀土铒的引入可以提高材料的光电转换效率。
图7为花粉碳及稀土铒改性花粉碳的光生电流图。使用三电极体系进行测试,对电极为铂片,参比电极为Ag/AgCl,工作电极为FTO上制作的花粉碳及稀土铒改性花粉碳薄膜,以0.1 mol/L Na2SO4为电解液。结果表明稀土铒的引入可以提高光生载流子的分离效率。
图8为花粉碳及稀土铒改性花粉碳的阻抗图,使用三电极体系进行测试,对电极为铂片,参比电极为Ag/AgCl,工作电极为FTO上制作的花粉碳及稀土铒改性花粉碳薄膜,以0.1 mol/L Na2SO4为电解液。结果表明稀土铒的引入可以提高光生载流子的转移速率。
图9.1为稀土铒改性花粉碳的莫特肖特基曲线(Mott-Schottky)。结果表明,稀土铒改性花粉碳的平带电位约为-0.141V(vs. RHE pH=6.5),与图9.2中的花粉碳的平带电位相比,拥有更负的电位,进而说明铒的引入可以使催化剂中的光生电子拥有更强的还原能力。
图9.2为花粉碳的莫特肖特基曲线(Mott-Schottky)。结果表明,花粉碳平带电位约为-0.134V(vs. RHE pH=6.5)。
具体实施方式
在本发明中,利用荷花花粉结构和组成的优势,通过简单的混合干燥焙烧过程将稀土铒元素成功引入到花粉碳表面。通过一系列的测试表明,在产氢速率和光转换效率方面有较大的改善。
实施例1
花粉前处理:称取一定量荷花花粉,在玛瑙研钵中充分研磨后按照质量g与体积mL比1:10加入无水乙醇中,超声清洗10 min后静置10 min,去除清洗液后重复进行3次,60oC干燥过夜后得到黄色粉末状固体,标记为LP-Et。
实施例2
稀土铒改性花粉碳的制备:先称取1.12 g Er(NO3)3·5H2O分散在100 mL H2O中,搅拌均匀后形成稀土前驱液,再称取2 g的LP-Et(按实施例1制备)缓慢投入稀土前驱液中,继续搅拌24 h后,用超纯水离心洗3次,60oC干燥24 h后焙烧,置于300oC马弗炉中煅烧,升温速率为5oC/min(这里指从室温到300oC按升温速率为5oC/min升温),升温到300oC后保温6h;随后转入管式炉中通氩气继续煅烧,升温速率为10oC/min(这里指从室温到600oC按升温速率为10oC/min升温),600oC保温3 h。两次煅烧之后得到的黑色粉末状固体稀土铒改性花粉碳即为Er/LP-C。
实施例3
花粉碳的制备:称取4 g LP-Et(按实施例1制备),置于300oC马弗炉中煅烧,升温速率为5oC/min(这里指从室温到300oC按升温速率为5oC/min升温),升温到300oC后保温6h;随后转入管式炉中通氩气继续煅烧,升温速率为10oC/min(这里指从室温到600oC按升温速率为10oC/min升温),600oC保温3 h。两次煅烧之后得到的黑色粉末状固体花粉碳即为LP-C。
实施例4
稀土铒改性花粉碳的太阳能水解产氢性能评价:准确称取20 mg实施例2中制备的稀土铒改性花粉碳,加入30 mL去离子水与无水乙醇1:1(体积比)的混合溶液,超声30 min,使光催化剂均匀分散于混合液中。在模拟太阳光下,使用MCP-WS1000光电化学工作站进行测试,连接PLD-CGA1000复合气体分析仪作为氢气产量检测装置,每2小时统计一次光催化产氢量,6 h下的产氢速率为138.61 µL·g-1·h-1
实施例5
花粉碳的太阳能水解产氢性能评价:准确称取20 mg实施例3中制备的花粉碳,加入30 mL去离子水与无水乙醇1:1(体积比)的混合溶液,超声30 min,使光催化剂均匀分散于混合液中。在模拟太阳光下,使用MCP-WS1000光电化学工作站进行测试,连接PLD-CGA1000复合气体分析仪作为氢气产量检测装置,每2小时统计一次光催化产氢量,6 h下的产氢速率为43.85 µL·g-1·h-1
实施例6
实施例3制得的花粉碳及实施例2制得的稀土铒改性花粉碳的光电流响应测试。使用经过太阳光谱矫正的氙灯模拟太阳光,光强度为100 mW/cm2,使用带有侧面石英玻璃入射窗口的标准三电极光电解池系进行测试,以铂片为对电极,Ag/AgCl电极为参比电极,工作电极为在FTO导电玻璃上制作的1×1 cm2花粉碳及稀土铒改性花粉碳的薄膜电极,以0.1mol/L Na2SO4为电解液。在典型的测试过程中,利用上海辰华电化学工作站监测并记录所产生的光电流/电压曲线。结果表明,稀土铒的引入可以提高光生电流,使其能更加有效地利用太阳能。

Claims (2)

1.一种稀土铒改性花粉碳复合光催化剂的制备方法,其特征在于步骤如下:
1)荷花花粉的前处理:称取一定量荷花花粉,在玛瑙研钵中充分研磨后按照质量与体积比1:10加入无水乙醇中,超声清洗10 min后静置不少于10 min,去除清洗液后重复进行3次,60oC干燥过夜后得到黄色粉末状固体,标记为LP-Et;
2)稀土铒改性花粉碳的制备:先称取一定量Er(NO3)3·5H2O分散在100 mL H2O中,搅拌均匀后获得稀土前驱液,再称取与Er质量比为1:5的步骤1)制得的LP-Et缓慢投入稀土前驱液中,继续搅拌不少于24 h后,用超纯水离心洗3次,60oC干燥过夜后焙烧,置于300oC马弗炉中煅烧,升温速率为5oC/min,保温6小时;随后转入管式炉中通氩气继续煅烧,升温速率为10oC/min,保温3h;两次煅烧之后得到的黑色粉末状固体稀土铒改性花粉碳复合光催化剂即为Er/LP-C。
2.权利要求1所述的方法制得的稀土铒改性花粉碳复合光催化剂在光催化制氢中的应用。
CN202111656044.6A 2021-12-31 2021-12-31 一种稀土铒改性花粉碳复合光催化剂的制备和应用 Active CN114210315B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111656044.6A CN114210315B (zh) 2021-12-31 2021-12-31 一种稀土铒改性花粉碳复合光催化剂的制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111656044.6A CN114210315B (zh) 2021-12-31 2021-12-31 一种稀土铒改性花粉碳复合光催化剂的制备和应用

Publications (2)

Publication Number Publication Date
CN114210315A CN114210315A (zh) 2022-03-22
CN114210315B true CN114210315B (zh) 2024-02-20

Family

ID=80707176

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111656044.6A Active CN114210315B (zh) 2021-12-31 2021-12-31 一种稀土铒改性花粉碳复合光催化剂的制备和应用

Country Status (1)

Country Link
CN (1) CN114210315B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116253852B (zh) * 2022-12-22 2024-05-03 苏州羽燕特种材料科技有限公司 一种改性热塑性聚氨酯弹性体的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106115688A (zh) * 2016-06-23 2016-11-16 华中科技大学 一种天然孢粉自模板法制备多孔中空活性炭微球的方法
CN110124691A (zh) * 2019-05-07 2019-08-16 肇庆市华师大光电产业研究院 一种花粉碳骨架负载生长二硫化铼光电材料的制备方法
CN112107997A (zh) * 2020-09-16 2020-12-22 重庆君浩环保科技有限公司 一种高分子净化空气材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007031633A1 (de) * 2007-07-06 2009-01-08 Evonik Degussa Gmbh Verfahren zur Herstellung von hochreinem Siliciumdioxidgranulat

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106115688A (zh) * 2016-06-23 2016-11-16 华中科技大学 一种天然孢粉自模板法制备多孔中空活性炭微球的方法
CN110124691A (zh) * 2019-05-07 2019-08-16 肇庆市华师大光电产业研究院 一种花粉碳骨架负载生长二硫化铼光电材料的制备方法
CN112107997A (zh) * 2020-09-16 2020-12-22 重庆君浩环保科技有限公司 一种高分子净化空气材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Nature-based catalyst for visible-light-driven photocatalytic CO2 reduction;Zhifeng Jiang等;《Energy Environ. Sci.》;第第11卷卷;第2382--2389页 *

Also Published As

Publication number Publication date
CN114210315A (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
CN112551571B (zh) 一种超薄纳米片微单元空心硫化铟锌纳米笼的制备与应用
CN111389442B (zh) 负载于泡沫镍表面的p-n异质结复合材料及其制备方法与应用
CN110560105B (zh) 磷化镍负载硫铟锌纳米微球复合材料的制备及在光催化产氢中的应用
CN106964339B (zh) 碳掺杂超薄钨酸铋纳米片光催化材料及其制备方法
CN111266127A (zh) 一种氧化亚铜纳米线阵列复合氮化碳负载铜网复合材料及其制备方法和应用
CN107887613A (zh) 基于三维网状氮磷硫共掺杂多孔碳材料的氧还原电极及制备方法与应用
CN105709793A (zh) 硫化镉纳米粒子修饰的五氧化二铌纳米棒/氮掺杂石墨烯复合光催化剂、制备方法与应用
CN114797936B (zh) 一种co2还原催化剂、应用及其制备方法
CN114210315B (zh) 一种稀土铒改性花粉碳复合光催化剂的制备和应用
CN111682222A (zh) 一种Pt-CdS-氮掺杂石墨烯量子点复合材料的制备方法及其催化用途
CN114618537A (zh) 一种红磷/钛酸锶异质结光催化剂及制备方法及应用
CN110694655A (zh) 一种硫化银/磷酸银/氧化石墨烯复合光催化剂的制备方法
CN110354870A (zh) 一种高性能的银掺杂的硫化钴析氧催化剂的制备方法及其应用
CN111111738B (zh) 一种复合光催化材料及其制备方法
CN111778518B (zh) 一种高性能P:Fe2O3/FeOOH复合光电极及其制备方法和应用
Wei et al. One-step synthesis of nitrogen-decorated CeO2/reduced graphene oxide nanocomposite and its electrocatalytic activity for triiodide/iodide reduction
CN114369942A (zh) 一种碳纤维/二氧化钛光电型复合材料及其制备方法与应用
CN114314641A (zh) 一种超薄纳米亚基组装的空心硫化铟纳米棒的制备和应用
CN113522298A (zh) 一种钙钛矿氧化物/Ti3C2 MXene/泡沫镍复合材料及其制备方法和应用
CN110639582A (zh) 一种具有2D/0D结构的g-C3N4/WO3复合光催化剂的制备方法
CN114797987B (zh) 用于光催化产氢的Ni-NDC/Ti3C2复合光催化剂及制备方法
CN114308003A (zh) 一种多孔花粉碳光电催化剂的制备和应用
CN108970627A (zh) 一种用于制备燃料电池用氢的半导体催化剂及制备方法
CN112958124B (zh) 一种铟掺杂碳化钼纳米花核壳结构光催化剂及其制备和应用
CN109750313B (zh) 铋酸钙/氧化钨复合光电极、制备方法及其在光电催化分解水中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant