CN114181964B - Expression cassette combination, recombinant vector, recombinant saccharomyces cerevisiae and application of recombinant saccharomyces cerevisiae - Google Patents

Expression cassette combination, recombinant vector, recombinant saccharomyces cerevisiae and application of recombinant saccharomyces cerevisiae Download PDF

Info

Publication number
CN114181964B
CN114181964B CN202111289345.XA CN202111289345A CN114181964B CN 114181964 B CN114181964 B CN 114181964B CN 202111289345 A CN202111289345 A CN 202111289345A CN 114181964 B CN114181964 B CN 114181964B
Authority
CN
China
Prior art keywords
expression cassette
santalene
recombinant
saccharomyces cerevisiae
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111289345.XA
Other languages
Chinese (zh)
Other versions
CN114181964A (en
Inventor
文孟良
王雨辰
韩秀林
巩效伟
赵江源
李铭刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan University YNU
Original Assignee
Yunnan University YNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan University YNU filed Critical Yunnan University YNU
Priority to CN202111289345.XA priority Critical patent/CN114181964B/en
Publication of CN114181964A publication Critical patent/CN114181964A/en
Application granted granted Critical
Publication of CN114181964B publication Critical patent/CN114181964B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0036Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6)
    • C12N9/0038Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6) with a heme protein as acceptor (1.6.2)
    • C12N9/0042NADPH-cytochrome P450 reductase (1.6.2.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P15/00Preparation of compounds containing at least three condensed carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y106/00Oxidoreductases acting on NADH or NADPH (1.6)
    • C12Y106/02Oxidoreductases acting on NADH or NADPH (1.6) with a heme protein as acceptor (1.6.2)
    • C12Y106/02004NADPH-hemoprotein reductase (1.6.2.4), i.e. NADP-cytochrome P450-reductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/03Phosphoric monoester hydrolases (3.1.3)
    • C12Y301/03047[Hydroxymethylglutaryl-CoA reductase (NADPH)]-phosphatase (3.1.3.47)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • C12Y402/03082Alpha-santalene synthase (4.2.3.82)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • C12Y402/03083Beta-santalene synthase (4.2.3.83)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

The invention provides an expression cassette combination, a recombinant vector, a recombinant saccharomyces cerevisiae and application thereof, belonging to the technical field of bioengineering; the recombinant saccharomyces cerevisiae constructed based on the expression cassette combination can synthesize santalene and santalene, and the product of the engineering strain of the saccharomyces cerevisiae for producing santalene contains 1 alpha-santalene, 2 alpha-bergamotene, 3 epi-beta-santalene and 4 beta-santalene; the engineering strain products of the saccharomyces cerevisiae for producing the santalol comprise 1 alpha-santalol, 2 alpha-bergamotene, 3 epi-beta-santalol, 4 beta-santalol, 5 (Z) -alpha-santalol, 6 (Z) -alpha-bergamotol and 7 (Z) -beta-santalol.

Description

Expression cassette combination, recombinant vector, recombinant saccharomyces cerevisiae and application of recombinant saccharomyces cerevisiae
Technical Field
The invention relates to the technical field of bioengineering, in particular to an expression cassette combination, a recombinant vector, a recombinant saccharomyces cerevisiae and application thereof.
Background
Sesquiterpene santalene and santalol derived from Santalum album are main components of sandalwood essential oil, and have important application value. However, due to the severe growth conditions, long growth period, low essential oil content and vigorous market demand of the sandalwood, the sandalwood is excessively harvested, the yield of the sandalwood essential oil is low, and the price is increased. If the microbial cell factory is adopted to carry out heterologous biosynthesis on the santalene and the santalol, the efficiency can be improved, the cost can be reduced, the natural condition limitation can be broken, and the contradiction between supply and demand of the santalol essential oil can be effectively relieved.
The biosynthesis route of santalene and santalol is as follows: firstly, alpha-/beta-santalene in the album is subjected to MVA (mechanical vapor deposition) to obtain FPP, then the FPP is cyclized by SaSS enzyme and subjected to multiple reactions to synthesize alpha-, beta-and epi-beta-santalene, and finally, C12 is hydroxylated to form santalol under the cooperation of CYP450 and NADPH dependent Cytochrome P450 Reductase (CPR). Therefore, FPP is used as a general substrate for synthesizing sesquiterpenes such as santalene and other terpenes (C is more than or equal to 15), the yield of the FPP directly influences the yield of target terpenes, and due to the fact that the prior art lacks sufficient enzyme kinetic information for various enzymes in the MVA pathway of a host, and the factors influencing the flux of metabolic substances of the host are complex and various, a high-efficiency and general system for producing santalene and santalene is not constructed yet.
Disclosure of Invention
In view of the above, the present invention aims to provide an expression cassette combination, a recombinant vector, a recombinant saccharomyces cerevisiae and applications thereof.
The invention provides an expression cassette combination, which is sequentially connected with the following components from 5 'to 3': mva + EGFP expression cassette and SaSS-delta expression cassette; the nucleotide sequence of the mva + EGFP expression cassette is shown in SEQ ID NO:2 is shown in the figure; the nucleotide sequence of the SaSS-delta expression cassette is shown as SEQ ID NO: 3.
Preferably, an erg20 expression cassette is also linked between the mva + EGFP expression cassette and the SaSS-delta expression cassette; the nucleotide sequence of the erg20 expression cassette is shown in SEQ ID NO: 4.
Preferably, after the SaSS-delta expression cassette, a P76F39V 1-delta expression cassette is also ligated; the nucleotide sequence of the P76F39V 1-delta expression cassette is shown in SEQ ID NO: shown at 5.
Preferably, a screening gene expression cassette is also linked before the mva + EGFP expression cassette; the screening gene expression cassette comprises a delta first half-URA 3 expression cassette; the nucleotide sequence of the delta first half-URA 3 expression cassette is shown in SEQ ID NO: 1.
The invention also provides a recombinant vector which comprises the expression cassette combination according to the scheme.
The invention also provides a recombinant saccharomyces cerevisiae, wherein the genome of the saccharomyces cerevisiae is used as a vector, and the expression cassette combination in the scheme is inserted.
Preferably, the genome of the recombinant saccharomyces cerevisiae is also inserted with a fusion gene comprising CYP736A167 and CPR genes; the nucleotide sequence of CYP736A167 is shown in SEQ ID NO:6 is shown in the figure; the CPR gene comprises Sa-CPR2 or 46tATR1; the nucleotide sequence of the Sa-CPR2 is shown as SEQ ID NO: shown in figure 7; the nucleotide sequence of the 46tATR1 is shown as SEQ ID NO: shown at 8.
Preferably, the 5' end of the ERG9 gene of the recombinant Saccharomyces cerevisiae is also inserted with P HXT1 Promoters or P ERG1 A promoter; the P is HXT1 The nucleotide sequence of the promoter is shown in SEQ ID NO: shown as 9; the P is ERG1 The nucleotide sequence of the promoter is shown in SEQ ID NO: shown at 10.
The invention also provides an expression cassette combination, the recombinant vector or the application of the recombinant saccharomyces cerevisiae in preparation of santalene and/or santalene.
The invention provides an expression cassette combination, which is sequentially connected with the following components from 5 'to 3': mva + EGFP expression cassette and SaSS-delta expression cassette. In the invention, the mva + EGFP expression cassette is obtained by sequentially connecting an ADH1 promoter, mva + EGFP fusion gene and NOS terminator; the SaSS-delta expression cassette is obtained by sequentially connecting a GAP promoter, a SaSS gene, a CYC1 terminator and a delta latter half sequence. In the invention, the delta sequence is derived from saccharomyces cerevisiae, is divided into two halves and is respectively connected to two ends of a constructed metabolic pathway, and is recombined at a saccharomyces cerevisiae delta site as a homologous arm; the mva Gene is a hydroxymethylglutaryl-CoA reductase (3-hydroxy-3-methylglutaryl-CoA reductase mva, NCBI Gene No CP 009361) Gene, and is derived from staphylococcus aureus (Staphylococcus aureus ATCC 25923), the mva Gene can increase the supply of substrate FPP, and promote the improvement of the yield of santalene, and the EGFP Gene is a green fluorescent protein Gene, so that the screening of high-expression recombinant strains is facilitated; the SaSS gene in the SaSS-delta expression cassette is a santalene synthase gene, is derived from S.album and is subjected to yeast codon optimization; the promoter and the terminator used in the expression cassette are both derived from a saccharomyces cerevisiae constitutive promoter, and can stably and efficiently promote gene expression in saccharomyces cerevisiae. The recombinant saccharomyces cerevisiae constructed based on the expression cassette combination can synthesize santalene and santalene, and the product of the engineering strain of the saccharomyces cerevisiae for producing santalene contains 1 alpha-santalene, 2 alpha-bergamotene, 3 epi-beta-santalene and 4 beta-santalene; the engineering strain products of the saccharomyces cerevisiae for producing the santalol comprise 1 alpha-santalol, 2 alpha-bergamotene, 3 epi-beta-santalol, 4 beta-santalol, 5 (Z) -alpha-santalol, 6 (Z) -alpha-bergamotol and 7 (Z) -beta-santalol.
Drawings
FIG. 1 is a schematic diagram of a delta-URA 3 expression cassette;
FIG. 2 is a schematic diagram of a mva + EGFP expression cassette structure;
FIG. 3 is a schematic diagram of the structure of an erg20 box expression cassette;
FIG. 4 is a schematic diagram of the structure of a SaSS-delta box expression cassette;
FIG. 5 shows the biosynthetic pathways of santalene and santalol; wherein AACT (ERG 10) is acetoacetyl-CoA thiolase; HMGS (ERG 13) 3-hydroxy-3-methylglutaryl-CoA synthase e; HMGR 3-hydroxy-3-methylglutaryl-CoA reductase; MK (ERG 12) mevalonate kinase; MPK (ERG 8) mevalonate-5-phosphate kinase; MVD (ERG 19) mevalonate diphosphate decarboxylase; IDI is isopentenyl diphosphate isomerase; GPPS, geranyl diphosphate synthase; FPPS (ERG 20) farnesyl diphosphate synthase; saSS, santalene synthase; CYP76/CPR2 S.album cytochrome P450/S.album cytochrome P450 reductase; HMG-CoA 3-hydroxy-3-methylglutaryl-CoA; MVA, mevalonic acid; MVP, mevalonate phosphate; MVPP mevalonate-5-phosphate; IPP is isopentenyl diphosphate; DMAPP, dimethyl allyl diphosphate; GPP geranyl diphosphate; FPP, farnesyl diphosphate;
FIG. 6 is a schematic diagram of the synthesis of santalene and santalol of example 1;
FIG. 7 shows 3 synthetic pathways for santalene production;
FIG. 8 is 7P 450/CPR combinations of transformed santalene engineered strains;
FIG. 9 is a graph of squalene down-regulation patterns;
FIG. 10 is a mass spectrum of α -santalene;
FIG. 11 is a mass spectrum of α -bergamotene;
FIG. 12 is a mass spectrum of epi- β -santalene;
FIG. 13 is a mass spectrum of β -santalene;
FIG. 14 is a mass spectrum of (Z) - α -santalol;
FIG. 15 is a mass spectrum of (Z) - α -bergamotol;
FIG. 16 is a mass spectrum of (Z) - β -santalol.
Detailed Description
The invention provides an expression cassette combination, which is sequentially connected with the following components from 5 'to 3': mva + EGFP expression cassette and SaSS-delta expression cassette; the nucleotide sequence of the mva + EGFP expression cassette is shown in SEQ ID NO: 2.
In the invention, the mva + EGFP expression cassette is obtained by sequentially connecting an ADH1 promoter, mva, EGFP and NOS terminator box, and the total length is 2956bp; the ADH1 promoter, mva, EGFP and NOS terminator box are 705bp, 1281bp, 720bp and 253bp in sequence. The construction method of the mva +EGFP expression cassette is not particularly limited, and conventional methods in the art can be adopted. In the present invention, the mva Gene is a hydroxymethylglutaryl-CoA reductase (3-hydroxy-3-methylglutaryl-CoA reductase mva, NCBI Gene No CP 009361) Gene derived from Staphylococcus aureus (Staphylococcus aureus ATCC 25923); the mva gene can increase the supply of substrate FPP and promote the increase of the yield of santalene.
In the invention, the nucleotide sequence of the SaSS-delta expression cassette is shown as SEQ ID NO: 3. In the invention, the SaSS-delta expression cassette is obtained by sequentially connecting a GAP promoter, a SaSS, a CYC1 terminator and a delta latter half, and the total length is 2850bp; the sequence lengths of the GAP promoter, the SaSS, the CYC1 terminator and the delta backup are respectively as follows: 644bp, 1710bp, 248bp and 248bp. The construction method of the SaSS-delta expression cassette is not particularly limited, and conventional methods in the art can be adopted. In the invention, the SaSS gene in the SaSS-delta expression cassette is a santalene synthase gene, is derived from S.album and is subjected to Saccharomyces cerevisiae type codon optimization. In the invention is particularly practicalIn the application process, the SaSS gene is synthesized by Nanjing Jinsri biotechnology Co., ltd,
Figure BDA0003334375140000031
GenBank: HQ 343276), the synthesized gene was ligated to vectors pUC57 and pPIC9K, and amplified again when used.
In the invention, an erg20 expression cassette is also connected between the mva + EGFP expression cassette and the SaSS-delta expression cassette; the nucleotide sequence of the erg20 expression cassette is shown in SEQ ID NO: 4. In the invention, the erg20 expression cassette is preferably obtained by sequentially connecting a TEF promoter, erg20 and a TEF terminator, and the total length of the erg20 expression cassette is 1601bp; the sequence lengths of the TEF promoter, erg20 and TEF terminator box are 344bp, 1059bp and 198bp respectively. In the invention, the erg20 gene (2E, 6E) -farnesyl diphosphate synthase/dimethylallyl transferase is amplified from S.cerevisiae BY4742 genome as a template; the erg20 gene functions to further increase the supply of substrate FPP.
In the present invention, after the SaSS-delta expression cassette, a P76F39V 1-delta expression cassette is also ligated; the P76F39V 1-delta expression cassette is preferably obtained by sequentially connecting an ADH2 promoter, a CYP76F39V1 gene, an ADH2 terminator and delta, and the total length is 2467bp; the sequence lengths of the ADH2 promoter, the CYP76F39v1, the ADH2 terminator and the delta second half are 569bp, 1530bp, 120bp and 248bp respectively. In the invention, the CYP76F39v1 gene is derived from Santalum album, and is synthesized by Nanjing Jinsri biotechnology Co., ltd after Saccharomyces cerevisiae type codon optimization,
Figure BDA0003334375140000041
GenBank: KC 533716), the target gene TA is cloned in pUC57 vector, in order to verify whether CPR homologous to Saccharomyces cerevisiae can be matched to form a complete electron transfer system in the presence of CYP76F39v1 alone. In the invention, the nucleotide sequence of the P76F39V 1-delta expression cassette is shown in SEQ ID NO: shown at 5.
In the invention, the P76F39V 1-delta expression cassette is obtained by sequentially connecting an ADH2 promoter, CYP76F39V1, an ADH2 terminator and a delta latter half, and the total length is 2467bp; the ADH2 promoter, the Sa-CYP76F39v1, the ADH2 terminator and the delta second half have lengths of 569bp, 1530bp, 120bp and 248bp respectively.
In the present invention, the two wings of the expression cassette combination contain SmaI cleavage sites. In the invention, the two wings of the SaSS-delta expression cassette contain SacI and XbaI enzyme cutting sites, and all the 3 sites can be cut by T+BSABuffer.
In the invention, a screening gene expression cassette is also connected before the mva + EGFP expression cassette; the screening gene expression cassette comprises a delta first half-URA 3 expression cassette; the nucleotide sequence of the delta first half-URA 3 expression cassette is shown in SEQ ID NO: 1.
The invention also provides a recombinant vector which comprises the expression cassette combination according to the scheme. In the present invention, the original vector of the recombinant vector is preferably a pAUR112 plasmid; the pAUR112 plasmid was linearized with SmaI.
The invention also provides a recombinant saccharomyces cerevisiae, wherein the genome of the saccharomyces cerevisiae is used as a vector, and the expression cassette combination in the scheme is inserted. In the present invention, the chassis strain of the recombinant Saccharomyces cerevisiae is preferably BY4742. In the present invention, the insertion site of the expression cassette combination on the genome of the Saccharomyces cerevisiae is preferably a delta site.
In the invention, the genome of the recombinant saccharomyces cerevisiae is also inserted with a fusion gene containing CYP736A167 and CPR genes; the fusion gene can shorten the transmission distance of electrons between two enzymes, is beneficial to the electron transmission between electron transmission chains, and improves the catalytic efficiency of an oxidation-reduction system; the nucleotide sequence of CYP736A167 is shown in SEQ ID NO:6 is shown in the figure; the CPR gene comprises Sa-CPR2 or 46tATR1; the nucleotide sequence of the Sa-CPR2 is shown as SEQ ID NO: shown in figure 7; the nucleotide sequence of the 46tATR1 is shown as SEQ ID NO: shown as 8; the P is ERG1 The nucleotide sequence of (2) is shown as SEQ ID NO: shown as 9; the P is HXT1 The nucleotide sequence of (2) is shown as SEQ ID NO: shown at 10.
In the invention, the insertion site of the fusion gene on the genome of the recombinant saccharomyces cerevisiae is not particularly limited, and the fusion gene is determined according to the self-screening mark of the saccharomyces cerevisiae. In the practice of the invention, the insertion site of the fusion gene on the genome of the recombinant s.cerevisiae is preferably a leucine site, a lysine site, a histidine site or a methionine site.
In the invention, the 5' end of the ERG9 gene of the recombinant Saccharomyces cerevisiae is also inserted with P HXT1 Promoters or P ERG1 A promoter. The 2 promoter sequences are respectively shown in SEQ ID NO:9 and SEQ ID NO:10, wherein the promoter is specifically inserted into the 5' end of the ERG9 gene of the recombinant saccharomyces cerevisiae; the 2 promoters are inducible and feedback inhibition promoters, which are beneficial to the directional flow of the intermediate metabolic flow towards the target compound santalene. The 2 promoters are weak promoters, and can be replaced by other inducible or constitutive weak promoters, so long as ERG9 expression intensity can be down-regulated, but the patent is preferentially P HXT1 Promoters or P ERG1 A promoter.
The invention also provides an expression cassette combination, the recombinant vector, the recombinant strain or the application of the recombinant saccharomyces cerevisiae in preparation of santalene and/or santalene alcohol.
In the present invention, the santalene preferably includes: α -santalene (α -santalene), α -bergamotene (α -bergamotene), epi- β -santalene (epi- β -santalene), and β -santalene (β -santalene), the santalol comprising: (Z) - α -santalol, (Z) - α -bergamotol, (Z) - β -santalol (7 (Z) - β -santalol); the chemical structural formulas of the alpha-santalene, the alpha-bergamotene, the epi-beta-santalene, the (Z) -alpha-santalol, the (Z) -alpha-bergamotene and the (Z) -beta-santalol are respectively shown in the formulas I-VII;
Figure BDA0003334375140000051
in the present invention, the method for synthesizing santalene and/or santalene preferably comprises: the recombinant saccharomyces cerevisiae takes a simple carbon source as a substrate, and is fermented to synthesize alpha-santalene, alpha-bergamotene, epi-beta-santalene, (Z) -alpha-bergamotene and (Z) -beta-santalene; the process of synthesizing the target product without adding any inducer in the fermentation process; the simple carbon source is preferably glucose and/or sucrose.
In the present invention, the method for synthesizing santalene and/or santalene preferably comprises the steps of: inoculating the recombinant saccharomyces cerevisiae into a fermentation culture medium for culture to obtain a culture product containing santalene and/or santalene; the fermentation medium preferably includes YPD (yeast extract peptone glucose medium) or SD medium (yeast basal medium); the temperature of the culture is preferably 28 ℃; the rotational speed of the culture is preferably 180rpm; the pH value of the fermentation medium is preferably 4-6; the time of the culture is preferably 48 to 168 hours.
The technical scheme of the invention can realize the good connection between the rapid growth of cells in the exponential phase and the rapid accumulation of secondary products in the platform phase, avoids using inducers and repressing factors, and has better economy and simplicity. The invention constructs the whole biosynthesis path of Santalens/Santalols and derivatives thereof in S.cerevisiae, and lays a foundation for subsequent excellent production research.
The technical solutions of the present invention will be clearly and completely described in the following in connection with the embodiments of the present invention.
English abbreviation and key term definition
Figure BDA0003334375140000061
Figure BDA0003334375140000071
The santalene and santalol biosynthetic pathways are shown in figure 5. In the embodiment of the invention, saSS, HMGS (mva), FPPS, P450 and CPR are selected as optimization site genes to construct an over-expression path.
Example 1: method for constructing santalene synthesis path
The schematic diagram of the synthesis of santalene and santalol according to example 1 of the present invention is shown in fig. 6. The embodiment constructs the recombinant saccharomyces cerevisiae for preparing the santalene and/or the santalene, and over-expresses several key genes such as mva, erg20, saSS and the like in a saccharomyces cerevisiae genome to promote accumulation of intermediate products FPP and promote efficient synthesis of the santalene; in addition, the enzyme is optimized and combined and screened in the key step of santalol preparation by santalone oxidation, and the screened fusion enzyme of CYP736A167-CPR2 and CYP736A167-46tATR1 can effectively oxidize santalone to obtain santalol.
Before metabolic pathway construction, small boxes and elements are obtained first, the first round of connection is completed, and the main method is completed by adopting an overlap PCR method.
Delta+ura 3 expression cassette: amplifying the delta front half and then ligating with URA3 gene, wherein the delta front half is connected with URA3 by overlapping PCR, and the URA3 box comprises delta front half +P URA3 +URA3+T AOX1 (252bp+216 bp+804bp+247 bp=1519 bp), the nucleotide sequence is shown in SEQ ID NO:1, P URA3 +URA3 amplified from pRS406, T AOX1 The structure of the amplified pPIC9K is shown in FIG. 1.
mva + EGFP expression cassette: ADH1 promoter + mva +EGFP +NOS terminator expression cassette (705bp+1281bp+720 bp+253bp=2956 bp), nucleotide sequence as shown in SEQ ID NO: 2. A315_pADH1_AD plasmid was selected, which contained the promoter P derived from the S.cerevisiae alcohol dehydrogenase 1 gene ADH1 The method comprises the steps of carrying out a first treatment on the surface of the Selecting pEGFP-N2 plasmid to amplify green fluorescent protein EGFP gene; selection of pGUS plasmid clone T NOS Element, P was obtained by overlap PCR amplification ADH1 --mva--EGFP--T NOS An expression cassette. The P is obtained by inquiring from the 315_pADH1_AD plasmid sequence ADH1 Element sequence, on the basis of which primers are designed to be first ligated to P ADH1 When the gene element mva and EGFP are connected into fusion expression protein, mva gene stop codon is removed to ensure protein readthrough, and the structure schematic diagram is shown in figure 2.
Construction of ERG20 expression cassette: TEF promoter+erg20+tef terminator expression cassette (344bp+1059 bp+198bp=1601 bp), nucleotide sequence as set forth in SEQ ID NO: 4. Respectively amplifying P TEF1 、ERG20(Accession No:NM_001181600)、T TEF1 The sequence is purified to obtain each fragment, and the overlapping PCR technology is adopted to obtain P TEF1 ERG20 is mixed as a template FastPfu DNA Polymerase for amplification connection, and the fragment is recovered and then is connected with T TEF1 After mixing, PCR ligation was performed, and the bands were recovered and ligated
Figure BDA0003334375140000072
T1 Simple Cloning Vector (TransGen Biotech), the schematic structure is shown in FIG. 3.
Construction of the SaSS-delta expression cassette: GAP promoter +SaSS +CYC1 terminator +delta latter half (644bp+1710bp+248 bp+248 bp=2850 bp), the nucleotide sequence is shown in SEQ ID NO: 3. Amplification of P426GPD vector P Using FastPfu DNA Polymerase GAP And T CYC1 The single band can be obtained by recycling the sequence and each fragment of the SaSS sequence, P TDH3 Overlap PCR with SaSS and then with T CYC1 The sequences were subjected to overlapping PCR ligation. Construction of SaSS expression cassette ligation and ligation
Figure BDA0003334375140000082
-T1 Simple Cloning Vector sequencing verification, schematic structure shown in fig. 4.
Construction of the P76F39V 1-delta expression cassette: ADH2 promoter+CYP 76F39V1+ADH2 terminator+delta latter half (569bp+1530bp+120bp+248 bp=2467 bp), nucleotide sequence as shown in SEQ ID NO: shown at 5. P amplification Using overlap PCR technique FastPfu DNA Polymerase, respectively ADH2 CYP76F39V1 and T ADH2 Fragments after delta, and purifying to obtain each fragment, and obtaining P ADH2 Mixing CYP76F39V1 as a template for amplification connection, and recovering fragments for later use; by T ADH2 Mixing the delta fragments as templates for amplification and connection, and recovering the fragments for later use; finally, 2 recovery fragments are mixed as templates to make overlapping PCR connection, and the mixture is connected to the mixture after the recovery of the bands
Figure BDA0003334375140000083
T1 clonotype vector (TransGen Biotech), and finally constructed to obtain P ADH2 --CYP76F39V1--T ADH2 -delta post fragment box.
Delta sequence: amplified from Saccharomyces cerevisiae BY4742, 500bp, nucleotide sequence as shown in SEQ ID NO: 11.
In view of the high-efficiency homologous recombination capability of Saccharomyces cerevisiae, a complete expression path is constructed BY using an S.cerevisiae BY4742 in vivo homologous recombination method, pAUR112 plasmids are linearized BY SmaI, amplified BY each box, glue is recovered and purified for later use, box fragments are added into 150 mu L of BY4742 competence (LiAC preparation method) and 3-4 mu L of linearized pAUR112 (the majority of fragments are added to ensure that the molar concentration of each box fragment is close), an electric rotating cup is used for 0.2cm, electric shock conversion is performed for 1.5KV for 6ms, a proper amount of YPD is used for resuscitation for 1h, water is washed for 1 time after centrifugation, the plasmid is coated on an SD-URA3 screening plate, incubation is performed for 2d at 30 ℃, and recombinant strains are screened. Thus, 3 recombinant plasmids, namely SaSS small, medium and large metabolic pathways, were obtained, and a schematic diagram of 3 synthetic pathways for producing santalene is shown in FIG. 7, and the specific connection sequence and size are as follows:
the SaSS small pathway: delta-URA 3 expression cassette-mva +EGFP expression cassette-SaSS-delta expression cassette, this pathway was ligated to pAUR112 (7325bp+7104 bp= 14429 bp), and both wings contained SmaI cleavage sites.
The route in SaSS: delta-URA 3 expression cassette-mva +EGFP expression cassette-erg 20 expression cassette-SaSS-delta expression cassette, this pathway is linked to pAUR112 (8926bp+7104 bp=16030 bp), and both wings contain SmaI cleavage sites.
The large route of SaSS: delta-URA 3 expression cassette-mva +EGFP expression cassette-erg 20 expression cassette-SaSS expression cassette-p 450-delta expression cassette, this approach was ligated to pAUR112 preformed vector (11157 bp+3505bp= 14662 bp), both wings contained SmaI cleavage sites, and both wings of SaSS expression cassette contained SacI and XbaI cleavage sites.
Example 2: method for constructing synthetic pathway of santalol
2P 450 genes CYP76F39V1 and SaCYP736A167 from S.album are selected as experimental objects, 2 Sa-CPR2 and 46tATR1 respectively from S.album and A.thiana are selected to be combined with CYP76F39V1 and SaCYP736A167 to construct a fusion P450-CPR enzyme system, wherein the combination of CYP76F39V1 and Sa-CPR2 is also used for constructing a fusion mode with or without Linker, the system verifies 2P 450 enzyme activity differences, the effect is better after which CPR combination is obtained, and the Linker has an effect on the activity of the fusion enzyme, and 7P 450/CPR combinations of the transformed santalene engineering strains are shown in FIG. 8 and Table 1.
TABLE 1 combination of different P450 and CPR fusion enzymes
Figure BDA0003334375140000081
Figure BDA0003334375140000091
Injecting tpLADH1 and truncated pLADH1 plasmid; a, codon optimized, N-terminally truncated 46 amino acids A.thaliana P450 reductase 1 (46 tATR 1); c, codon optimized s.album P450 reductase 2 (CPR 2); a fusion gene of P1A, codon optimized CYP76F39v1 and A.thaliana P450 reductase 1; a fusion gene of P1C, codon optimized CYP76F39v1 and s.album P450 reductase 2 (CPR 2); LP1C, fusion gene of codon optimized CYP76F39v1 and S.album P450 reductase 2 (CPR 2), intergenic band linker (GGGGS) 4 linkage; a fusion gene of P2A, codon optimized CYP736A167 and truncated A.thiana P450 reductase 1; P2C, codon optimized CYP736a167 fusion s.album P450 reductase 2 (CPR 2).
In the present invention, the nucleotide sequence of CYP736A167 is shown in SEQ ID NO:6, the nucleotide sequence of Sa-CPR2 is shown as SEQ ID NO:7, the nucleotide sequence of 46tATR1 is shown as SEQ ID NO:8, the nucleotide sequence of CYP76F39v1 is shown in SEQ ID NO:12, the nucleotide sequence of CYP76F39v1+SaCPR2 is shown as SEQ ID NO:13, the nucleotide sequence of CYP76F39v1+ linker-SaCPR2 is shown in SEQ ID NO:14, the nucleotide sequence of CYP76F39v1+46tATR1 is shown in SEQ ID NO:15, the nucleotide sequence of CYP736A167+SaCPR2 is shown as SEQ ID NO:16, the nucleotide sequence of CYP736A167+46tATR1 is shown as SEQ ID NO: shown at 17.
Artificial synthesis of S.cerevisiae codon optimized P450 genes CYP76F39V1, sa-CYP736A167, saCPR2 from Nanjing Jinsri Biotech Co., ltd (GenScript Company Limited) from S.album, and cloning of t46ATR1 from the truncated N-terminal 46 aa of A.thaliana into vectorpUC57, a total of 2P 450 s (CYP 76F39V1, sa-CYP736a 167) and 2 CPR s (sampr 2, t46ATR 1). CYP76F39V1 was fused with SaCPR2, t46ATR1, respectively, one without Linker and one with long flexible Linker (GGGGS) 4 Respectively introducing engineering strains for producing santalene; the Sa-CYP736A167 and 2 CPRs are fused without Linker, and are respectively introduced into engineering strains for producing santalene for screening and fermentation detection.
The detection result shows that: the fusion enzymes CYP736A167 and CPR2, 46tATR1 oxidize Santalens to obtain (Z) -alpha-santalol, (Z) -alpha-bergamotol and (Z) -beta-santalol, and the two fusion enzymes CYP736A167-46tATR1 and CYP736A167-CPR2 have activity of oxidizing Santalens, but the activity of CYP736A167-46tATR1 is higher than that of CYP736A167-CPR2, and the shake flask level is obtained to produce Santaloles 29.56mg/L. CYP76F39V1 alone is catalytically inactive in S.cerevisiae.
Example 4: method for optimizing and constructing santalene/santalene synthesis path
A graph of squalene downregulation patterns is shown in fig. 9.
The invention adopts P ERG1 Or P HXT1 Down-regulating recombinant Saccharomyces cerevisiae ERG9 to reduce ERG9 expression, regulating metabolic flow as much as possible in the direction of santalenes by regulating P ERG1 Or P HXT1 After the gene is inserted into the 5' end of ERG9 gene, YPD fermentation is carried out, the extraction product detection finds that the product yield is obviously increased and the byproduct squarene is obviously reduced, the SIM is selected from m/ z 93, 94, 105, 107, 119, 122 and 202 ions for GC-MS quantitative detection, and P is obtained by conversion according to standard curve of concentration gradient of reference substance HXT1 After downregulation, the alpha-santalene 38.39mg/L, alpha-bergamotene 24.64mg/L, epi-beta-santalene 3.26mg/L, beta-santalene 28.36mg/L were increased to 63.91mg/L, 43.35mg/L, 5.92mg/L and 51.53mg/L, respectively, and the 4 products were increased by 66.5%, 75.9%, 81.6 and 81.7%, respectively. P (P) HXT1 The down regulation effect is better than P ERG1
Calculated santalenes product amount via P HXT1 And P ERG1 After downregulation, the santalenes increased from 94.65mg/L to 164.71mg/L and 106.99mg/L, respectively, by 74.0% and 13.3%, while the squarenes decreased from 28.37mg/L to12.97mg/L and 18.87mg/L, respectively, down-regulated by 54.3% and 33.5%; at the same time via P HXT1 And P ERG1 After downregulation of ERG9, the santalols yield increased from 29.56mg/L to 68.81mg/L and 37.12mg/L, respectively, by 132.8% and 25.6%, and the squarene yield decreased from 38.04mg/L to 18.54mg/L and 26.58mg/L, respectively, by 51.3% and 30.1%.
Example 5: prokaryotic vector construction method and yeast engineering bacteria fermentation method
The enzyme digestion and the carrier connection reaction firstly select proper restriction enzyme, the restriction enzyme digestion system is 100-200 mu L (different buffers and concentrations are selected according to different enzymes), and common enzymes such as BamH I and HindIII are 5-10 mu L respectively, and the enzyme digestion is not more than 12h at 37 ℃.
Ligation reaction system (10 μl): 1. Mu.L of vector, 7. Mu. L, ligase 1. Mu.L of exogenous gene, 1. Mu.L of 10 Xbuffer, and ligation reaction at 16℃for more than 24 hours. Sequentially adding gene fragments or plasmids into an enzyme digestion system (enzyme is added at last, and the lower part of a pipe is not needed to be taken to avoid enzyme inactivation during the addition), and then placing the gene fragments or plasmids into a constant-temperature water bath kettle for enzyme digestion at 37 ℃ for 12 hours; the enzyme cutting is used for preparing glue (with two holes) to be recovered; sample application (all adding two-hole electrophoresis) after enzyme cutting, cutting glue under ultraviolet, packaging two strips with two tubes, dissolving in water bath, and making connection reaction for use; sequentially adding a connection reaction system, uniformly mixing 1 mu L of a carrier and 7 mu L of an exogenous gene, carrying out water bath at 45 ℃ for 5min, then placing in an ice bath, sequentially adding 1 mu L of 10 Xbuffer and Ligase (the enzyme is added last time, the enzyme is not required to be kept under a tube to avoid inactivation when the enzyme is added), and carrying out overnight reaction at 16 ℃; the following day, the host cells were transformed with the cloned host DH 5. Alpha. Respectively.
Prokaryotic E.coli DH5 alpha is used as a host bacterium for constructing a vector, and is used for preserving recombinant plasmids and extracting plasmids after culture, LB culture medium (tryptone 10g/L, yeast extract 5g/L, sodium chloride 10g/L, agar 15g/L, pH=7.0) is used for culture, generally, the culture is carried out at 37 ℃ and 180rpm for 12-24 hours, ampicillin or kanamycin is added into the culture medium, and specific antibiotics are added according to selection markers on the plasmids. Placing 100 mu L DH5 alpha (competent cells) on ice in the conversion process of the coli DH-5 alpha, sucking 1-5 mu L of a connecting product into an aseptic EP tube on ice, rapidly sucking 50 mu L of the connecting product when the competent cells are just melted, transferring the connecting product into the EP tube on ice, slightly and uniformly mixing, and carrying out ice bath for 30-35 min; rapidly placing the EP pipe in a water bath at 42 ℃, preserving heat for about 90 seconds, and keeping the temperature for about 90 seconds without shaking; rapidly placing in an ice bath for 2-3 min after heat shock; adding 900 mu L of fresh LB culture medium, culturing for 1-2 h on a shaking table at 37 ℃ for resuscitation; after culturing, centrifuging at 10000rpm for 1min, and discarding part of supernatant; after re-suspension, a proper amount of LB culture medium is sucked and coated on an LB plate containing antibiotics, the working concentration of kanamycin is 30-50 mug/mL, and the ampicillin is 50-100 mug/mL. After coating, the culture is carried out upside down at 37 ℃ for overnight, the colony appears after overnight, namely the positive clone, and the colony is not advisable for too long, the monoclonal shake flask is selected for culture for 16 hours, and the plasmid is extracted for double enzyme digestion verification.
Plasmid extraction and shake culture of strain for 16-24 hr, centrifuging and adding ddH 2 O, this step can also be omitted. Generally, 4-10 mL of bacterial liquid can be used as a 2mL centrifuge tube. Removing supernatant of the centrifuged bacterial liquid, adding 250 mu L of Solution I, fully suspending bacterial cells, adding 250 mu L of Solution II, and gently reversing for 4-6 times to avoid breaking plasmids, so that the bacterial liquid becomes transparent like egg white, and the step is not suitable for more than 5min. 350 mu L Solution III is added, and the mixture is gently and fully turned over and mixed up and down for 8 to 10 times and is placed for 2 to 5 minutes at room temperature. And (3) centrifuging at 12,000rpm for 5-10 min. The supernatant was transferred to a 2mL collection tube, centrifuged at 6,000rpm at room temperature for 1min, the collection tube was removed, and the waste liquid in the collection tube was discarded. 500 μLW1 Solution was added, spun at 12000rpm, and the collection tube was emptied of waste liquid by centrifugation at room temperature for 1 min. 500. Mu. LWAsh Solution was added, centrifuged at 12000rpm for 1min at room temperature, the waste liquid in the collection tube was poured off, and washing was repeated once, and the remaining eluate was removed by sufficient centrifugation (this step was not omitted). The column was opened to allow full air drying, placed in a clean 2mL centrifuge tube, and 50. Mu.L-80. Mu.L ddH at 65deg.C was added to the center of the membrane 2 O, standing for 2min. And (3) centrifuging at 12000rpm at room temperature for 1min, wherein the liquid in the centrifuge tube is the solution containing the target plasmid (which can be eluted repeatedly for 1 time), or freezing at-20 ℃.
S.the cerevisiae engineering bacteria culture medium adopts YPD culture medium for culturing saccharomycetes, comprises 10g/L yeast extract, 20g/L peptone, 20g/L sucrose/glucose, and if solid culture medium is prepared, 1.5% agar powder is added. Step (2) dissolving 10g Yeast Extract (yeast Extract), 20g Peptone (Peptone) in 900mL water, and adding 15g agar powder into the plate; high pressure 120 ℃ for 15-20min; 100mL of a solution containing 20g of sucrose or glucose (sucrose or glucose solution added after sterilization alone) was added before solidification of the agar; glucose, yeast extract, peptone solution are sterilized respectively, and then mixed, and sucrose or glucose is sterilized at 120deg.C for 15min.
S.the cerevisiae engineering bacteria are streaked on YPD plates, cultured for 48-72 hours at 28.5 ℃, single colony is picked up to 20mLYPD culture medium, cultured for 48 hours at 28.5 ℃ at 180rpm, 1mL of bacterial liquid is sucked and transferred to 50mLYPD culture medium, and cultured at 28.5 ℃ at 180rpm until OD 600 When=2, 10% (v/v) dodecane was added, and the culture was performed for 168h with plastic film sealing; centrifuging the fermentation product, and sucking the upper dodecane extract, na 2 SO 4 Drying, performing GC-MS detection on the control empty yeast BY4742 and the santalol control, and comparing the corresponding retention time to confirm that the engineering bacteria fermentation product and the control show product peaks, wherein the database comparison confirms that the engineering bacteria fermentation product and the control show santalene and santalol, and the negative control shows no such compound, so that the SaSS gene can express and synthesize santalene and santalol in the host S.cerevisiae BY4742.
Example 6: method for detecting santalene/santalene engineering bacterium products
Firstly, setting standard samples of santalol reference substances (Sigma-Aldrich, alpha-/beta-isomer, analytically pure, product number: 75031, CAS number: 11031-45-1), respectively preparing 20 mg/L concentration, 50 mg/L concentration, 100 mg/L concentration, 200 mg/L concentration and 400mg/L concentration by using dodecane as a solvent, and calculating the product yield according to the peak area.
GC-MS detection method: detection was performed using a GC-MS gas chromatograph-mass spectrometer (Agilent 8890GC system,Agilent 5977B GC/MSD). The detection method comprises the following steps: capillary column HP-5MS (nonpolar, 30m 0.25mm 0.25 μm); the temperature of the sample inlet is 250 ℃; the carrier gas is high-purity helium (the purity is more than or equal to 99.999 percent), and the flow rate is 0.8mL/min; sample injection mode: split-flow sample injection, wherein the sample injection amount is 1 mu L, and the split-flow ratio is 30:1; temperature programming conditions: the initial temperature is 40 ℃ and kept for 3min, then 10 ℃/min is increased to 130 ℃, then 2 ℃/min is increased to 180 ℃, and finally 50 ℃/min is increased to 300 ℃ and kept for 10min; mass spectrometry conditions: EI+ ionization; ionization voltage: 70eV; scanning range: 40-400 amu; SIM: m/ z 93, 94, 105, 107, 119, 122, 202[ dwell time 50msec ]; ion source temperature: 200 ℃; transmission line temperature: 300 ℃; selecting m/ z 93, 94, 105, 107, 119, 122, 202 ions for mass spectrum screening; and (5) spectrogram retrieval: and searching a WILEY and NIST08 spectrum library. GC-MS detection determines mass spectra of 4 products, namely alpha-santalene, alpha-bergamotene, epi-beta-santalene and beta-santalene, respectively, see figures 10-13. Mass spectra of the products (Z) - α -santalol, (Z) - α -bergamotol and (Z) - β -santalol are shown in fig. 14 to 16, respectively.
As can be seen from the above examples, the invention develops the engineering strain of Santalens/Santalols yeast for the first time, breaks the bottleneck in metabolic pathway, uses a constitutive strong promoter to start expression of the HMGR gene of Staphylococcus aureus and the yeast ERG20 gene, and promotes FPP to improve the yield; introducing an optimally screened P450-CPR combination, and further oxidizing Santalens into Santalols, so that the Santalens can perform one-step more reaction to relieve potential pressure caused by accumulation of chassis cell intermediates; meanwhile, aiming at a decompression adaptation mechanism of excessive FPP and an anabolite Squalene/Farnesol of chassis cell shunt, a glucose-sensitive, constitutive or Squalene feedback inhibition type weak promoter is tested to replace a wild type ERG9 promoter, so that the flow of FPP to the Squalene is weakened, and the effect of inhibiting a non-target product synthesis path is achieved.
Although the foregoing embodiments have been described in some, but not all, embodiments of the invention, according to which one can obtain other embodiments without inventiveness, these embodiments are all within the scope of the invention.
Sequence listing
<110> university of Yunnan
<120> an expression cassette composition, recombinant vector and recombinant Saccharomyces cerevisiae and use thereof
<160> 17
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1519
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 1
tgttggaata gaaatcaact atcatctact aactagtatt tacattacta gtatattatc 60
atatacggtg ttagaagatg acgcaaatga tgagaaatag tcatctaaat tagtggaagc 120
tgaaacgcaa ggattgataa tgtaatagga tcaatgaata taaacatata aaacggaatg 180
aggaataatc gtaatattag tatgtagaaa tatagattcc attttgagga ttcctatatc 240
ctcgaggaga acttcaattc atcatttttt ttttattctt ttttttgatt tcggtttctt 300
tgaaattttt ttgattcggt aatctccgaa cagaaggaag aacgaaggaa ggagcacaga 360
cttagattgg tatatatacg catatgtagt gttgaagaaa catgaaattg cccagtattc 420
ttaacccaac tgcacagaac aaaaacctgc aggaaacgaa gataaatcat gtcgaaagct 480
acatataagg aacgtgctgc tactcatcct agtcctgttg ctgccaagct atttaatatc 540
atgcacgaaa agcaaacaaa cttgtgtgct tcattggatg ttcgtaccac caaggaatta 600
ctggagttag ttgaagcatt aggtcccaaa atttgtttac taaaaacaca tgtggatatc 660
ttgactgatt tttccatgga gggcacagtt aagccgctaa aggcattatc cgccaagtac 720
aattttttac tcttcgaaga cagaaaattt gctgacattg gtaatacagt caaattgcag 780
tactctgcgg gtgtatacag aatagcagaa tgggcagaca ttacgaatgc acacggtgtg 840
gtgggcccag gtattgttag cggtttgaag caggcggcag aagaagtaac aaaggaacct 900
agaggccttt tgatgttagc agaattgtca tgcaagggct ccctatctac tggagaatat 960
actaagggta ctgttgacat tgcgaagagc gacaaagatt ttgttatcgg ctttattgct 1020
caaagagaca tgggtggaag agatgaaggt tacgattggt tgattatgac acccggtgtg 1080
ggtttagatg acaagggaga cgcattgggt caacagtata gaaccgtgga tgatgtggtc 1140
tctacaggat ctgacattat tattgttgga agaggactat ttgcaaaggg aagggatgct 1200
aaggtagagg gtgaacgtta cagaaaagca ggctgggaag catatttgag aagatgcggc 1260
cagcaaaact aatcaagagg atgtcagaat gccatttgcc tgagagatgc aggcttcatt 1320
tttgatactt ttttatttgt aacctatata gtataggatt ttttttgtca ttttgtttct 1380
tctcgtacga gcttgctcct gatcagccta tctcgcagct gatgaatatc ttgtggtagg 1440
ggtttgggaa aatcattcga gtttgatgtt tttcttggta tttcccactc ctcttcagag 1500
tacagaagat taagtgaga 1519
<210> 2
<211> 2956
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 2
atccttttgt tgtttccggg tgtacaatat ggacttcctc ttttctggca accaaaccca 60
tacatcggga ttcctataat accttcgttg gtctccctaa catgtaggtg gcggagggga 120
gatatacaat agaacagata ccagacaaga cataatgggc taaacaagac tacaccaatt 180
acactgcctc attgatggtg gtacataacg aactaatact gtagccctag acttgatagc 240
catcatcata tcgaagtttc actacccttt ttccatttgc catctattga agtaataata 300
ggcgcatgca acttcttttc tttttttttc ttttctctct cccccgttgt tgtctcacca 360
tatccgcaat gacaaaaaaa tgatggaaga cactaaagga aaaaattaac gacaaagaca 420
gcaccaacag atgtcgttgt tccagagctg atgaggggta tctcgaagca cacgaaactt 480
tttccttcct tcattcacgc acactactct ctaatgagca acggtatacg gccttccttc 540
cagttacttg aatttgaaat aaaaaaaagt ttgctgtctt gctatcaagt ataaatagac 600
ctgcaattat taatcttttg tttcctcgtc attgttctcg ttccctttct tccttgtttc 660
tttttctgca caatatttca agctatacca agcatacaat caactatgca aagtttagat 720
aagaatttcc gacatttatc tcgtcaacaa aagttacaac aattggtaga taagcaatgg 780
ttatcagaag agcaattcaa cattttattg aatcatccat taattgatga ggaagtagca 840
aatagtttaa ttgaaaatgt catcgcgcaa ggtgcattac ccgttggatt attaccgaat 900
atcattgtgg acgataaagc atatgttgta cctatgatgg tggaagagcc ttcagttgtc 960
gctgcagcta gttatggtgc aaagctagtg aatcagactg gtggatttaa aacggtatct 1020
tctgaacgta ttatgatagg tcaaatcgtc tttgatggcg ttgacgatac tgaaaaatta 1080
tcagcagaca ttaaagcttt agagaagcaa attcatcaaa ttgcggatga ggcatatcct 1140
tctattaaag cgcgtggtgg tggttaccaa cgtatagcta ttgatacatt tcctgagcaa 1200
cagttactat ctttaaaagt atttgttgat acgaaagatg ctatgggcgc taatatgctt 1260
aatacgattt tagaggctat aactgcattt ttaaaaaatg aatttccgca aagcgacatt 1320
ttaatgagta ttttatccaa tcatgcaaca gcgtccgttg ttaaagttca aggcgaaatt 1380
gatgttaaag atttagcaag gggcgagaga actggagaag aggttgccaa acgaatggaa 1440
cgtgcttctg tattggcaca agttgatatt catcgtgctg caacacataa taaaggtgtt 1500
atgaatggca tacatgccgt tgttttagca acaggaaatg atacgcgtgg tgcagaagca 1560
agtgcgcatg catacgcgag taaagatggt caatatcgtg gtattgcaac atggagatac 1620
gatcaagaac gtcaacgttt aattggtacc atagaggtgc ctatgacatt ggcaatcgtt 1680
ggcggtggta caaaagtatt accaatagct aaagcatcat tagagctact aaatgtagag 1740
tcagcgcaag aattaggtca tgtagttgct gccgttggtt tagcacaaaa ctttgcagca 1800
tgtcgcgcgc tcgtttctga aggtatccag caaggccata tgagcttgca atataaatct 1860
ttagctattg ttgtaggtgc aaaaggtgat gaaattgcgc aagtagctga agcattgaag 1920
caagaacctc gtgcgaatac acaagttgct gaacgcattt tacaagattt aagaagccaa 1980
caaatggtga gcaagggcga ggagctgttc accggggtgg tgcccatcct ggtcgagctg 2040
gacggcgacg taaacggcca caagttcagc gtgtccggcg agggcgaggg cgatgccacc 2100
tacggcaagc tgaccctgaa gttcatctgc accaccggca agctgcccgt gccctggccc 2160
accctcgtga ccaccctgac ctacggcgtg cagtgcttca gccgctaccc cgaccacatg 2220
aagcagcacg acttcttcaa gtccgccatg cccgaaggct acgtccagga gcgcaccatc 2280
ttcttcaagg acgacggcaa ctacaagacc cgcgccgagg tgaagttcga gggcgacacc 2340
ctggtgaacc gcatcgagct gaagggcatc gacttcaagg aggacggcaa catcctgggg 2400
cacaagctgg agtacaacta caacagccac aacgtctata tcatggccga caagcagaag 2460
aacggcatca aggtgaactt caagatccgc cacaacatcg aggacggcag cgtgcagctc 2520
gccgaccact accagcagaa cacccccatc ggcgacggcc ccgtgctgct gcccgacaac 2580
cactacctga gcacccagtc cgccctgagc aaagacccca acgagaagcg cgatcacatg 2640
gtcctgctgg agttcgtgac cgccgccggg atcactctcg gcatggacga gctgtacaag 2700
taagatcgtt caaacatttg gcaataaagt ttcttaagat tgaatcctgt tgccggtctt 2760
gcgatgatta tcatataatt tctgttgaat tacgttaagc atgtaataat taacatgtaa 2820
tgcatgacgt tatttatgag atgggttttt atgattagag tcccgcaatt atacatttaa 2880
tacgcgatag aaaacaaaat atagcgcgca aactaggata aattatcgcg cgcggtgtca 2940
tctatgttac tagatc 2956
<210> 3
<211> 2850
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 3
tcattatcaa tactcgccat ttcaaagaat acgtaaataa ttaatagtag tgattttcct 60
aactttattt agtcaaaaaa ttagcctttt aattctgctg taacccgtac atgcccaaaa 120
tagggggcgg gttacacaga atatataaca tcgtaggtgt ctgggtgaac agtttattcc 180
tggcatccac taaatataat ggagcccgct ttttaagctg gcatccagaa aaaaaaagaa 240
tcccagcacc aaaatattgt tttcttcacc aaccatcagt tcataggtcc attctcttag 300
cgcaactaca gagaacaggg gcacaaacag gcaaaaaacg ggcacaacct caatggagtg 360
atgcaacctg cctggagtaa atgatgacac aaggcaattg acccacgcat gtatctatct 420
cattttctta caccttctat taccttctgc tctctctgat ttggaaaaag ctgaaaaaaa 480
aggttgaaac cagttccctg aaattattcc cctacttgac taataagtat ataaagacgg 540
taggtattga ttgtaattct gtaaatctat ttcttaaact tcttaaattc tacttttata 600
gttagtcttt tttttagttt taaaacacca gaacttagtt tcgaatggac tcctctaccg 660
ccactgctat gactgcccct ttcattgacc ctacagacca cgtaaactta aaaacagaca 720
cagacgcctc agaaaacaga agaatgggta actacaagcc atctatctgg aactacgatt 780
tcttgcaatc attagcaact catcacaaca tagtcgaaga aagacatttg aaattggccg 840
aaaagttgaa gggtcaagta aagtttatgt tcggtgcacc aatggaacct ttagccaaat 900
tagaattggt tgacgttgtc caaagattgg gtttgaacca cttgttcgaa acagaaatca 960
aagaagcttt attctccatc tataaggatg gtagtaacgg ttggtggttt ggtcatttgc 1020
acgcaacctc tttgagattc agattgttga gacaatgtgg tttgttcatt cctcaagatg 1080
tctttaaaac attccaaaat aagaccggtg aattcgatat gaagttgtgc gacaacgtta 1140
agggtttgtt gtctttgtac gaagcttcat acttaggttg gaagggtgaa aacatcttgg 1200
atgaagccaa ggcttttact acaaagtgtt tgaagtctgc ttgggaaaac atatcagaaa 1260
agtggttggc aaagagagtt aagcatgctt tggccttgcc attacactgg agagtcccta 1320
gaatagaagc aagatggttt atcgaagctt acgaacaaga agcaaacatg aacccaacat 1380
tgttgaagtt ggccaagttg gatttcaaca tggtacaatc tatccatcaa aaggaaatcg 1440
gtgaattggc aagatggtgg gttactactg gtttggacaa gttggctttc gcaagaaaca 1500
acttgttgca atcttatatg tggtcatgcg ccattgcttc agatcctaaa ttcaagttgg 1560
ctagagaaac tattgttgaa ataggttccg tcttaacagt agttgatgac ggttatgacg 1620
tttacggtag tattgatgaa ttggacttat acacttcttc agtagaaaga tggtcctgtg 1680
ttgaaatcga taagttgcca aacaccttga agttgatctt tatgtctatg ttcaataaga 1740
ctaacgaagt cggtttgaga gtacaacatg aaagaggtta caactctatc cctactttta 1800
ttaaggcctg ggttgaacaa tgcaaatcat accaaaagga agctagatgg ttccatggtg 1860
gtcacactcc acctttggaa gaatactcct tgaacggttt agttagtata ggtttcccat 1920
tgttgttgat tacaggttac gtagcaatag ccgaaaacga agctgcattg gacaaagttc 1980
atccattacc tgatttgttg cactattcca gtttgttgtc cagattgatc aatgatattg 2040
gtacaagtcc tgacgaaatg gctagaggtg acaatttgaa gtctatccat tgttacatga 2100
acgaaaccgg tgcctcagaa gaagtcgcta gagaacacat caagggtgta atagaagaaa 2160
actggaagat cttgaaccaa tgttgctttg atcaatcaca attccaagaa ccttttatta 2220
cttttaattt gaactccgtt agaggtagtc atttctttta tgaattcggt gacggtttcg 2280
gtgtcactga ttcttggacc aaggttgata tgaagtcagt tttgatagac ccaatcccat 2340
taggtgaaga ataatcatgt aattagttat gtcacgctta cattcacgcc ctccccccac 2400
atccgctcta accgaaaagg aaggagttag acaacctgaa gtctaggtcc ctatttattt 2460
ttttatagtt atgttagtat taagaacgtt atttatattt caaatttttc ttttttttct 2520
gtacagacgc gtgtacgcat gtaacattat actgaaaacc ttgcttgaga aggttttggg 2580
acgctcgaag gctttaattt gcttctagta tattctgtat acctaatatt atagccttta 2640
tcaacaatgg aatcccaaca attatctcaa cattcaccca tttctcatgg tagcgcctgt 2700
gcttcggtta cttctaagga agtccacaca aatcaagatc cgttagacgt ttcagcttcc 2760
aaaacagaag aatgtgagaa ggcttccact aaggctaact ctcaacagac aacaacacct 2820
gcttcatcag ctgttccaga gaacccccat 2850
<210> 4
<211> 1601
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 4
gacatggagg cccagaatac cctccttgac agtcttgacg tgcgcagctc aggggcatga 60
tgtgactgtc gcccgtacat ttagcccata catccccatg tataatcatt tgcatccata 120
cattttgatg gccgcacggc gcgaagcaaa aattacggct cctcgctgca gacctgcgag 180
cagggaaacg ctcccctcac agacgcgttg aattgtcccc acgccgcgcc cctgtagaga 240
aatataaaag gttaggattt gccactgagg ttcttctttc atatacttcc ttttaaaatc 300
ttgctaggat acagttctca catcacatcc gaacataaac aaccatggct tcagaaaaag 360
aaattaggag agagagattc ttgaacgttt tccctaaatt agtagaggaa ttgaacgcat 420
cgcttttggc ttacggtatg cctaaggaag catgtgactg gtatgcccac tcattgaact 480
acaacactcc aggcggtaag ctaaatagag gtttgtccgt tgtggacacg tatgctattc 540
tctccaacaa gaccgttgaa caattggggc aagaagaata cgaaaaggtt gccattctag 600
gttggtgcat tgagttgttg caggcttact tcttggtcgc cgatgatatg atggacaagt 660
ccattaccag aagaggccaa ccatgttggt acaaggttcc tgaagttggg gaaattgcca 720
tcaatgacgc attcatgtta gaggctgcta tctacaagct tttgaaatct cacttcagaa 780
acgaaaaata ctacatagat atcaccgaat tgttccatga ggtcaccttc caaaccgaat 840
tgggccaatt gatggactta atcactgcac ctgaagacaa agtcgacttg agtaagttct 900
ccctaaagaa gcactccttc atagttactt tcaagactgc ttactattct ttctacttgc 960
ctgtcgcatt ggccatgtac gttgccggta tcacggatga aaaggatttg aaacaagcca 1020
gagatgtctt gattccattg ggtgaatact tccaaattca agatgactac ttagactgct 1080
tcggtacccc agaacagatc ggtaagatcg gtacagatat ccaagataac aaatgttctt 1140
gggtaatcaa caaggcattg gaacttgctt ccgcagaaca aagaaagact ttagacgaaa 1200
attacggtaa gaaggactca gtcgcagaag ccaaatgcaa aaagattttc aatgacttga 1260
aaattgaaca gctataccac gaatatgaag agtctattgc caaggatttg aaggccaaaa 1320
tttctcaggt cgatgagtct cgtggcttca aagctgatgt cttaactgcg ttcttgaaca 1380
aagtttacaa gagaagcaaa tagactgaca ataaaaagat tcttgttttc aagaacttgt 1440
catttgtata gtttttttat attgtagttg ttctatttta atcaaatgtt agcgtgattt 1500
atattttttt tcgcctcgac atcatctgcc cagatgcgaa gttaagtgcg cagaaagtaa 1560
tatcatgcgt caatcgtatg tgaatgctgg tcgctatact g 1601
<210> 5
<211> 2467
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 5
gcaaaacgta ggggcaaaca aacggaaaaa tcgtttctca aattttctga tgccaagaac 60
tctaaccagt cttatctaaa aattgcctta tgatccgtct ctccggttac agcctgtgta 120
actgattaat cctgcctttc taatcaccat tctaatgttt taattaaggg attttgtctt 180
cattaacggc tttcgctcat aaaaatgtta tgacgttttg cccgcaggcg ggaaaccatc 240
cacttcacga gactgatctc ctctgccgga acaccgggca tctccaactt ataagttgga 300
gaaataagag aatttcagat tgagagaatg aaaaaaaaaa aaaaaaaaaa ggcagaggag 360
agcatagaaa tggggttcac tttttggtaa agctatagca tgcctatcac atataaatag 420
agtgccagta gcgacttttt tcacactcga aatactctta ctactgctct cttgttgttt 480
ttatcacttc ttgtttcttc ttggtaaata gaatatcaag ctacaaaaag catacaatca 540
actatcaact attaactata tcgtaataca tggatttctt gtcttgtatc ttgttcgtat 600
tattcgcatg ggcattagtc agagcattac caactttgag tagaggttct aaggcagcct 660
caggtagatt gccacctggt ccagttcctt ggccagtagt cggtaatttg ttaaagttgg 720
gtaacaagcc tcataagagt ttagctgaat tagcaaaaag ttatggtcca attatgtgtt 780
taaaattggg tcacatgacc acaattgtta tctctacccc aacagttgcc aaggaagtct 840
tgcaaaaaca agatgttgcc ttttctaata gaacaacccc agacgccgtt agagcacacg 900
gtcacgactt gtactctatg gcatggttac cagtttcaac cagatggaga acattgagaa 960
agatcagtaa ttcacatatc tttacttcac aaagattaga cgaaaatcat cacttaagaa 1020
gaagaaagtt ggacgaatta ttggccagag ttgccgaatc ttccttggtt ggtgctgtag 1080
ttgacatggg tgctgttgct ttcttgacca gtttgaactt gttatctaac accgttttct 1140
caaaagactt ggttgaacct ggtttaggtg ccgttcaaga aaccaaagaa gtagtctggg 1200
gtatgatgga agaagccggt agacctaact tagttgatta ttttcctgtc ttaagaagat 1260
tggacccaca aggtatcaga agaagaatga ctggttactt cggtaaaatg ttagaagttt 1320
tcggtgacat aatagacgaa agattggaat ggagaaagca acaatccgat ggtgactccc 1380
cagcaggtac aactaacgac gtattagatg tcttgttaaa catcatcgaa gatgccgaaa 1440
tagaagaaaa gccaaataga actgatgttg aacacttctt gttagatttg tttgcagctg 1500
gttctgatac cacatcctcc acagtcgaat gggccatgac agaattattg agaaaaccag 1560
aaacattaga aagagcaaga tccgaattac atgaaactat tggtcctgaa aatttggttc 1620
aagaagctga cttgcctaga ttaccatact tgcaagccgt cgttaaggaa acttttagat 1680
tgcatccacc agtcccattg ttattgccta gaaccgctga aaaggatgcc gaattatgcg 1740
gtttcactgt tccagctggt gcacaaatta tggttaacgc ttgggcaata ggtagagacc 1800
caggtacttg ggaagatcca gaatcctttt tgccagaaag attcttaggt tcagacgtcg 1860
atgtcaaagg tagatccttt gaattgatcc catttggtgg tggtagaaga atttgtcctg 1920
gtttaccatt ggccatcaga atggttcatt tgatgttagg tagtttgatt cacggtttta 1980
gatggaaagt agatgatgat ggtatgggtt caccagaaac agctatggac atggacgaaa 2040
agttcggtat cacattacaa aaggcaaagc cattatgcgc cgtccctatc agaggttaac 2100
cgatgccttc acgatttata gttttcatta tcaagtatgc ctatattagt atatagcatc 2160
tttagatgac agtgttcgaa gtttcacgaa taaaagataa tattctactt tttgctccct 2220
tctagtatat tctgtatacc taatattata gcctttatca acaatggaat cccaacaatt 2280
atctcaacat tcacccattt ctcatggtag cgcctgtgct tcggttactt ctaaggaagt 2340
ccacacaaat caagatccgt tagacgtttc agcttccaaa acagaagaat gtgagaaggc 2400
ttccactaag gctaactctc aacagacaac aacacctgct tcatcagctg ttccagagaa 2460
cccccat 2467
<210> 6
<211> 1503
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 6
atgtctccag ctactgctgt tattttgaca ttgttagttg ctttgggttt atcaattttg 60
ttgagaagga gacaaaagag aaataatttg ccaccaggtc caccagcttt gccaatcatc 120
ggtaacatcc atattttggg tactttgcca catcaatctt tgtacaattt ggctaagaaa 180
tacggtccaa ttatgtcaat gagattgggt ttagttccag cagttgttat ttcttcacca 240
gaagctgctg aattggtttt gaaaactcat gatattgttt ttgcttcaag accaagattg 300
caagttgcag attacttcca ttacggtaca aagggtgtta ttttgactga atacggtaca 360
tactggagaa atatgagaag attgtgtact gttaaattgt tgaacacagt taagatcgat 420
tctttcgctg gtactagaaa gaaagaagtt gcatcttttg ttcaatcatt aaaggaagca 480
tctgttgcac ataagatggt taatttgtca gctagagttg caaacgttat cgaaaacatg 540
gtttgtttga tggttattgg tagatcatct gatgaaagat tcaaattgaa ggaagttatt 600
caagaagctg ctcaattggc tggtgctttt aatatcggtg actacgttcc atttttaatg 660
ccattggatt tgcaaggttt gacaagaaga attaaatctg gttctaaagc atttgatgat 720
attttggaag ttattatcga tgaacatgtt caagatatta aagatcatga tgatgaacaa 780
catggtgact tcatcgatgt tttgttggct atgatgaata agccaatgga ttcaagagaa 840
ggtttgtcaa tcatcgatag aactaacatc aaagctattt tggttgatat gattggtgct 900
gcaatggata cttctacatc aggtgttgaa tgggcaattt ctgaattaat taaacatcca 960
agagttatga agaaattgca agatgaagtt aaaacagtta ttggtatgaa cagaatggtt 1020
gaagaagctg atttgccaaa attgccatac ttggatatgg ttgttaagga aactatgaga 1080
ttacatccac caggtccatt gttagttcca agagaatcta tggaagatat tacaattaat 1140
ggttactaca ttccaaagaa atcaagaatt attgttaatg cttgggcaat tggtagagat 1200
actaatgctt ggtctaataa tgcacatgaa tttttcccag aaagattcat gtcatctaat 1260
gttgatttgc aaggtcaaga ttttcaattg attccatttg gttcaggtag aagaggttgt 1320
ccaggtatga gattgggttt aactacagtt agattggttt tagctcaatt gatccattgt 1380
ttcgatttgg aattaccaaa gggtactgtt gcaactgatt tggatatgtc tgaaaagttc 1440
ggtttggcta tgccaagagc acaacatttg ttggcttttc caacatacag attggaatca 1500
taa 1503
<210> 7
<211> 2122
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 7
atgcaattat cttcagttaa attgatccca ttagatttga tgacagctat tttcaatggt 60
ggtggttctc cagcaggttc tggtgaagca ttgtctatgt tgttagaaaa cagagaagtt 120
gttgttgcat tgactacatc attagctgtt ttgatcggtt gtgtttttgc ttatttgtgg 180
agattttctt catctcaaaa agcagttgct gctgctaaag gtgttgaagt tgctagaaaa 240
ccagttattg gtaaagaatc tgaagcagct gaagttgatg atggtaaaaa gaaagttact 300
attttctttg gtactcaaac aggtactgct gaaggttttg caaaagcatt ggttgaagaa 360
gcaaaagcta gatacgaaaa agctattttt aaattagttg atttggatga ttatgcagct 420
gaagatgatg aatacgaaga aaaattgaag aaagaaaagt tcgcattgtt tttcttggct 480
acttatggtg acggtgaacc aactgataac gcagctagat tctacaagtg gttcacagaa 540
gaaaacgaat ctggtgaatg gttacaaaaa ttgcaattcg gtgtttttgg tttaggtaat 600
agacaatacg aacatttcaa taaggttgca aaagttgttg atgaaatttt ggctgaacaa 660
ggtggtaaaa gattagttcc agttggtttg ggtgacgatg atcaatgtat cgaagatgat 720
ttcactgctt ggagagaatt agtttggcca gaattggata aattgttatt ggatgaagat 780
gatgcaacag tttctactcc atatacagct tcagttccag aatacagagt tgtttttcat 840
gattctccag atgattattt gcagaaaaat tcttctaatg ctaacggtca ttcaatgcat 900
gatgctcaac atccatgtag agcaaatgtt gctgttagaa gagaattaca ttctccattg 960
tcagatagat catgtactca tttggaattt gatattgcag gtacaggttt ggcttatgaa 1020
actggtgacc atgttggtgt ttgttgtgaa aatttgccag aagttgttga agaagcagaa 1080
agagttttag gtttgtctcc aggtatctat ttctcaattc atgctgataa ggaagatggt 1140
actccattgg gttcatcttt accaccattg tttccaccat gtactttaag aacagcattg 1200
actcaacatg ctgatttgtt gtcttttcca aagaaagcag ctttattggc attggcagct 1260
catgcttcag atccatctga agctgataga ttgaaatatt tggcatctcc agctggtaaa 1320
gatgaatacg cacaatgggt tgttgcttca caaagatcat tgttggaagt tatggcagaa 1380
tttccatctg ctaaaccacc attaggtgtt ttgtttgcag ctgttgctcc aagattacaa 1440
ccaagattct actctatttc atcttcacca aagattgcac catctaggat tcatgttaca 1500
tgtgctttgg tttacgataa aacaccaact ggtagaatac ataaaggtgt ttgttctact 1560
tggatgaaaa atgcaatgcc aagagaagaa tcacatgatt gttcttgggc tccaatcttc 1620
gttagacaat caaacttcaa attgccatca aatacatctg ttccagttat tatgattggt 1680
ccaggtactg gtttagctcc ttttagaggt ttcttgcaag aaagattagc attgaaagaa 1740
gctggtgttg aattaggtcc agcaatcttg tttttcggtt gtagaaacag aaagatggat 1800
tacatctatg aagatgaatt ggctcatttt gttgaagcag gtgctttatc tgaattgatc 1860
gttgcatttt caagagaagg tccagctaag caatacgttc aacataagat gatggaaaaa 1920
gcatctgaaa tttggaacat gatttcagat ggtggttatg tttacgtttg tggtgacgca 1980
aagggtatgg ctaaggatgt tcatagagct ttacatacaa ttgttcatga acaaggttca 2040
ttggataatt ctaaaactga atctatggtt aaaaatttgc aaatgaatgg tagatacttg 2100
agagatgttt ggtaagagct cg 2122
<210> 8
<211> 1941
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 8
tggaagaaaa ctacagctga tagatctggt gaattgaagc cattgatgat cccaaagtca 60
ttgatggcta aagatgaaga tgatgatttg gatttgggtt ctggtaaaac tagagtttca 120
attttctttg gtactcaaac aggtactgct gaaggtttcg ctaaggcatt gtctgaagaa 180
attaaagcaa gatacgaaaa ggctgcagtt aaagttattg atttggatga ttatgctgca 240
gatgatgatc aatacgaaga aaagttgaag aaagaaactt tggctttctt ttgtgttgca 300
acttatggtg acggtgaacc aacagataac gctgcaagat tctacaagtg gttcacagaa 360
gaaaacgaaa gagatatcaa gttgcaacaa ttagcttatg gtgtttttgc attaggtaat 420
agacaatacg aacatttcaa taagatcggt atcgttttgg atgaagaatt gtgtaagaaa 480
ggtgctaaga gattgattga agttggtttg ggtgacgatg atcaatctat cgaagatgat 540
ttcaacgctt ggaaggaatc tttgtggtca gaattggata agttgttgaa ggatgaagat 600
gataagtctg ttgctacacc atatactgca gttattccag aatacagagt tgttactcat 660
gatccaagat tcactacaca aaaatctatg gaatcaaacg ttgctaacgg taacactaca 720
atcgatatcc atcatccatg tagagttgat gttgctgttc aaaaggaatt gcatacacat 780
gaatctgata gatcatgtat ccatttggaa ttcgatatct ctagaacagg tatcacttat 840
gaaacaggtg accatgttgg tgtttacgct gaaaatcatg ttgaaattgt tgaagaagct 900
ggtaaattgt taggtcattc tttggatttg gttttctcta ttcatgctga taaagaagat 960
ggttctccat tggaatctgc tgttccacca ccatttccag gtccatgtac tttgggtaca 1020
ggtttagcta gatatgcaga tttgttaaat ccaccaagaa aatctgcttt ggttgcatta 1080
gctgcatacg ctactgaacc atcagaagca gaaaaattga aacatttgac atctccagat 1140
ggtaaagatg aatattcaca atggattgtt gcttctcaaa gatcattgtt agaagttatg 1200
gctgcatttc catctgctaa accaccattg ggtgttttct ttgctgcaat tgcaccaaga 1260
ttgcaaccaa gatactactc aatctcttca tctccaagat tggctccatc tagagttcat 1320
gttacttcag cattagttta cggtccaaca ccaactggta gaattcataa aggtgtttgt 1380
tctacatgga tgaaaaatgc tgttccagca gaaaaatctc atgaatgttc aggtgctcca 1440
attttcatta gagcatcaaa cttcaagttg ccatctaacc catcaactcc aattgttatg 1500
gttggtccag gtacaggttt agctcctttt agaggtttct tgcaagaaag aatggcatta 1560
aaagaagatg gtgaagaatt gggttcatct ttgttgtttt tcggttgtag aaatagacaa 1620
atggatttca tctatgaaga tgaattgaac aactttgttg atcaaggtgt tatttctgaa 1680
ttgatcatgg ctttttcaag agaaggtgca caaaaggaat acgttcaaca taagatgatg 1740
gaaaaagctg cacaagtttg ggatttgatt aaagaagaag gttatttgta cgtttgtggt 1800
gacgctaagg gtatggcaag agatgttcat agaactttgc atacaatcgt tcaagaacaa 1860
gaaggtgttt catcttcaga agctgaagca attgttaaga aattgcaaac tgaaggtaga 1920
tatttgagag atgtttggta a 1941
<210> 9
<211> 808
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 9
tgtcgaatac tactatgacc gctttttaga atcgtacgac aacggtgacc acttgattgg 60
tctgggggtc ctacaacttg attttatcgt tgaaaacaag aatatagaca gccttcttgc 120
caactcttat ttgcaccagc aaagaggcgg tgcaatcatc agtaatacag gacttgtctc 180
gcaagatacg accaagccgt actacgttcg ggatttaatc ttctcgcagt ctgcaggcgc 240
cttgagattt gcgttcggcc taaacgtttg ctccacaaac gtgaatggta tgaacatgga 300
catgagcgtg gttcagggca ctctacggga tcgtggcgaa tgggaatcgt tctgcaagct 360
cttctaccaa accatcggcg aatttgcgtc gctttaatgc gatactgccg tagcgggcct 420
tcgtatagct cggccgagct cgtacaaaag gcaagcagtg tatcggacag agctgatata 480
acacaatacg ctcgtagtcg atgcatgccg tggctgctct cggtcgggta taagtcttag 540
acaatagtct tacctcgcat gtataataaa tcttttgtat ttaatctatt atatgtttct 600
atgctttttt ttcctattgt tgtttgcttt tccttttcct tatttctttc tagcttctaa 660
ttttctttct tttttttttt ttttcattga aaattatata tatatatata tatcagaaca 720
attgtccagt attgaacaat acaggttatt tcgaacaatt gaaaaaaaaa aatcacagaa 780
aaacatatcg agaaaagggt cataagct 808
<210> 10
<211> 323
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 10
tcaagtgctg atagaagaat accactcata tgacgtgggc agaagacagc aaacgtaaac 60
atgagctgct gcgacatttg atggctttta tccgacaagc caggaaactc caccattatc 120
taatgtagca aaatatttct taacacccga agttgcgtgt ccccctcacg tttttaatca 180
tttgaattag tatattgaaa ttatatataa aggcaacaat gtccccataa tcaattccat 240
ctggggtctc atgttctttc cccaccttaa aatctataaa gatatcataa tcgtcaacta 300
gttgatatac gtaaaatcaa gct 323
<210> 11
<211> 512
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 11
aagctttgtt ggaatagaaa tcaactatca tctactaact agtatttaca ttactagtat 60
attatcatat acggtgttag aagatgacgc aaatgatgag aaatagtcat ctaaattagt 120
ggaagctgaa acgcaaggat tgataatgta ataggatcaa tgaatataaa catataaaac 180
ggaatgagga ataatcgtaa tattagtatg tagaaatata gattccattt tgaggattcc 240
tatatcctcg aggagaactt ctagtatatt ctgtatacct aatattatag cctttatcaa 300
caatggaatc ccaacaatta tctcaacatt cacccatttc tcatggtagc gcctgtgctt 360
cggttacttc taaggaagtc cacacaaatc aagatccgtt agacgtttca gcttccaaaa 420
cagaagaatg tgagaaggct tccactaagg ctaactctca acagacaaca acacctgctt 480
catcagctgt tccagagaac ccccatgaat tc 512
<210> 12
<211> 1539
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 12
ccgctcgaga tggatttctt gtcttgtatc ttgttcgtat tattcgcatg ggcattagtc 60
agagcattac caactttgag tagaggttct aaggcagcct caggtagatt gccacctggt 120
ccagttcctt ggccagtagt cggtaatttg ttaaagttgg gtaacaagcc tcataagagt 180
ttagctgaat tagcaaaaag ttatggtcca attatgtgtt taaaattggg tcacatgacc 240
acaattgtta tctctacccc aacagttgcc aaggaagtct tgcaaaaaca agatgttgcc 300
ttttctaata gaacaacccc agacgccgtt agagcacacg gtcacgactt gtactctatg 360
gcatggttac cagtttcaac cagatggaga acattgagaa agatcagtaa ttcacatatc 420
tttacttcac aaagattaga cgaaaatcat cacttaagaa gaagaaagtt ggacgaatta 480
ttggccagag ttgccgaatc ttccttggtt ggtgctgtag ttgacatggg tgctgttgct 540
ttcttgacca gtttgaactt gttatctaac accgttttct caaaagactt ggttgaacct 600
ggtttaggtg ccgttcaaga aaccaaagaa gtagtctggg gtatgatgga agaagccggt 660
agacctaact tagttgatta ttttcctgtc ttaagaagat tggacccaca aggtatcaga 720
agaagaatga ctggttactt cggtaaaatg ttagaagttt tcggtgacat aatagacgaa 780
agattggaat ggagaaagca acaatccgat ggtgactccc cagcaggtac aactaacgac 840
gtattagatg tcttgttaaa catcatcgaa gatgccgaaa tagaagaaaa gccaaataga 900
actgatgttg aacacttctt gttagatttg tttgcagctg gttctgatac cacatcctcc 960
acagtcgaat gggccatgac agaattattg agaaaaccag aaacattaga aagagcaaga 1020
tccgaattac atgaaactat tggtcctgaa aatttggttc aagaagctga cttgcctaga 1080
ttaccatact tgcaagccgt cgttaaggaa acttttagat tgcatccacc agtcccattg 1140
ttattgccta gaaccgctga aaaggatgcc gaattatgcg gtttcactgt tccagctggt 1200
gcacaaatta tggttaacgc ttgggcaata ggtagagacc caggtacttg ggaagatcca 1260
gaatcctttt tgccagaaag attcttaggt tcagacgtcg atgtcaaagg tagatccttt 1320
gaattgatcc catttggtgg tggtagaaga atttgtcctg gtttaccatt ggccatcaga 1380
atggttcatt tgatgttagg tagtttgatt cacggtttta gatggaaagt agatgatgat 1440
ggtatgggtt caccagaaac agctatggac atggacgaaa agttcggtat cacattacaa 1500
aaggcaaagc cattatgcgc cgtccctatc agaggttaa 1539
<210> 13
<211> 3659
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 13
ccgctcgaga tggatttctt gtcttgtatc ttgttcgtat tattcgcatg ggcattagtc 60
agagcattac caactttgag tagaggttct aaggcagcct caggtagatt gccacctggt 120
ccagttcctt ggccagtagt cggtaatttg ttaaagttgg gtaacaagcc tcataagagt 180
ttagctgaat tagcaaaaag ttatggtcca attatgtgtt taaaattggg tcacatgacc 240
acaattgtta tctctacccc aacagttgcc aaggaagtct tgcaaaaaca agatgttgcc 300
ttttctaata gaacaacccc agacgccgtt agagcacacg gtcacgactt gtactctatg 360
gcatggttac cagtttcaac cagatggaga acattgagaa agatcagtaa ttcacatatc 420
tttacttcac aaagattaga cgaaaatcat cacttaagaa gaagaaagtt ggacgaatta 480
ttggccagag ttgccgaatc ttccttggtt ggtgctgtag ttgacatggg tgctgttgct 540
ttcttgacca gtttgaactt gttatctaac accgttttct caaaagactt ggttgaacct 600
ggtttaggtg ccgttcaaga aaccaaagaa gtagtctggg gtatgatgga agaagccggt 660
agacctaact tagttgatta ttttcctgtc ttaagaagat tggacccaca aggtatcaga 720
agaagaatga ctggttactt cggtaaaatg ttagaagttt tcggtgacat aatagacgaa 780
agattggaat ggagaaagca acaatccgat ggtgactccc cagcaggtac aactaacgac 840
gtattagatg tcttgttaaa catcatcgaa gatgccgaaa tagaagaaaa gccaaataga 900
actgatgttg aacacttctt gttagatttg tttgcagctg gttctgatac cacatcctcc 960
acagtcgaat gggccatgac agaattattg agaaaaccag aaacattaga aagagcaaga 1020
tccgaattac atgaaactat tggtcctgaa aatttggttc aagaagctga cttgcctaga 1080
ttaccatact tgcaagccgt cgttaaggaa acttttagat tgcatccacc agtcccattg 1140
ttattgccta gaaccgctga aaaggatgcc gaattatgcg gtttcactgt tccagctggt 1200
gcacaaatta tggttaacgc ttgggcaata ggtagagacc caggtacttg ggaagatcca 1260
gaatcctttt tgccagaaag attcttaggt tcagacgtcg atgtcaaagg tagatccttt 1320
gaattgatcc catttggtgg tggtagaaga atttgtcctg gtttaccatt ggccatcaga 1380
atggttcatt tgatgttagg tagtttgatt cacggtttta gatggaaagt agatgatgat 1440
ggtatgggtt caccagaaac agctatggac atggacgaaa agttcggtat cacattacaa 1500
aaggcaaagc cattatgcgc cgtccctatc agaggtatgc aattatcttc agttaaattg 1560
atcccattag atttgatgac agctattttc aatggtggtg gttctccagc aggttctggt 1620
gaagcattgt ctatgttgtt agaaaacaga gaagttgttg ttgcattgac tacatcatta 1680
gctgttttga tcggttgtgt ttttgcttat ttgtggagat tttcttcatc tcaaaaagca 1740
gttgctgctg ctaaaggtgt tgaagttgct agaaaaccag ttattggtaa agaatctgaa 1800
gcagctgaag ttgatgatgg taaaaagaaa gttactattt tctttggtac tcaaacaggt 1860
actgctgaag gttttgcaaa agcattggtt gaagaagcaa aagctagata cgaaaaagct 1920
atttttaaat tagttgattt ggatgattat gcagctgaag atgatgaata cgaagaaaaa 1980
ttgaagaaag aaaagttcgc attgtttttc ttggctactt atggtgacgg tgaaccaact 2040
gataacgcag ctagattcta caagtggttc acagaagaaa acgaatctgg tgaatggtta 2100
caaaaattgc aattcggtgt ttttggttta ggtaatagac aatacgaaca tttcaataag 2160
gttgcaaaag ttgttgatga aattttggct gaacaaggtg gtaaaagatt agttccagtt 2220
ggtttgggtg acgatgatca atgtatcgaa gatgatttca ctgcttggag agaattagtt 2280
tggccagaat tggataaatt gttattggat gaagatgatg caacagtttc tactccatat 2340
acagcttcag ttccagaata cagagttgtt tttcatgatt ctccagatga ttatttgcag 2400
aaaaattctt ctaatgctaa cggtcattca atgcatgatg ctcaacatcc atgtagagca 2460
aatgttgctg ttagaagaga attacattct ccattgtcag atagatcatg tactcatttg 2520
gaatttgata ttgcaggtac aggtttggct tatgaaactg gtgaccatgt tggtgtttgt 2580
tgtgaaaatt tgccagaagt tgttgaagaa gcagaaagag ttttaggttt gtctccaggt 2640
atctatttct caattcatgc tgataaggaa gatggtactc cattgggttc atctttacca 2700
ccattgtttc caccatgtac tttaagaaca gcattgactc aacatgctga tttgttgtct 2760
tttccaaaga aagcagcttt attggcattg gcagctcatg cttcagatcc atctgaagct 2820
gatagattga aatatttggc atctccagct ggtaaagatg aatacgcaca atgggttgtt 2880
gcttcacaaa gatcattgtt ggaagttatg gcagaatttc catctgctaa accaccatta 2940
ggtgttttgt ttgcagctgt tgctccaaga ttacaaccaa gattctactc tatttcatct 3000
tcaccaaaga ttgcaccatc taggattcat gttacatgtg ctttggttta cgataaaaca 3060
ccaactggta gaatacataa aggtgtttgt tctacttgga tgaaaaatgc aatgccaaga 3120
gaagaatcac atgattgttc ttgggctcca atcttcgtta gacaatcaaa cttcaaattg 3180
ccatcaaata catctgttcc agttattatg attggtccag gtactggttt agctcctttt 3240
agaggtttct tgcaagaaag attagcattg aaagaagctg gtgttgaatt aggtccagca 3300
atcttgtttt tcggttgtag aaacagaaag atggattaca tctatgaaga tgaattggct 3360
cattttgttg aagcaggtgc tttatctgaa ttgatcgttg cattttcaag agaaggtcca 3420
gctaagcaat acgttcaaca taagatgatg gaaaaagcat ctgaaatttg gaacatgatt 3480
tcagatggtg gttatgttta cgtttgtggt gacgcaaagg gtatggctaa ggatgttcat 3540
agagctttac atacaattgt tcatgaacaa ggttcattgg ataattctaa aactgaatct 3600
atggttaaaa atttgcaaat gaatggtaga tacttgagag atgtttggta aggatcccg 3659
<210> 14
<211> 3719
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 14
ccgctcgaga tggatttctt gtcttgtatc ttgttcgtat tattcgcatg ggcattagtc 60
agagcattac caactttgag tagaggttct aaggcagcct caggtagatt gccacctggt 120
ccagttcctt ggccagtagt cggtaatttg ttaaagttgg gtaacaagcc tcataagagt 180
ttagctgaat tagcaaaaag ttatggtcca attatgtgtt taaaattggg tcacatgacc 240
acaattgtta tctctacccc aacagttgcc aaggaagtct tgcaaaaaca agatgttgcc 300
ttttctaata gaacaacccc agacgccgtt agagcacacg gtcacgactt gtactctatg 360
gcatggttac cagtttcaac cagatggaga acattgagaa agatcagtaa ttcacatatc 420
tttacttcac aaagattaga cgaaaatcat cacttaagaa gaagaaagtt ggacgaatta 480
ttggccagag ttgccgaatc ttccttggtt ggtgctgtag ttgacatggg tgctgttgct 540
ttcttgacca gtttgaactt gttatctaac accgttttct caaaagactt ggttgaacct 600
ggtttaggtg ccgttcaaga aaccaaagaa gtagtctggg gtatgatgga agaagccggt 660
agacctaact tagttgatta ttttcctgtc ttaagaagat tggacccaca aggtatcaga 720
agaagaatga ctggttactt cggtaaaatg ttagaagttt tcggtgacat aatagacgaa 780
agattggaat ggagaaagca acaatccgat ggtgactccc cagcaggtac aactaacgac 840
gtattagatg tcttgttaaa catcatcgaa gatgccgaaa tagaagaaaa gccaaataga 900
actgatgttg aacacttctt gttagatttg tttgcagctg gttctgatac cacatcctcc 960
acagtcgaat gggccatgac agaattattg agaaaaccag aaacattaga aagagcaaga 1020
tccgaattac atgaaactat tggtcctgaa aatttggttc aagaagctga cttgcctaga 1080
ttaccatact tgcaagccgt cgttaaggaa acttttagat tgcatccacc agtcccattg 1140
ttattgccta gaaccgctga aaaggatgcc gaattatgcg gtttcactgt tccagctggt 1200
gcacaaatta tggttaacgc ttgggcaata ggtagagacc caggtacttg ggaagatcca 1260
gaatcctttt tgccagaaag attcttaggt tcagacgtcg atgtcaaagg tagatccttt 1320
gaattgatcc catttggtgg tggtagaaga atttgtcctg gtttaccatt ggccatcaga 1380
atggttcatt tgatgttagg tagtttgatt cacggtttta gatggaaagt agatgatgat 1440
ggtatgggtt caccagaaac agctatggac atggacgaaa agttcggtat cacattacaa 1500
aaggcaaagc cattatgcgc cgtccctatc agaggtggtg gtggtggttc tggtggtggt 1560
ggttctggtg gtggtggttc tggtggtggt ggttctatgc aattatcttc agttaaattg 1620
atcccattag atttgatgac agctattttc aatggtggtg gttctccagc aggttctggt 1680
gaagcattgt ctatgttgtt agaaaacaga gaagttgttg ttgcattgac tacatcatta 1740
gctgttttga tcggttgtgt ttttgcttat ttgtggagat tttcttcatc tcaaaaagca 1800
gttgctgctg ctaaaggtgt tgaagttgct agaaaaccag ttattggtaa agaatctgaa 1860
gcagctgaag ttgatgatgg taaaaagaaa gttactattt tctttggtac tcaaacaggt 1920
actgctgaag gttttgcaaa agcattggtt gaagaagcaa aagctagata cgaaaaagct 1980
atttttaaat tagttgattt ggatgattat gcagctgaag atgatgaata cgaagaaaaa 2040
ttgaagaaag aaaagttcgc attgtttttc ttggctactt atggtgacgg tgaaccaact 2100
gataacgcag ctagattcta caagtggttc acagaagaaa acgaatctgg tgaatggtta 2160
caaaaattgc aattcggtgt ttttggttta ggtaatagac aatacgaaca tttcaataag 2220
gttgcaaaag ttgttgatga aattttggct gaacaaggtg gtaaaagatt agttccagtt 2280
ggtttgggtg acgatgatca atgtatcgaa gatgatttca ctgcttggag agaattagtt 2340
tggccagaat tggataaatt gttattggat gaagatgatg caacagtttc tactccatat 2400
acagcttcag ttccagaata cagagttgtt tttcatgatt ctccagatga ttatttgcag 2460
aaaaattctt ctaatgctaa cggtcattca atgcatgatg ctcaacatcc atgtagagca 2520
aatgttgctg ttagaagaga attacattct ccattgtcag atagatcatg tactcatttg 2580
gaatttgata ttgcaggtac aggtttggct tatgaaactg gtgaccatgt tggtgtttgt 2640
tgtgaaaatt tgccagaagt tgttgaagaa gcagaaagag ttttaggttt gtctccaggt 2700
atctatttct caattcatgc tgataaggaa gatggtactc cattgggttc atctttacca 2760
ccattgtttc caccatgtac tttaagaaca gcattgactc aacatgctga tttgttgtct 2820
tttccaaaga aagcagcttt attggcattg gcagctcatg cttcagatcc atctgaagct 2880
gatagattga aatatttggc atctccagct ggtaaagatg aatacgcaca atgggttgtt 2940
gcttcacaaa gatcattgtt ggaagttatg gcagaatttc catctgctaa accaccatta 3000
ggtgttttgt ttgcagctgt tgctccaaga ttacaaccaa gattctactc tatttcatct 3060
tcaccaaaga ttgcaccatc taggattcat gttacatgtg ctttggttta cgataaaaca 3120
ccaactggta gaatacataa aggtgtttgt tctacttgga tgaaaaatgc aatgccaaga 3180
gaagaatcac atgattgttc ttgggctcca atcttcgtta gacaatcaaa cttcaaattg 3240
ccatcaaata catctgttcc agttattatg attggtccag gtactggttt agctcctttt 3300
agaggtttct tgcaagaaag attagcattg aaagaagctg gtgttgaatt aggtccagca 3360
atcttgtttt tcggttgtag aaacagaaag atggattaca tctatgaaga tgaattggct 3420
cattttgttg aagcaggtgc tttatctgaa ttgatcgttg cattttcaag agaaggtcca 3480
gctaagcaat acgttcaaca taagatgatg gaaaaagcat ctgaaatttg gaacatgatt 3540
tcagatggtg gttatgttta cgtttgtggt gacgcaaagg gtatggctaa ggatgttcat 3600
agagctttac atacaattgt tcatgaacaa ggttcattgg ataattctaa aactgaatct 3660
atggttaaaa atttgcaaat gaatggtaga tacttgagag atgtttggta aggatcccg 3719
<210> 15
<211> 3485
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 15
ccgctcgaga tggatttctt gtcttgtatc ttgttcgtat tattcgcatg ggcattagtc 60
agagcattac caactttgag tagaggttct aaggcagcct caggtagatt gccacctggt 120
ccagttcctt ggccagtagt cggtaatttg ttaaagttgg gtaacaagcc tcataagagt 180
ttagctgaat tagcaaaaag ttatggtcca attatgtgtt taaaattggg tcacatgacc 240
acaattgtta tctctacccc aacagttgcc aaggaagtct tgcaaaaaca agatgttgcc 300
ttttctaata gaacaacccc agacgccgtt agagcacacg gtcacgactt gtactctatg 360
gcatggttac cagtttcaac cagatggaga acattgagaa agatcagtaa ttcacatatc 420
tttacttcac aaagattaga cgaaaatcat cacttaagaa gaagaaagtt ggacgaatta 480
ttggccagag ttgccgaatc ttccttggtt ggtgctgtag ttgacatggg tgctgttgct 540
ttcttgacca gtttgaactt gttatctaac accgttttct caaaagactt ggttgaacct 600
ggtttaggtg ccgttcaaga aaccaaagaa gtagtctggg gtatgatgga agaagccggt 660
agacctaact tagttgatta ttttcctgtc ttaagaagat tggacccaca aggtatcaga 720
agaagaatga ctggttactt cggtaaaatg ttagaagttt tcggtgacat aatagacgaa 780
agattggaat ggagaaagca acaatccgat ggtgactccc cagcaggtac aactaacgac 840
gtattagatg tcttgttaaa catcatcgaa gatgccgaaa tagaagaaaa gccaaataga 900
actgatgttg aacacttctt gttagatttg tttgcagctg gttctgatac cacatcctcc 960
acagtcgaat gggccatgac agaattattg agaaaaccag aaacattaga aagagcaaga 1020
tccgaattac atgaaactat tggtcctgaa aatttggttc aagaagctga cttgcctaga 1080
ttaccatact tgcaagccgt cgttaaggaa acttttagat tgcatccacc agtcccattg 1140
ttattgccta gaaccgctga aaaggatgcc gaattatgcg gtttcactgt tccagctggt 1200
gcacaaatta tggttaacgc ttgggcaata ggtagagacc caggtacttg ggaagatcca 1260
gaatcctttt tgccagaaag attcttaggt tcagacgtcg atgtcaaagg tagatccttt 1320
gaattgatcc catttggtgg tggtagaaga atttgtcctg gtttaccatt ggccatcaga 1380
atggttcatt tgatgttagg tagtttgatt cacggtttta gatggaaagt agatgatgat 1440
ggtatgggtt caccagaaac agctatggac atggacgaaa agttcggtat cacattacaa 1500
aaggcaaagc cattatgcgc cgtccctatc agaggttgga agaaaactac agctgataga 1560
tctggtgaat tgaagccatt gatgatccca aagtcattga tggctaaaga tgaagatgat 1620
gatttggatt tgggttctgg taaaactaga gtttcaattt tctttggtac tcaaacaggt 1680
actgctgaag gtttcgctaa ggcattgtct gaagaaatta aagcaagata cgaaaaggct 1740
gcagttaaag ttattgattt ggatgattat gctgcagatg atgatcaata cgaagaaaag 1800
ttgaagaaag aaactttggc tttcttttgt gttgcaactt atggtgacgg tgaaccaaca 1860
gataacgctg caagattcta caagtggttc acagaagaaa acgaaagaga tatcaagttg 1920
caacaattag cttatggtgt ttttgcatta ggtaatagac aatacgaaca tttcaataag 1980
atcggtatcg ttttggatga agaattgtgt aagaaaggtg ctaagagatt gattgaagtt 2040
ggtttgggtg acgatgatca atctatcgaa gatgatttca acgcttggaa ggaatctttg 2100
tggtcagaat tggataagtt gttgaaggat gaagatgata agtctgttgc tacaccatat 2160
actgcagtta ttccagaata cagagttgtt actcatgatc caagattcac tacacaaaaa 2220
tctatggaat caaacgttgc taacggtaac actacaatcg atatccatca tccatgtaga 2280
gttgatgttg ctgttcaaaa ggaattgcat acacatgaat ctgatagatc atgtatccat 2340
ttggaattcg atatctctag aacaggtatc acttatgaaa caggtgacca tgttggtgtt 2400
tacgctgaaa atcatgttga aattgttgaa gaagctggta aattgttagg tcattctttg 2460
gatttggttt tctctattca tgctgataaa gaagatggtt ctccattgga atctgctgtt 2520
ccaccaccat ttccaggtcc atgtactttg ggtacaggtt tagctagata tgcagatttg 2580
ttaaatccac caagaaaatc tgctttggtt gcattagctg catacgctac tgaaccatca 2640
gaagcagaaa aattgaaaca tttgacatct ccagatggta aagatgaata ttcacaatgg 2700
attgttgctt ctcaaagatc attgttagaa gttatggctg catttccatc tgctaaacca 2760
ccattgggtg ttttctttgc tgcaattgca ccaagattgc aaccaagata ctactcaatc 2820
tcttcatctc caagattggc tccatctaga gttcatgtta cttcagcatt agtttacggt 2880
ccaacaccaa ctggtagaat tcataaaggt gtttgttcta catggatgaa aaatgctgtt 2940
ccagcagaaa aatctcatga atgttcaggt gctccaattt tcattagagc atcaaacttc 3000
aagttgccat ctaacccatc aactccaatt gttatggttg gtccaggtac aggtttagct 3060
ccttttagag gtttcttgca agaaagaatg gcattaaaag aagatggtga agaattgggt 3120
tcatctttgt tgtttttcgg ttgtagaaat agacaaatgg atttcatcta tgaagatgaa 3180
ttgaacaact ttgttgatca aggtgttatt tctgaattga tcatggcttt ttcaagagaa 3240
ggtgcacaaa aggaatacgt tcaacataag atgatggaaa aagctgcaca agtttgggat 3300
ttgattaaag aagaaggtta tttgtacgtt tgtggtgacg ctaagggtat ggcaagagat 3360
gttcatagaa ctttgcatac aatcgttcaa gaacaagaag gtgtttcatc ttcagaagct 3420
gaagcaattg ttaagaaatt gcaaactgaa ggtagatatt tgagagatgt ttggtaagga 3480
tcccg 3485
<210> 16
<211> 3623
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 16
atgtctccag ctactgctgt tattttgaca ttgttagttg ctttgggttt atcaattttg 60
ttgagaagga gacaaaagag aaataatttg ccaccaggtc caccagcttt gccaatcatc 120
ggtaacatcc atattttggg tactttgcca catcaatctt tgtacaattt ggctaagaaa 180
tacggtccaa ttatgtcaat gagattgggt ttagttccag cagttgttat ttcttcacca 240
gaagctgctg aattggtttt gaaaactcat gatattgttt ttgcttcaag accaagattg 300
caagttgcag attacttcca ttacggtaca aagggtgtta ttttgactga atacggtaca 360
tactggagaa atatgagaag attgtgtact gttaaattgt tgaacacagt taagatcgat 420
tctttcgctg gtactagaaa gaaagaagtt gcatcttttg ttcaatcatt aaaggaagca 480
tctgttgcac ataagatggt taatttgtca gctagagttg caaacgttat cgaaaacatg 540
gtttgtttga tggttattgg tagatcatct gatgaaagat tcaaattgaa ggaagttatt 600
caagaagctg ctcaattggc tggtgctttt aatatcggtg actacgttcc atttttaatg 660
ccattggatt tgcaaggttt gacaagaaga attaaatctg gttctaaagc atttgatgat 720
attttggaag ttattatcga tgaacatgtt caagatatta aagatcatga tgatgaacaa 780
catggtgact tcatcgatgt tttgttggct atgatgaata agccaatgga ttcaagagaa 840
ggtttgtcaa tcatcgatag aactaacatc aaagctattt tggttgatat gattggtgct 900
gcaatggata cttctacatc aggtgttgaa tgggcaattt ctgaattaat taaacatcca 960
agagttatga agaaattgca agatgaagtt aaaacagtta ttggtatgaa cagaatggtt 1020
gaagaagctg atttgccaaa attgccatac ttggatatgg ttgttaagga aactatgaga 1080
ttacatccac caggtccatt gttagttcca agagaatcta tggaagatat tacaattaat 1140
ggttactaca ttccaaagaa atcaagaatt attgttaatg cttgggcaat tggtagagat 1200
actaatgctt ggtctaataa tgcacatgaa tttttcccag aaagattcat gtcatctaat 1260
gttgatttgc aaggtcaaga ttttcaattg attccatttg gttcaggtag aagaggttgt 1320
ccaggtatga gattgggttt aactacagtt agattggttt tagctcaatt gatccattgt 1380
ttcgatttgg aattaccaaa gggtactgtt gcaactgatt tggatatgtc tgaaaagttc 1440
ggtttggcta tgccaagagc acaacatttg ttggcttttc caacatacag attggaatca 1500
atgcaattat cttcagttaa attgatccca ttagatttga tgacagctat tttcaatggt 1560
ggtggttctc cagcaggttc tggtgaagca ttgtctatgt tgttagaaaa cagagaagtt 1620
gttgttgcat tgactacatc attagctgtt ttgatcggtt gtgtttttgc ttatttgtgg 1680
agattttctt catctcaaaa agcagttgct gctgctaaag gtgttgaagt tgctagaaaa 1740
ccagttattg gtaaagaatc tgaagcagct gaagttgatg atggtaaaaa gaaagttact 1800
attttctttg gtactcaaac aggtactgct gaaggttttg caaaagcatt ggttgaagaa 1860
gcaaaagcta gatacgaaaa agctattttt aaattagttg atttggatga ttatgcagct 1920
gaagatgatg aatacgaaga aaaattgaag aaagaaaagt tcgcattgtt tttcttggct 1980
acttatggtg acggtgaacc aactgataac gcagctagat tctacaagtg gttcacagaa 2040
gaaaacgaat ctggtgaatg gttacaaaaa ttgcaattcg gtgtttttgg tttaggtaat 2100
agacaatacg aacatttcaa taaggttgca aaagttgttg atgaaatttt ggctgaacaa 2160
ggtggtaaaa gattagttcc agttggtttg ggtgacgatg atcaatgtat cgaagatgat 2220
ttcactgctt ggagagaatt agtttggcca gaattggata aattgttatt ggatgaagat 2280
gatgcaacag tttctactcc atatacagct tcagttccag aatacagagt tgtttttcat 2340
gattctccag atgattattt gcagaaaaat tcttctaatg ctaacggtca ttcaatgcat 2400
gatgctcaac atccatgtag agcaaatgtt gctgttagaa gagaattaca ttctccattg 2460
tcagatagat catgtactca tttggaattt gatattgcag gtacaggttt ggcttatgaa 2520
actggtgacc atgttggtgt ttgttgtgaa aatttgccag aagttgttga agaagcagaa 2580
agagttttag gtttgtctcc aggtatctat ttctcaattc atgctgataa ggaagatggt 2640
actccattgg gttcatcttt accaccattg tttccaccat gtactttaag aacagcattg 2700
actcaacatg ctgatttgtt gtcttttcca aagaaagcag ctttattggc attggcagct 2760
catgcttcag atccatctga agctgataga ttgaaatatt tggcatctcc agctggtaaa 2820
gatgaatacg cacaatgggt tgttgcttca caaagatcat tgttggaagt tatggcagaa 2880
tttccatctg ctaaaccacc attaggtgtt ttgtttgcag ctgttgctcc aagattacaa 2940
ccaagattct actctatttc atcttcacca aagattgcac catctaggat tcatgttaca 3000
tgtgctttgg tttacgataa aacaccaact ggtagaatac ataaaggtgt ttgttctact 3060
tggatgaaaa atgcaatgcc aagagaagaa tcacatgatt gttcttgggc tccaatcttc 3120
gttagacaat caaacttcaa attgccatca aatacatctg ttccagttat tatgattggt 3180
ccaggtactg gtttagctcc ttttagaggt ttcttgcaag aaagattagc attgaaagaa 3240
gctggtgttg aattaggtcc agcaatcttg tttttcggtt gtagaaacag aaagatggat 3300
tacatctatg aagatgaatt ggctcatttt gttgaagcag gtgctttatc tgaattgatc 3360
gttgcatttt caagagaagg tccagctaag caatacgttc aacataagat gatggaaaaa 3420
gcatctgaaa tttggaacat gatttcagat ggtggttatg tttacgtttg tggtgacgca 3480
aagggtatgg ctaaggatgt tcatagagct ttacatacaa ttgttcatga acaaggttca 3540
ttggataatt ctaaaactga atctatggtt aaaaatttgc aaatgaatgg tagatacttg 3600
agagatgttt ggtaaggatc ccg 3623
<210> 17
<211> 3441
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 17
atgtctccag ctactgctgt tattttgaca ttgttagttg ctttgggttt atcaattttg 60
ttgagaagga gacaaaagag aaataatttg ccaccaggtc caccagcttt gccaatcatc 120
ggtaacatcc atattttggg tactttgcca catcaatctt tgtacaattt ggctaagaaa 180
tacggtccaa ttatgtcaat gagattgggt ttagttccag cagttgttat ttcttcacca 240
gaagctgctg aattggtttt gaaaactcat gatattgttt ttgcttcaag accaagattg 300
caagttgcag attacttcca ttacggtaca aagggtgtta ttttgactga atacggtaca 360
tactggagaa atatgagaag attgtgtact gttaaattgt tgaacacagt taagatcgat 420
tctttcgctg gtactagaaa gaaagaagtt gcatcttttg ttcaatcatt aaaggaagca 480
tctgttgcac ataagatggt taatttgtca gctagagttg caaacgttat cgaaaacatg 540
gtttgtttga tggttattgg tagatcatct gatgaaagat tcaaattgaa ggaagttatt 600
caagaagctg ctcaattggc tggtgctttt aatatcggtg actacgttcc atttttaatg 660
ccattggatt tgcaaggttt gacaagaaga attaaatctg gttctaaagc atttgatgat 720
attttggaag ttattatcga tgaacatgtt caagatatta aagatcatga tgatgaacaa 780
catggtgact tcatcgatgt tttgttggct atgatgaata agccaatgga ttcaagagaa 840
ggtttgtcaa tcatcgatag aactaacatc aaagctattt tggttgatat gattggtgct 900
gcaatggata cttctacatc aggtgttgaa tgggcaattt ctgaattaat taaacatcca 960
agagttatga agaaattgca agatgaagtt aaaacagtta ttggtatgaa cagaatggtt 1020
gaagaagctg atttgccaaa attgccatac ttggatatgg ttgttaagga aactatgaga 1080
ttacatccac caggtccatt gttagttcca agagaatcta tggaagatat tacaattaat 1140
ggttactaca ttccaaagaa atcaagaatt attgttaatg cttgggcaat tggtagagat 1200
actaatgctt ggtctaataa tgcacatgaa tttttcccag aaagattcat gtcatctaat 1260
gttgatttgc aaggtcaaga ttttcaattg attccatttg gttcaggtag aagaggttgt 1320
ccaggtatga gattgggttt aactacagtt agattggttt tagctcaatt gatccattgt 1380
ttcgatttgg aattaccaaa gggtactgtt gcaactgatt tggatatgtc tgaaaagttc 1440
ggtttggcta tgccaagagc acaacatttg ttggcttttc caacatacag attggaatca 1500
tggaagaaaa ctacagctga tagatctggt gaattgaagc cattgatgat cccaaagtca 1560
ttgatggcta aagatgaaga tgatgatttg gatttgggtt ctggtaaaac tagagtttca 1620
attttctttg gtactcaaac aggtactgct gaaggtttcg ctaaggcatt gtctgaagaa 1680
attaaagcaa gatacgaaaa ggctgcagtt aaagttattg atttggatga ttatgctgca 1740
gatgatgatc aatacgaaga aaagttgaag aaagaaactt tggctttctt ttgtgttgca 1800
acttatggtg acggtgaacc aacagataac gctgcaagat tctacaagtg gttcacagaa 1860
gaaaacgaaa gagatatcaa gttgcaacaa ttagcttatg gtgtttttgc attaggtaat 1920
agacaatacg aacatttcaa taagatcggt atcgttttgg atgaagaatt gtgtaagaaa 1980
ggtgctaaga gattgattga agttggtttg ggtgacgatg atcaatctat cgaagatgat 2040
ttcaacgctt ggaaggaatc tttgtggtca gaattggata agttgttgaa ggatgaagat 2100
gataagtctg ttgctacacc atatactgca gttattccag aatacagagt tgttactcat 2160
gatccaagat tcactacaca aaaatctatg gaatcaaacg ttgctaacgg taacactaca 2220
atcgatatcc atcatccatg tagagttgat gttgctgttc aaaaggaatt gcatacacat 2280
gaatctgata gatcatgtat ccatttggaa ttcgatatct ctagaacagg tatcacttat 2340
gaaacaggtg accatgttgg tgtttacgct gaaaatcatg ttgaaattgt tgaagaagct 2400
ggtaaattgt taggtcattc tttggatttg gttttctcta ttcatgctga taaagaagat 2460
ggttctccat tggaatctgc tgttccacca ccatttccag gtccatgtac tttgggtaca 2520
ggtttagcta gatatgcaga tttgttaaat ccaccaagaa aatctgcttt ggttgcatta 2580
gctgcatacg ctactgaacc atcagaagca gaaaaattga aacatttgac atctccagat 2640
ggtaaagatg aatattcaca atggattgtt gcttctcaaa gatcattgtt agaagttatg 2700
gctgcatttc catctgctaa accaccattg ggtgttttct ttgctgcaat tgcaccaaga 2760
ttgcaaccaa gatactactc aatctcttca tctccaagat tggctccatc tagagttcat 2820
gttacttcag cattagttta cggtccaaca ccaactggta gaattcataa aggtgtttgt 2880
tctacatgga tgaaaaatgc tgttccagca gaaaaatctc atgaatgttc aggtgctcca 2940
attttcatta gagcatcaaa cttcaagttg ccatctaacc catcaactcc aattgttatg 3000
gttggtccag gtacaggttt agctcctttt agaggtttct tgcaagaaag aatggcatta 3060
aaagaagatg gtgaagaatt gggttcatct ttgttgtttt tcggttgtag aaatagacaa 3120
atggatttca tctatgaaga tgaattgaac aactttgttg atcaaggtgt tatttctgaa 3180
ttgatcatgg ctttttcaag agaaggtgca caaaaggaat acgttcaaca taagatgatg 3240
gaaaaagctg cacaagtttg ggatttgatt aaagaagaag gttatttgta cgtttgtggt 3300
gacgctaagg gtatggcaag agatgttcat agaactttgc atacaatcgt tcaagaacaa 3360
gaaggtgttt catcttcaga agctgaagca attgttaaga aattgcaaac tgaaggtaga 3420
tatttgagag atgtttggta a 3441

Claims (7)

1. An expression cassette combination, sequentially connected with the following components from 5 'to 3': screening the gene expression cassette, mva + EGFP expression cassette, erg20 expression cassette, saSS-delta expression cassette and P76F39V 1-delta expression cassette;
the nucleotide sequence of the mva + EGFP expression cassette is shown in SEQ ID NO:2 is shown in the figure;
the nucleotide sequence of the SaSS-delta expression cassette is shown as SEQ ID NO:3 is shown in the figure;
the nucleotide sequence of the erg20 expression cassette is shown in SEQ ID NO:4 is shown in the figure;
the nucleotide sequence of the P76F39V 1-delta expression cassette is shown in SEQ ID NO:5 is shown in the figure;
the screening gene expression cassette comprises a delta first half-URA 3 expression cassette; the nucleotide sequence of the delta first half-URA 3 expression cassette is shown in SEQ ID NO: 1.
2. A recombinant vector comprising the expression cassette combination of claim 1.
3. A recombinant saccharomyces cerevisiae having the genome of saccharomyces cerevisiae as a vector, into which the expression cassette combination of claim 1 is inserted.
4. The recombinant s.cerevisiae according to claim 3, wherein the 5' end of the ERG9 gene of the recombinant s.cerevisiae is further inserted with P HXT1 Promoters or P ERG1 A promoter; the P is HXT1 The nucleotide sequence of the promoter is shown in SEQ ID NO: shown as 9; the P is ERG1 The nucleotide sequence of the promoter is shown in SEQ ID NO: shown at 10.
5. The recombinant s.cerevisiae according to claim 3, wherein the genome of the recombinant s.cerevisiae is further inserted withCYP736A167And a fusion gene of CPR gene;
the saidCYP736A167The nucleotide sequence of (2) is shown as SEQ ID NO:6 is shown in the figure;
the CPR gene isSa-CPR2Or 46tATR1; the saidSa-CPR2Such as the nucleotide sequence of SEQ ID NO: shown in figure 7; the nucleotide sequence of the 46tATR1 is shown as SEQ ID NO: shown at 8.
6. Use of the expression cassette combination of claim 1, the recombinant vector of claim 2, the recombinant saccharomyces cerevisiae of claim 3 or 4 for the preparation of santalene.
7. The use of the recombinant s.cerevisiae according to claim 5 for the preparation of santalol.
CN202111289345.XA 2021-11-02 2021-11-02 Expression cassette combination, recombinant vector, recombinant saccharomyces cerevisiae and application of recombinant saccharomyces cerevisiae Active CN114181964B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111289345.XA CN114181964B (en) 2021-11-02 2021-11-02 Expression cassette combination, recombinant vector, recombinant saccharomyces cerevisiae and application of recombinant saccharomyces cerevisiae

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111289345.XA CN114181964B (en) 2021-11-02 2021-11-02 Expression cassette combination, recombinant vector, recombinant saccharomyces cerevisiae and application of recombinant saccharomyces cerevisiae

Publications (2)

Publication Number Publication Date
CN114181964A CN114181964A (en) 2022-03-15
CN114181964B true CN114181964B (en) 2023-06-09

Family

ID=80540596

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111289345.XA Active CN114181964B (en) 2021-11-02 2021-11-02 Expression cassette combination, recombinant vector, recombinant saccharomyces cerevisiae and application of recombinant saccharomyces cerevisiae

Country Status (1)

Country Link
CN (1) CN114181964B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102245778A (en) * 2008-12-11 2011-11-16 弗门尼舍有限公司 Method for producing beta-santalene
CN103608454A (en) * 2011-02-02 2014-02-26 阿迈瑞斯公司 Methods of developing terpene synthase variants
CN104039973A (en) * 2012-01-06 2014-09-10 弗门尼舍有限公司 Genetically engineered yeast cells
CN104789638A (en) * 2007-07-23 2015-07-22 帝斯曼知识产权资产管理有限公司 Butanol production in a eukaryotic cell
CN105018352A (en) * 2015-07-23 2015-11-04 云南大学 Fungal strain capable of producing kojic acid and preparation method of fungal strain
KR20160018212A (en) * 2014-08-08 2016-02-17 경상대학교산학협력단 METHOD OF PRODUCING α-SANTALENE
CN106434731A (en) * 2016-09-20 2017-02-22 云南大学 Method for increasing yield of elaiophylin and derivatives by knocking out almRIII gene of streptomyces autolyticus wild strain and conducting fermenting

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112015003329A2 (en) * 2012-08-17 2017-09-26 Evolva Sa increased production of terpenes and terpenoids
WO2015040197A1 (en) * 2013-09-19 2015-03-26 Laurent Daviet Method for producing fragrant alcohols
SG11201701278RA (en) * 2014-08-21 2017-03-30 Manus Biosynthesis Inc Methods for production of oxygenated terpenes
DE102015103608A1 (en) * 2015-03-11 2016-09-15 Basf Se Process for the microbial de novo synthesis of terpenes
JPWO2018079619A1 (en) * 2016-10-28 2019-09-19 積水化学工業株式会社 Recombinant cells and method for producing isoprene or terpene
WO2018111194A1 (en) * 2016-12-16 2018-06-21 Temasek Life Sciences Laboratory Limited Targets for improving terpene production in rhodosporidium toruloides
CN110452931A (en) * 2018-05-08 2019-11-15 中国科学院微生物研究所 A kind of method of squalene content in raising yeast
CN109234291B (en) * 2018-09-25 2021-05-14 山西大学 Polygala tenuifolia oleanolic acid synthase gene PtOAS and application thereof
CN111434773B (en) * 2019-01-15 2021-06-18 天津大学 Recombinant yeast for high-yield sandalwood oil and construction method and application thereof
BR112021015766A2 (en) * 2019-02-11 2021-11-03 Servier Lab Method of biosynthesis of diosmin and/or hesperidin in a microorganism
CN112779242B (en) * 2019-11-07 2023-03-28 四川弘合生物科技有限公司 Plum tree monoterpene synthase CbTPS1 and related biological material and application thereof
CN112852650B (en) * 2019-11-27 2023-04-14 暨南大学 Saccharomyces cerevisiae engineering bacterium for high yield of santalene and santalol and construction method and application thereof
CN111235046A (en) * 2020-02-05 2020-06-05 天津大学 Recombinant yarrowia lipolytica for heterologous synthesis of α -santalene and construction method thereof
CN112608936B (en) * 2020-11-24 2023-06-09 宜昌东阳光生化制药有限公司 Promoter for regulating and controlling expression of exogenous gene of yeast, regulating and controlling method and application thereof
CN114085784B (en) * 2021-10-09 2023-12-22 浙江大学杭州国际科创中心 Recombinant yeast for high expression of cytochrome P450 and application thereof
CN114507613B (en) * 2022-01-26 2024-02-02 浙江大学杭州国际科创中心 Yeast engineering bacteria for producing alpha-santalene by fermentation and application thereof
CN115786389A (en) * 2022-12-29 2023-03-14 李德芳 Saccharomyces cerevisiae engineering bacterium for high-yield santalol as well as construction method and application thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104789638A (en) * 2007-07-23 2015-07-22 帝斯曼知识产权资产管理有限公司 Butanol production in a eukaryotic cell
CN102245778A (en) * 2008-12-11 2011-11-16 弗门尼舍有限公司 Method for producing beta-santalene
CN104004789A (en) * 2008-12-11 2014-08-27 弗门尼舍有限公司 Method for producing beta-santalene
CN103608454A (en) * 2011-02-02 2014-02-26 阿迈瑞斯公司 Methods of developing terpene synthase variants
CN104039973A (en) * 2012-01-06 2014-09-10 弗门尼舍有限公司 Genetically engineered yeast cells
KR20160018212A (en) * 2014-08-08 2016-02-17 경상대학교산학협력단 METHOD OF PRODUCING α-SANTALENE
CN105018352A (en) * 2015-07-23 2015-11-04 云南大学 Fungal strain capable of producing kojic acid and preparation method of fungal strain
CN106434731A (en) * 2016-09-20 2017-02-22 云南大学 Method for increasing yield of elaiophylin and derivatives by knocking out almRIII gene of streptomyces autolyticus wild strain and conducting fermenting

Also Published As

Publication number Publication date
CN114181964A (en) 2022-03-15

Similar Documents

Publication Publication Date Title
JP5350806B2 (en) System for producing aromatic molecules by biotransformation
CN112852650B (en) Saccharomyces cerevisiae engineering bacterium for high yield of santalene and santalol and construction method and application thereof
CN111205993A (en) Recombinant yeast for producing ursolic acid and oleanolic acid as well as construction method and application thereof
CN113604374B (en) Genetically engineered bacterium for efficiently producing carotenoid, construction method and application thereof
CN111235046A (en) Recombinant yarrowia lipolytica for heterologous synthesis of α -santalene and construction method thereof
CN110982720A (en) Recombinant yarrowia lipolytica producing dammarane diol and protopanoxadiol and use thereof
CN115851810A (en) Engineering strain for de novo synthesis of naringenin by saccharomyces cerevisiae and construction method and application thereof
CN109628420B (en) Glucosyltransferase and application thereof in producing vanillin-alpha-D-glucoside
CN112391300B (en) Application of flavone 3 beta-hydroxylase derived from silybum marianum and coenzyme thereof
CN114181964B (en) Expression cassette combination, recombinant vector, recombinant saccharomyces cerevisiae and application of recombinant saccharomyces cerevisiae
CN113564090A (en) Construction method and application of recombinant strain for producing tetrahydropyrimidine
US6642036B2 (en) Sinapoylglucose:malate sinapoyltransferase form malate conjugates from benozic acid glucosides
CN115976118B (en) Method and carrier for biosynthesis of nocardomperidone
CN111154665A (en) Recombinant yarrowia lipolytica and construction method and application thereof
CN111334522A (en) Recombinant saccharomyces cerevisiae for producing ambergris alcohol and construction method thereof
CN114806913B (en) High-yield succinic acid yeast engineering strain with mitochondria positioning reduction TCA pathway, construction method and application thereof
KR20130118279A (en) Recombinant microorganism with kaurene, kauronic acid, or steviol production ability and method for preparing kaurene, kauronic acid, or steviol using the same
CN114561311B (en) Construction and application of saccharomyces cerevisiae strain capable of extracellular transport of retinol and retinol
CN113249241B (en) Construction and application of saccharomyces cerevisiae protease deletion strain
CN112852847B (en) Recombinant saccharomyces cerevisiae strain and construction method and application thereof
CN111041040A (en) Recombinant saccharomyces cerevisiae for producing levopimaric diene and levopimaric acid and construction method
CN113025506A (en) Recombinant filamentous fungus for producing ethanol and construction and application thereof
EP1642977B1 (en) Gene involved in growth-promoting function of acetic acid bacteria and uses thereof
EP0804560A1 (en) Plant xylose isomerase
CN114410674B (en) Transgenic system for improving content of chlamydomonas hemiterpene and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant