CN114196520A - 用于单细胞识别的细菌耐药性快速检测微流控芯片、制备及应用 - Google Patents

用于单细胞识别的细菌耐药性快速检测微流控芯片、制备及应用 Download PDF

Info

Publication number
CN114196520A
CN114196520A CN202111561549.4A CN202111561549A CN114196520A CN 114196520 A CN114196520 A CN 114196520A CN 202111561549 A CN202111561549 A CN 202111561549A CN 114196520 A CN114196520 A CN 114196520A
Authority
CN
China
Prior art keywords
bacteria
micro
medicine
drug resistance
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202111561549.4A
Other languages
English (en)
Inventor
宋克纳
祖向阳
黄磊
于章清
陈慧敏
付东辽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Science and Technology
Original Assignee
Henan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Science and Technology filed Critical Henan University of Science and Technology
Priority to CN202111561549.4A priority Critical patent/CN114196520A/zh
Publication of CN114196520A publication Critical patent/CN114196520A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/16Microfluidic devices; Capillary tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/38Caps; Covers; Plugs; Pouring means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/46Means for regulation, monitoring, measurement or control, e.g. flow regulation of cellular or enzymatic activity or functionality, e.g. cell viability
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/10Enterobacteria
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/24Assays involving biological materials from specific organisms or of a specific nature from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • G01N2333/245Escherichia (G)

Abstract

本发明涉及用于单细胞识别的细菌耐药性快速检测微流控芯片、制备及应用,属于微流控及生物医学检验领域。所述芯片上包含有注药区、注菌区、反应区,中间区域为反应区,两侧分别设计相互独立的16个通道和由圆角通道结构多次分流形成16个通道,两侧通道据需求分别作注药区和注菌区,用于一菌多药或一药多菌的耐药性高通量检测。本发明通过配合显微镜等成像装置对细菌计数,在短时间内绘制细菌生长曲线,具有高通量、高精度、低成本、低消耗、检测快等优点。可解决目前临床耐药检测周期长、自动化程度低、劳动强度大、易受人为因素干扰等问题,适合广泛应用于医院临床实验室细菌耐药高效检测、耐药机制探究、耐药细菌流行传播防控等领域。

Description

用于单细胞识别的细菌耐药性快速检测微流控芯片、制备及 应用
技术领域
本发明涉及微流控技术、微生物技术、医学检验方法等领域。尤其涉及一种用于单细胞识别的细菌耐药性快速检测微流控芯片及其制备,以及其在生物医学中的应用。
背景技术
细菌耐药特性又称细菌抗药性,指细菌对药物的耐受性,细菌一旦产生抗药性,药物即不再是治疗该细菌的特效药。
近年来随着广谱和超广谱抗生素在临床上的普遍使用,耐药菌株的检出率逐年增加,并开始出现多重耐药、全耐药菌株。病原菌的药敏试验结果可以为临床医生的用药提供很好的依据,从而针对性的使用抗菌药物,有效的杜绝抗生素的滥用,减少耐药菌株的产生,维持微生物菌群的稳定。
传统的细菌耐药分析方法有Kirby-Bauer纸片法(K-B法)、琼脂稀释法和肉汤稀释法、E-TEST纸条法,自动化检测系统有梅里埃VITEK 2 全自动细菌鉴定及药敏分析系统、Thermo全自动药敏分析系统、BD Phoenix Automated Microbiology系统等,其中梅里埃VITEK 2全自动细菌鉴定及药敏分析系统是目前医院最常用的检测方法,它是将菌落种进孔板检测卡中,孵育到较高浓度,通过培养液的浑浊度进行检测。
病原菌药敏检测需要经标本的采集、培养、药敏试验,该过程通常需数天,耗时较长,增加了医疗负担,同时病人无法在第一时间得到最佳治疗方案,有延误病情的风险。
所以,寻求一种快速、高效、可行性强的新型细菌耐药性检测平台,是临床敏感性药物筛查的迫切需求。
发明内容
针对上述问题,本发明提供一种用于单细胞识别的细菌耐药性快速检测微流控芯片,利用所述微流控芯片可实现高通量、高精度、低成本、低消耗等的细菌耐药性的快速检测,不仅可以克服现有技术中存在的比浊法耗时较长的问题,还可解决目前临床耐药检测自动化程度低、劳动强度大、易受人为因素干扰等问题。
本发明采用的具体方案如下:
本发明的目的一是提供一种用于单细胞识别的细菌耐药性快速检测微流控芯片,所述微流控芯片上的微结构包括注菌区、注药区和反应区;
所述反应区包含相互独立且成一列排布的若干个微米尺度的反应孔,每个反应孔两侧分别连接注菌通道和注药通道;
所述注药区包含若干个与所述反应孔一一对应的注药孔,所述注药孔的个数与反应孔的个数相同,所述注药孔之间相互独立且成一列排布,所述注药孔与反应孔通过所述注药通道连通;所述注菌区包含一个注菌孔,所述注菌孔中的菌液通过注菌通道多级分流一次性分别注入所有反应孔中。
作为对上述微流控芯片的进一步优化,所述反应孔和注药孔的个数均为16个;所述注菌孔中的菌液通过注菌通道经四级分流一次性分别注入到16个所述反应孔中。
更进一步地,所述注菌通道包含多级分流弯道,所述分流弯道采用平滑弧直角弯道,减少迪安流和乱流,确保流路畅通性和可控性。
作为对上述微流控芯片的进一步优化,所述微流控芯片的基材选用聚二甲基硅氧烷和玻璃的杂化材料,采用等离子键合法制得。所述微流控芯片的制备,包括以下步骤:
(1)用SU-8光刻法刻蚀出含微流控芯片微结构的母板;
(2)配制聚二甲基硅氧烷混合溶液:将聚二甲基硅氧烷与固化剂以10:1的质量比例混合,通过搅拌使其充分混合,置于真空干燥箱中通过抽真空除去混合溶液中的气泡;
(3)将聚二甲基硅氧烷混合溶液倒在准备好的母板上,再次置于真空干燥箱中抽出气泡后放入60 ℃干燥箱中至少4 h使其完全固化,固化后取出后打孔,形成PDMS微结构层,备用;
(4)芯片键合,将固化后的准备好的PDMS微结构层与玻璃片分别置于等离子清洗仪中,起辉后处理20 s,处理后1分钟内将PDMS微结构层与玻璃片迅速贴合,并置于60 ℃干燥箱中加热10分钟,使键合更充分。
作为对上述微流控芯片的进一步优化,所述微流控芯片的基材选用PC,采用真空热压法健合封片制得。所述微流控芯片的制备,包括以下步骤:
(1)选用满足耐药性检测芯片的实验需求的耐低温、高温的无色透明PC;
(2)用精雕机加工微流控芯片微结构,用0.2 mm超细微粒钨钢铣刀雕刻而成。
作为对上述微流控芯片的进一步优化,所述微流控芯片中药物预置,即将药物采用冻干预置的方法植入反应区,具体操作为:将药物分别通过注药孔注入后进入反应区并冻干粘附于反应孔底部,冻干温度在-40~-60 ℃。
本发明的目的二在于提供利用所述微流控芯片进行细菌耐药性检测的方法,包括以下步骤:
步骤一、根据细菌的耐药检测需求,使用显微注射微泵将配置好的药物通过注药孔注入微流控芯片,准确控制注入量,使药物完全进入反应区;使用冷冻干燥器冻干微流控芯片,使药物预置在反应区内,真空包装备用;
步骤二、稀释待测细菌使其浓度为1×104个/ml,使用微量移液器将其注入微流控芯片中,并进入反应区与药物接触;
步骤三、将微流控芯片置于显微镜下,每隔5-10min采集反应区内的细菌生长状态图片并计数细菌个数,根据菌种需求在适宜环境培养并追踪采集30 min-2 h;以时间为横坐标,以细菌个数为纵坐标,绘制30 min-2 h内细菌数量的变化曲线,分析细菌耐药性。
作为对上述方法的进一步优化,所述细菌为大肠埃希菌,选用的药物及其对应浓度分别为:氨苄西林32 μg/ml、头孢唑啉 8 μg/ml、庆大霉素16 μg/ml、阿米卡星64 μg/ml、环丙沙星4 μg/ml、左氧氟沙星8μg/ml、头孢曲松64 μg/ml、头孢吡肟16μg/ml、哌拉西林128μg/ml、厄他培南8 μg/ml、亚胺培南4μg/ml、头孢呋辛32 μg/ml、氨曲南64 μg/ml、头孢他啶16μg/ml、复方磺胺甲噁唑16 μg/ml。
本发明的目的三在于提供所述微流控芯片在细菌耐药性快速检测中的应用。
相比于现有技术,本发明具有以下有益效果:
本发明利用微流控技术实现高通量的微流控芯片,所述微流控芯片可实现一菌多药和一药多菌检测。
本发明的微流控芯片采用聚二甲基硅氧烷(PDMS)和玻璃作为基材,适用于实验室研究,结构简单,制备方便,生物相容性好;采用聚碳酸脂(PC)作为基材,成本低,适用于商业推广。
本发明的微流控芯片中药物植入采用液相注入-冻干的预置方法,冻干后的药物粘附于微流控芯片内部并真空包装保存,避免液体药剂的漏液和药物变性风险,便于保存和运输。
本发明中微流控芯片可直接在显微镜下观察到细菌的形貌,通过对细菌计数获得其生长曲线,由生长曲线获得细菌对相应药物的耐药特性,所需时间为30 min-2 h。本发明与显微镜配合使用,用于细菌耐药检测,可直接监测细菌的数量变化,而非观察菌液浑浊度,克服了现有技术中存在的比浊法耗时较长的问题。
本发明把观察对象从菌液的浑浊度变为细菌的个数,将细菌耐药性检测时间缩短到30 min-2 h,且拥有微流控芯片高通量、微样本的特点,减少了时间成本,节省了样品,提高了效率。
本发明通过配合显微镜等成像装置对细菌计数,在短时间内绘制细菌生长曲线,具有高通量、高精度、低成本、低消耗、检测快等优点。可解决目前临床耐药检测周期长、自动化程度低、劳动强度大、易受人为因素干扰等问题,适合广泛应用于医院临床实验室细菌耐药高效检测、耐药机制探究、耐药细菌流行传播防控等领域。
附图说明
图1是本发明微流控芯片构造图;图中:1、芯片流道层;2、封片盖子;3、注菌孔;4、注菌通道;5、反应区;6、注药通道;7、注药孔;
图2是本发明微流控芯片的直角弯道弧形结构及其流型特点图;
图3是0时刻显微镜明场下采集的细菌图像;
图4是30 min后图3对应的细菌图像。
具体实施方式
一种用于耐药性快速检测的微流控芯片,所述微流控芯片上微结构由注药区、注菌区、反应区构成,其中:注药区由16个独立的通道构成,所述注药区呈阵列式排列,每个注药通道均可单独使用;
所述注菌区由同一个注菌孔注入菌液,由多次分流一次性注入16个注菌通道;
所述16个独立注药通道和一次注入的注菌通道可以对换使用,即一次性注入16种细菌和一种药物,即所述微流控芯片可实现一菌多药和一药多菌检测;
所述反应区是药物和菌液相遇并发生反应的区域,反应区也是后期细菌数量的观察监测区。
所述注菌通道分流弯道采用平滑弧直角弯道,与直角弯道相比减少迪安流和乱流,确保流路畅通性和可控性。
微流控芯片中弯道设计管道内流体流形comsol模拟图如图2所示。图中(红色)箭头是与图例对应的速度大小和方向,彩色线代表等值线。在相同入口(3000 mmHg)和出口(760 mmHg)压强下,圆角流道中流体的速度远远大于直角流道中流体的速度,流体稳定性也优于直角流道。
所述微流控芯片的制备方案一,以聚二甲基硅氧烷(PDMS)和玻璃为基材,包括下述步骤:
(1)用SU-8光刻法刻蚀出含上述微流控芯片微结构的母板;
(2)配制聚二甲基硅氧烷混合溶液:将聚二甲基硅氧烷与固化剂以10:1的质量比例混合,通过搅拌使其充分混合,置于真空干燥箱中通过抽真空除去混合溶液中的气泡;
(3)将聚二甲基硅氧烷混合溶液倒在准备好的母板上,再次置于真空干燥箱中抽出气泡后放入60 ℃干燥箱中至少4 h使其完全固化,固化后取出后打孔备用;
(4)芯片键合,将固化后的准备好的PDMS微结构层与玻璃片分别置于等离子清洗仪中,起辉后处理20 s,处理后1分钟内将PDMS层与玻璃片迅速贴合,并置于60 ℃干燥箱中加热10分钟,使键合更充分。
所述微流控芯片的制备方案二,采用成本低廉的PC作为基材,包括下述步骤:
(1)选用耐低温(-100 ℃)、高温(130 ℃)的无色透明PC满足耐药性检测芯片的实验需求;
(2)用精雕机加工微流控芯片微结构,用0.2 mm超细微粒钨钢铣刀雕刻而成。
所述微流控芯片反应区,药物采用冻干预置的方法植入反应区。液相注入后冻干粘附于反应区底部,冻干温度在-40~-60 ℃。所述芯片中药物预置,药物遵循临床实验室标准化委员会(CLSI)制定的抗菌药物选择原则。
所述的微流控芯片,与显微镜配合使用,用于细菌耐药检测,可直接监测细菌的数量变化,而非观察菌液浑浊度。
所述的微流控芯片,用于细菌耐药检测,所需时间短,大约只需30 min-2 h即可判断细菌对抗生素的耐药特性。
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述。
实施例1
(一)一种细菌耐药性快速检测的微流控芯片。
所述微流控芯片包括芯片流道层和封片盖子;所述芯片流道层上包括注菌区、注药区和反应区;其中微流控芯片包含16个相互独立的微米尺度反应孔,所述反应孔排成一列形成反应区,每个反应孔两侧分别连接注菌通道和注药通道。注菌通道由多次分流分别到达16个反应孔,16个注药通道相互独立,因此本芯片可同时支持同种细菌对16种不同药物,或同种药物对16种细菌的抑制性检测(参见图1)。
该微流控芯片放置于显微镜下,调整放大倍数和焦距即可观察细菌数量,每隔5-10 min计数一次细菌数量的变化,绘制出30 min-2 h内细菌数量的变化曲线,即可获得细菌对相应药物的耐药特性。因此,该微流控芯片是一种可快速检测细菌耐药特性的芯片。
(二)抗生素预置。
本发明按照不同细菌的耐药检测需求,使用显微注射微泵将配置好的抗生素通过注药孔注入芯片,准确控制注入量,使抗生素完全进入反应区;使用冷冻干燥器冻干芯片,使抗生素预置在芯片反应区内,真空包装备用。使用时仅需注入菌液,使菌液到达反应区与药物接触,根据菌种需求在适宜环境培养30 min-2 h。
以大肠埃希菌耐药性检测芯片为例,参考CLSI抗菌药物选择原则,选用如下抗生素及对应浓度:氨苄西林 32 μg/ml、头孢唑啉 8 μg/ml、庆大霉素 16 μg/ml、阿米卡星 64μg/ml、环丙沙星 4 μg/ml、左氧氟沙星 8μg/ml、头孢曲松 64 μg/ml、头孢吡肟 16μg/ml、哌拉西林 128 μg/ml、厄他培南 8 μg/ml、亚胺培南 4μg/ml、头孢呋辛 32 μg/ml、氨曲南64 μg/ml、头孢他啶 16μg/ml、复方磺胺甲噁唑 16 μg/ml。
(三)一种细菌耐药性快速检测微流控芯片的制备方法一。
微流控芯片的基材选用聚二甲基硅氧烷(PDMS)和玻璃的杂化材料;
用SU-8光刻法刻蚀出含上述微流控芯片微结构的母板;配制聚二甲基硅氧烷混合溶液:将聚二甲基硅氧烷与固化剂以10:1的质量比例混合,通过搅拌使其充分混合,置于真空干燥箱中通过抽真空除去混合溶液中的气泡;将聚二甲基硅氧烷混合溶液倒在准备好的母板上,再次置于真空干燥箱中抽出气泡后放入60 ℃干燥箱中至少4 h使其完全固化,固化后取出后打孔备用;
微流控芯片键合,将固化后的准备好的PDMS微结构层与玻璃片分别置于等离子清洗仪中,起辉后处理20 s,处理后1分钟内将PDMS层与玻璃片迅速贴合,并置于60 ℃干燥箱中加热10分钟,使键合更充分。
(四)一种细菌耐药性快速检测微流控芯片的制备方法二。
本发明用于快速检测细菌耐药性微流控芯片的制备方法,包括下述步骤:
微流控芯片的基材选用无色透明PC,成本低廉,耐高、低温性能良好,透光性好。
采用精雕机0.2 mm刀片,9000 r/min转速雕刻而成。
盖子采用≤1 mm厚度的PC,满足显微镜物镜景深要求。
采用真空热压机,真空热压键合芯片,微流控芯片中形成闭合的流道。
(五)基于细菌耐药性快速检测微流控芯片的细菌耐药性检测试验。
收集临床细菌标本,使用肉汤培养基进行培养;稀释待测细菌标本使其浓度为1×104个/ml,使用微量移液器将其注入微流控芯片中,并进入反应区;将芯片放置在微流控检测平台上,打开温控系统,使芯片温度维持在37℃,满足细菌生长需求;打开图像采集系统,对反应区进行自动扫码,采集细菌生长状态图片,按照程序设定,每10分钟进行一次图像采集,总时间长2小时;通过图像自动识别,鉴别并自动计数细菌个数;以时间为横坐标,以细菌个数为纵坐标,绘制细菌生长曲线,自动分析细菌耐药性。
需要说明的是,以上所述的实施方案应理解为说明性的,而非限制本发明的保护范围,本发明的保护范围以权利要求书为准。对于本领域技术人员而言,在不背离本发明实质和范围的前提下,对本发明作出的一些非本质的改进和调整仍属于本发明的保护范围。

Claims (9)

1.用于单细胞识别的细菌耐药性快速检测微流控芯片,其特征在于:所述微流控芯片上的微结构包括注菌区(3)、注药区(7)和反应区(5);
所述反应区(5)包含相互独立且成一列排布的若干个微米尺度的反应孔,每个反应孔两侧分别连接注菌通道(4)和注药通道(6);
所述注药区(7)包含若干个与所述反应孔一一对应的注药孔,所述注药孔的个数与反应孔的个数相同,所述注药孔之间相互独立且成一列排布,所述注药孔与反应孔通过所述注药通道(6)连通;
所述注菌区(3)包含一个注菌孔,所述注菌孔中的菌液通过注菌通道(4)经多级分流一次性分别注入所有反应孔中。
2.根据权利要求1所述的微流控芯片,其特征在于:所述反应孔和注药孔的个数均为16个;所述注菌孔中的菌液通过注菌通道(4)经四级分流一次性分别注入到16个所述反应孔中。
3.根据权利要求1或2所述的微流控芯片,其特征在于:所述注菌通道(4)包含多级分流弯道,所述分流弯道采用平滑弧直角弯道。
4.根据权利要求1所述的微流控芯片,其特征在于:所述微流控芯片的基材选用聚二甲基硅氧烷和玻璃的杂化材料,采用等离子键合法制得;具体制备包括以下步骤:
(1)用SU-8光刻法刻蚀出含微流控芯片微结构的母板;
(2)配制聚二甲基硅氧烷混合溶液:将聚二甲基硅氧烷与固化剂以10:1的质量比例混合,通过搅拌使其充分混合,置于真空干燥箱中通过抽真空除去混合溶液中的气泡;
(3)将聚二甲基硅氧烷混合溶液倒在准备好的母板上,再次置于真空干燥箱中抽出气泡后放入60 ℃干燥箱中至少4 h使其完全固化,固化后取出后打孔,形成PDMS微结构层,备用;
(4)芯片键合,将固化后的准备好的PDMS微结构层与玻璃片分别置于等离子清洗仪中,起辉后处理20 s,处理后1分钟内将PDMS微结构层与玻璃片迅速贴合,并置于60 ℃干燥箱中加热10分钟,使键合更充分。
5.根据权利要求1所述的微流控芯片,其特征在于:所述微流控芯片的基材选用PC,采用真空热压法健合封片制得;具体制备包括以下步骤:
(1)选用满足耐药性检测芯片的实验需求的耐低温、高温的无色透明PC;
(2)用精雕机加工微流控芯片微结构,用0.2 mm超细微粒钨钢铣刀雕刻而成。
6.根据权利要求1所述的微流控芯片,其特征在于:所述微流控芯片中药物预置,即将药物采用冻干预置的方法植入反应区,具体操作为:将药物分别通过注药孔注入后进入反应区并冻干粘附于反应孔底部,冻干温度在-40~-60 ℃。
7.利用权利要求1所述的微流控芯片进行细菌耐药性检测的方法,其特征在于:包括以下步骤:
步骤一、根据细菌的耐药检测需求,使用显微注射微泵将配置好的药物通过注药孔注入微流控芯片,准确控制注入量,使药物完全进入反应区;使用冷冻干燥器冻干微流控芯片,使药物预置在反应区内,真空包装备用;
步骤二、稀释待测细菌使其浓度为1×104个/ml,使用微量移液器将其注入微流控芯片中,并进入反应区与药物接触;
步骤三、将微流控芯片置于显微镜下,每隔5-10 min采集反应区内的细菌生长状态图片并计数细菌个数,根据菌种需求在适宜环境培养并追踪采集30 min-2 h;以时间为横坐标,以细菌个数为纵坐标,绘制30 min-2 h内细菌数量的变化曲线,分析细菌耐药性。
8.根据权利要求7所述的方法,其特征在于:所述细菌为大肠埃希菌,选用的药物及其对应浓度分别为:氨苄西林32 μg/ml、头孢唑啉 8 μg/ml、庆大霉素16 μg/ml、阿米卡星64μg/ml、环丙沙星4 μg/ml、左氧氟沙星8μg/ml、头孢曲松64 μg/ml、头孢吡肟16μg/ml、哌拉西林128 μg/ml、厄他培南8 μg/ml、亚胺培南4μg/ml、头孢呋辛32 μg/ml、氨曲南64 μg/ml、头孢他啶16μg/ml、复方磺胺甲噁唑16 μg/ml。
9.根据权利要求1所述的微流控芯片在细菌耐药性检测中的应用。
CN202111561549.4A 2021-12-20 2021-12-20 用于单细胞识别的细菌耐药性快速检测微流控芯片、制备及应用 Withdrawn CN114196520A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111561549.4A CN114196520A (zh) 2021-12-20 2021-12-20 用于单细胞识别的细菌耐药性快速检测微流控芯片、制备及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111561549.4A CN114196520A (zh) 2021-12-20 2021-12-20 用于单细胞识别的细菌耐药性快速检测微流控芯片、制备及应用

Publications (1)

Publication Number Publication Date
CN114196520A true CN114196520A (zh) 2022-03-18

Family

ID=80655360

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111561549.4A Withdrawn CN114196520A (zh) 2021-12-20 2021-12-20 用于单细胞识别的细菌耐药性快速检测微流控芯片、制备及应用

Country Status (1)

Country Link
CN (1) CN114196520A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114563259A (zh) * 2022-04-29 2022-05-31 北京大学 一种基于微流控芯片制备时间分辨冷冻电镜样品的方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114563259A (zh) * 2022-04-29 2022-05-31 北京大学 一种基于微流控芯片制备时间分辨冷冻电镜样品的方法及装置
CN114563259B (zh) * 2022-04-29 2022-07-26 北京大学 一种基于微流控芯片制备时间分辨冷冻电镜样品的方法及装置

Similar Documents

Publication Publication Date Title
US9915813B2 (en) System and method for time-related microscopy of biological organisms
CN106238112B (zh) 一种微流控芯片及其在病原体的鉴定与药敏实验中的应用
US9399788B2 (en) Method for inspecting susceptibility of bacteria or fungi to antimicrobial drug and system for use in the same
JP6722657B2 (ja) 試料の分割及び分析のためのデバイス及び方法
JP2005502378A (ja) 微生物個別細胞培養物の培養方法及び解析方法
KR20020034171A (ko) 미생물의 검출, 정량 및 특징화를 위한 장치 및 방법
CN105209595A (zh) 微流体多孔型细胞培养测试装置
EP2158310A1 (en) Optical method and device for detection and enumeration of microorganisms
US20070065894A1 (en) Method for quantification of biological material in a sample
KR101903642B1 (ko) 락트산 세균용 배양 장치
CN114196520A (zh) 用于单细胞识别的细菌耐药性快速检测微流控芯片、制备及应用
US20220042066A1 (en) Systems and methods for microcolony growth and microbial cell characterization
US20240035974A1 (en) Method and apparatus for rapid detection of bacterial contamination
CN109385381B (zh) 一种泌尿生殖道支原体双相培养基
US20110143390A1 (en) Method for testing drug sensitivity and device used therefor
Xiao-Xia et al. Rapid identification of multiple bacteria on a microfluidic chip
US20030124643A1 (en) Method and kit forrapid concurrent identification and antimicrobial susceptibility testing of microorganisms from broth culture
Scarparo et al. Evaluation of the DipStreak, a new device with an original streaking mechanism for detection, counting, and presumptive identification of urinary tract pathogens
CN115178309A (zh) 阵列式微流体芯片及抗生素感受性测试的操作方法
CN115505517A (zh) 细菌耐药性mic值检测专用微流控芯片、制备及其应用
CN219507891U (zh) 细菌抗菌药物敏感性检测的微孔板
CN100430486C (zh) 微生物易感性的快速测定
CN115406873B (zh) 一种利用微流控芯片定量检测微生物死活的方法
CN116355734A (zh) 一种低剪切力微流控芯片及其制备方法与应用
EP1594881A1 (en) Concurrent microorganism identification and susceptibilities from broth

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20220318