CN111235046A - Recombinant yarrowia lipolytica for heterologous synthesis of α -santalene and construction method thereof - Google Patents

Recombinant yarrowia lipolytica for heterologous synthesis of α -santalene and construction method thereof Download PDF

Info

Publication number
CN111235046A
CN111235046A CN202010080980.6A CN202010080980A CN111235046A CN 111235046 A CN111235046 A CN 111235046A CN 202010080980 A CN202010080980 A CN 202010080980A CN 111235046 A CN111235046 A CN 111235046A
Authority
CN
China
Prior art keywords
gene
yarrowia lipolytica
seq
santalene
recombinant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010080980.6A
Other languages
Chinese (zh)
Inventor
卢文玉
张传波
贾丹
魏盼盼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202010080980.6A priority Critical patent/CN111235046A/en
Publication of CN111235046A publication Critical patent/CN111235046A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1229Phosphotransferases with a phosphate group as acceptor (2.7.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/007Preparation of hydrocarbons or halogenated hydrocarbons containing one or more isoprene units, i.e. terpenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01034Hydroxymethylglutaryl-CoA reductase (NADPH) (1.1.1.34)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/04Phosphotransferases with a phosphate group as acceptor (2.7.4)
    • C12Y207/04002Phosphomevalonate kinase (2.7.4.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • C12Y402/0305(+)-Alpha-santalene synthase ((2Z,6Z)-farnesyl diphosphate cyclizing)(4.2.3.50)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention discloses a recombinant yarrowia lipolytica for heterologous synthesis of α -santalene and a construction method thereof, wherein the construction method comprises the following steps of (1) introducing an optimized α -santalene synthase coding gene STS into yarrowia lipolytica to obtain a recombinant bacterium 1, respectively improving the activities of HMG1, tHMG1, ERG8 and ERG10 on the basis of the recombinant bacterium 1, and improving the yield of α -santalene by the obtained recombinant yarrowia lipolytica for heterologous synthesis of α -santalene, and the method provides a basis for artificial synthesis of α -santalene.

Description

Recombinant yarrowia lipolytica for heterologous synthesis of α -santalene and construction method thereof
Technical Field
The invention relates to the technical field of biology, in particular to recombinant yarrowia lipolytica for heterologous synthesis of α -santalene and a construction method thereof.
Background
The synthetic biology is widely applied to the development and production of medicinal natural compounds, and different types of natural medicines and precursors thereof, such as alkaloid isoquinoline, isochinoside, polyketone 6-deoxyerythronolide B, benzenediol lactone, flavone/stilbene resveratrol, mandelic acid, terpenoid artemisinic acid, lycopene, astaxanthin, β -carotene, tanshinone diene and the like are successfully synthesized in heterologous microbial hosts.
The santalol oil has the main components of rare traditional Chinese medicines and the spice santalol, α -santalene is a sesquiterpene and is a precursor of α -santalol, the santalol contains more than 90% of santalol, the proportion of α - β -santalol is about 2:1, the santalol oil has wide commercial application and can be used for manufacturing fragrance and aromatherapy, the santalol oil has the effects of promoting qi circulation, relieving pain, warming stomach and stopping vomit, researches show that the santalol oil is a chemotherapeutic potential drug (Dwivediet al, 2003) for resisting skin cancer, the main source of the santalol oil is obtained by distilling a Santalum core material, the santalol is a hemiparasitic plant and grows very slowly, the santalol oil grows for tens of years, the plant extraction of the santalol oil not only consumes time and has a price, but also trees can cause damage to the natural environment, the santalol oil (Santalbuman L) is obtained by directly catalyzing santalol precursor of santalol 2-santalol, the santalol precursor of santalol by a yeast, the method, the santalol can be synthesized into a santalol precursor of a high-santalol, and the santalol, the santalol oil can be synthesized by a high-santalol, the direct synthesis method, and the santalol precursor of the sant.
Yarrowia lipolytica, a GRAS (genetic regulated as safe) non-conventional yeast, has been studied to show that it is suitable as a terpenoid production underpan cell, wherein the synthesis of the tetraterpene compound β -carotene is achieved in yarrowia lipolytica and the highest yield of current microbial heterologous synthesis of 4g/L is reached (Shuliang Gao et al, Metabolic Engineering,2017), the sesquiterpene compound α -farnesene is first synthesized in yarrowia lipolytica and yields of 259.98mg/L are achieved (Xiaoan Yang et al, Bioresource Technology,2016), the monoterpene compound limonene also achieves 23.56mg/L in yarrowia lipolytica (Xuan Cao et al Biotechnology for biofuels,2016), however, no synthetic biological methods are used to achieve the synthesis of α -heterologous santalene in yarrowia lipolytica, see also for heterologous yarrowia.
Disclosure of Invention
The invention aims to overcome the defects of the prior art and provides a construction method of recombinant yarrowia lipolytica for heterologous synthesis of α -santalene.
The second objective of the invention is to provide a construction method of a second recombinant yarrowia lipolytica for the heterologous synthesis of α -santalene.
The third objective of the invention is to provide a construction method of a third recombinant yarrowia lipolytica for the heterologous synthesis of α -santalene.
The fourth objective of the invention is to provide a construction method of a fourth recombinant yarrowia lipolytica for the heterologous synthesis of α -santalene.
The fifth objective of the invention is to provide a method for constructing a fifth recombinant yarrowia lipolytica for the heterologous synthesis of α -santalene.
The sixth object of the present invention is to provide a method for constructing the sixth recombinant yarrowia lipolytica for the heterologous synthesis of α -santalene.
The seventh purpose of the invention is to provide the recombinant yarrowia lipolytica for heterologous synthesis of α -santalene constructed by the construction method of the recombinant yarrowia lipolytica for heterologous synthesis of α -santalene.
An eighth object of the present invention is to provide the use of a recombinant yarrowia lipolytica fermentation of the above-described individual heterosynthesization of α -santalene to produce α -santalene.
The technical scheme of the invention is summarized as follows:
a method of constructing a recombinant yarrowia lipolytica for the heterologous synthesis of α -santalene, comprising the steps of:
(1) introducing an optimized α -santalene synthase coding gene STS into Yarrowia lipolytica (Yarrowia lipolytica) ATCC201249 to obtain a recombinant bacterium 1, wherein the nucleotide sequence of the gene STS is shown as SEQ ID NO. 1;
(2) introducing a coding gene HMG1 of 3-hydroxy-3-methylglutaryl coenzyme A reductase into the recombinant bacterium 1 to obtain a recombinant bacterium 2; the nucleotide sequence of the gene HMG1 is shown as SEQ ID NO. 2.
A second method of constructing a recombinant yarrowia lipolytica for the heterologous synthesis of α -santalene, comprising the steps of:
(1) introducing an optimized α -santalene synthase coding gene STS into Yarrowia lipolytica (Yarrowia lipolytica) ATCC201249 to obtain a recombinant bacterium 1, wherein the nucleotide sequence of the gene STS is shown as SEQ ID NO.1, 1500 nucleotides at the 5' end of a coding gene HMG1 of 3-hydroxy-3-methylglutaryl coenzyme A reductase are removed to obtain a truncated coding gene tHMG1 of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the nucleotide sequence of the gene HMG1 is shown as SEQ ID NO.2, and the nucleotide sequence of the gene tHMG1 is shown as SEQ ID NO. 3;
(2) the gene tHMG1 was introduced into recombinant bacterium 1 to obtain recombinant bacterium 3.
A method for constructing a third recombinant yarrowia lipolytica for the heterologous synthesis of α -santalene, comprising the steps of:
(1) introducing an optimized α -santalene synthase coding gene STS into Yarrowia lipolytica (Yarrowia lipolytica) ATCC201249 to obtain a recombinant bacterium 1, wherein the nucleotide sequence of the gene STS is shown as SEQ ID NO. 1;
(2) introducing an encoding gene ERG8 of phosphomevalonate kinase into the recombinant bacterium 1 to obtain a recombinant bacterium 4; the nucleotide sequence of the gene ERG8 is shown in SEQ ID NO. 4.
A fourth method for constructing a recombinant yarrowia lipolytica for the heterologous synthesis of α -santalene, comprising the steps of:
(1) introducing an optimized α -santalene synthase coding gene STS into Yarrowia lipolytica (Yarrowia lipolytica) ATCC201249 to obtain a recombinant bacterium 1, wherein the nucleotide sequence of the gene STS is shown as SEQ ID NO. 1;
(2) introducing an acetoacetyl-CoA thiolase encoding gene ERG10 into the recombinant strain 1 to obtain a recombinant strain 5; the nucleotide sequence of the gene ERG10 is shown in SEQ ID NO. 5.
A fifth method for constructing a recombinant yarrowia lipolytica for the heterologous synthesis of α -santalene, comprising the steps of:
(1) introducing an optimized α -santalene synthase coding gene STS into Yarrowia lipolytica (Yarrowia lipolytica) ATCC201249 to obtain a recombinant bacterium 1, wherein the nucleotide sequence of the gene STS is shown as SEQ ID NO. 1;
(2) introducing a coding gene HMG1 of 3-hydroxy-3-methylglutaryl coenzyme A reductase and a coding gene ERG8 of phosphomevalonate kinase into the recombinant bacterium 1 to obtain a recombinant bacterium 6; the nucleotide sequence of the gene HMG1 is shown as SEQ ID NO. 2; the nucleotide sequence of the gene ERG8 is shown in SEQ ID NO. 4.
A sixth method for constructing a recombinant yarrowia lipolytica for the heterologous synthesis of α -santalene, comprising the steps of:
(1) introducing an optimized α -santalene synthase coding gene STS into Yarrowia lipolytica (Yarrowia lipolytica) ATCC201249 to obtain a recombinant bacterium 1, wherein the nucleotide sequence of the gene STS is shown as SEQ ID NO.1, 1500 nucleotides at the 5' end of a coding gene HMG1 of 3-hydroxy-3-methylglutaryl coenzyme A reductase are removed to obtain a truncated coding gene tHMG1 of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the nucleotide sequence of the gene HMG1 is shown as SEQ ID NO.2, and the nucleotide sequence of the gene tHMG1 is shown as SEQ ID NO. 3;
(2) introducing a gene tHMG1 and a coding gene ERG8 of phosphomevalonate kinase into the recombinant bacterium 1 to obtain a recombinant bacterium 7; the nucleotide sequence of the gene ERG8 is shown in SEQ ID NO. 4.
The recombinant yarrowia lipolytica for heterologous synthesis of α -santalene constructed by the construction method.
Use of the recombinant yarrowia lipolytica fermentation of the above-described heterologous synthesis of α -santalene for the production of α -santalene.
The invention has the advantages that:
experiments prove that the recombinant yarrowia lipolytica for heterologous synthesis of α -santalene obtained by the method improves the yield of α -santalene, and the method provides a basis for artificial synthesis of α -santalene.
Detailed Description
The original strain is yarrowia lipolytica ATCC201249, hereinafter abbreviated as yarrowia lipolytica.
Yarrowia lipolytica (Yarrowia lipolytica)
Purchase time, 2017.6 website https:// www.atcc.org
The present invention will be further illustrated by the following specific examples.
The experimental procedures used in the following examples are all conventional ones unless otherwise specified.
Materials, reagents and the like used in the following examples are commercially available unless otherwise specified.
Example 1, α construction of yarrowia lipolytica recombinant YL-STS of santalene
First, module construction
α -Sandalene synthase coding gene (α -santalene synthase, STS, GenBank: HQ452480) is derived from Chinese wampee (Clausena lansium) and is responsible for codon optimization and total chemical synthesis aiming at yarrowia lipolytica by the Ghan Kimura corporation to obtain an optimized α -Sandalene synthase coding gene, and the nucleotide sequence of the optimized α -Sandalene synthase coding gene is shown as SEQ ID NO. 1;
the promoter TEF1(SEQ ID NO.6), the terminator XPR2(SEQ ID NO.7), rDNA-up (SEQ ID NO.13) and rDNA-down (SEQ ID NO.14) are all from yarrowia lipolytica ATCC201249 genome, and the sequence of the screening marker gene URA3(SEQ ID NO.11) is from yarrowia lipolytica ATCC201249 and is synthesized by a chemical synthesis method by K.K.;
taking yarrowia lipolytica ATCC201249 genome as a template,
rDNA-up is amplified by taking rDNA-up-F (SEQ ID NO.17) and rDNA-up-R-tef (SEQ ID NO.18) as primers;
TEF1p-F-rdnaup (SEQ ID NO.19) and TEF1 p-R-oppST (SEQ ID NO.20) are used as primers to amplify a promoter TEF 1;
opSTS-F-tef (SEQ ID NO.21) and opSTS-R-xpr (SEQ ID NO.22) are used as primers to amplify STS (the nucleotide sequence of the optimized α -santalene synthase coding gene STS is shown as SEQ ID NO. 1);
XPR2 t-F-oppSTS (SEQ ID NO.23) and XPR2t-R-ura (SEQ ID NO.24) are used as primer amplification terminators XPR 2;
URA3 is amplified by using URA-F-xpr (SEQ ID NO.25) and URA-R-rdnadown (SEQ ID NO.26) as primers;
rDNA-down was amplified using rDNA-F-ura (SEQ ID NO.27) and rDNA-down-R (SEQ ID NO.28) as primers.
The PCR enzyme used in the present invention is that of Nanjing NuoZan Biotech Co., Ltd
Figure BDA0002380306120000041
Max Super-Fidelity polymerase. A50. mu.L PCR amplification system was as follows: DNA template, 1. mu.L; 2 μ L of each of the front lead (10 μ M) and the rear lead (10 μ M); dNTP (10mM), 1. mu.L; 2 × Phanta Max Buffer, 25 μ L;
Figure BDA0002380306120000042
max Super-Fidelity polymerase, 1 μ L; finally, 50 mu L of double distilled water is used for supplementing. An amplification program is set up on the PCR instrument. The amplification conditions were 95 ℃ pre-denaturation for 4min (1 cycle); denaturation at 95 ℃ for 15sec, annealing at 60 ℃ for 15sec, and extension at 72 ℃ for 1min (34 cycles); extension at 72 ℃ for 5min (1 cycle).
The fusion PCR system used in the invention is as follows: the total amount of DNA fragments is 800ng, and the molar ratio is 1: 1; dNTP (10mM), 1. mu.L; 2 × Phanta Max Buffer, 25 μ L;
Figure BDA0002380306120000051
max Super-Fidelity polymerase, 1 μ L; finally, 50 mu L of double distilled water is used for supplementing. An amplification program is set up on the PCR instrument. The amplification conditions were 95 ℃ pre-denaturation for 4min (1 cycle); denaturation at 95 ℃ for 15sec, annealing at 60 ℃ for 30sec, extension at 72 ℃ for 1min (11 cycles), and extension at 72 ℃ for 5min (1 cycle).
Finally obtaining DNA fragments used for transforming yarrowia lipolytica, and respectively connecting with gene STS expression cassette P of upstream homology arm rDNaupTEF1-STS-TXPR2And a downstream homology arm URA3-rDNAdown containing the selection marker gene URA 3.
Yarrowia lipolytica transformation
The initial strain yarrowia lipolytica ATCC201249 was cultured in YPD medium for 12 hours, and 300. mu.L of the initial strain was added to 3mL of fresh YPD medium and cultured for 5 hours. Centrifuging at 3000rpm for 5min, collecting thallus, discarding supernatant, and sterilizing with ddH2The cells were washed with O, centrifuged at 3000rpm for 5min, the cells were collected, and the supernatant was discarded. Then, 1mL of 100mM lithium acetate was added to the cells, the cells were suspended uniformly by gentle pipetting, the cells were left at room temperature for 5min and then centrifuged at 3000rpm at room temperature for 5min, and the cells were collected to prepare yeast competent cells. The transformation mixed system comprises 240 mu L of PEG (50% W/V), 36 mu L of 1.0M lithium acetate and 10 mu L of ss-DNA, and transformation fragments are respectively connected with a gene STS expression cassette P of an upstream homology arm rDNaupTEF1-STS-TXPR2And two fragments containing the downstream homology arm URA3-rDNAdown of the selection marker gene URA3, each 400 ng. Finally using sterilized ddH2The content of O is filled to 360 mu L. Adding the above components into the freshly prepared competent cells of yarrowia lipolytica in sequence, uniformly blowing by using a pipette, placing in a water bath at 42 ℃ for 30min, centrifuging at 4000rpm for 2min, discarding the supernatant, adding 1mL of YPD liquid culture medium, and culturing at 30 ℃ and 220rpm for 2 h. Then centrifuging at 4000rpm for 5min at normal temperature, discarding the supernatant, washing with sterile water for 2 times, finally resuspending the cells with 100 μ L of sterile water, and screening by coating URA-deficient plates. The screening culture condition is 30 ℃, and the culture lasts more than 48 h. And (3) selecting a transformant for overnight culture, extracting a genome, and verifying by pcr to obtain a correct clone of a correct target fragment, namely a strain YL-STS (recombinant bacterium 1).
Example 2 cloning of Gene elements and construction of plasmids containing the corresponding Gene elements
PCR amplification gene element
HMG1, tHMG1, ERG8 and ERG10 were amplified using yarrowia lipolytica ATCC201249 genome as a template and primers shown in Table 1, respectively. And purifying and recovering the gene fragment obtained after amplification for later use.
TABLE 1 PCR amplification Gene primers Table
Figure BDA0002380306120000061
The PCR enzyme used in the present invention is that of Nanjing NuoZan Biotech Co., Ltd
Figure BDA0002380306120000062
Max Super-Fidelity polymerase. A50. mu.L PCR amplification system was as follows: DNA template, 1. mu.L; 2 μ L of each of the front lead (10 μ M) and the rear lead (10 μ M); dNTP (10mM), 1. mu.L; 2 × Phanta Max Buffer, 25 μ L;
Figure BDA0002380306120000063
max Super-Fidelity polymerase, 1 μ L; finally, 50 mu L of double distilled water is used for supplementing. An amplification program is set up on the PCR instrument. The amplification conditions were 95 ℃ pre-denaturation for 4min (1 cycle); denaturation at 95 ℃ for 15sec, annealing at 60 ℃ for 15sec, and extension at 7 ℃ for 1min (34 cycles); extension at 72 ℃ for 5min (1 cycle).
Second, pHMG1 plasmid construction
The PmlI enzyme cuts the plasmid pINA1269 (general Tatin biotechnology (Beijing) Co., Ltd.), and the fragment is purified and recovered to be about 7259 bp.
The plasmid was constructed using a one-step cloning kit of Nanjing Novozam Biotechnology Co., Ltd, and a reaction system shown in the following table was prepared in an ice-water bath.
TABLE 2 pHMG1 plasmid construction reaction System
Figure BDA0002380306120000064
After the system is prepared, a micro liquid transfer gun is used for gentle blowing and even mixing. The reaction mixture was left at 37 ℃ for 30 min. Immediately thereafter, the reaction was cooled in an ice-water bath for 5 min.
Chemical transformation method (Heat shock method) of competent cells of Escherichia coli
1. Taking out the Trans5 α chemical competent cell finished product from a refrigerator at the temperature of-80 ℃, placing the finished product in an ice box for thawing for 10min, and sucking 50 mu L of bacterial liquid into a sterilized 1.5ml PE centrifuge tube under the aseptic environment;
2. adding 5 mu L of recombinant system solution into a centrifuge tube, gently mixing uniformly, and placing in an ice box for 30 min;
3. taking out the centrifugal tube from the ice box, thermally shocking in a constant-temperature water bath at 42 ℃ for 30sec, taking out and immediately placing in the ice box for 2 min; 4. adding 500 mu L of sterilized LB liquid culture medium into a centrifuge tube, and putting the centrifuge tube into a shaking table with the set conditions of 37 ℃ and 200rpm for resuscitation for 1 h;
5. centrifuging for 3min under 4000rmp, sucking out 350 μ L of supernatant, collecting and resuspending thallus;
6. the bacterial liquid was spread on LB plate medium containing antibiotic Amp under aseptic conditions, and cultured overnight in an incubator at 37 ℃ by inversion.
The colony PCR of the transformant is selected for verification, the obtained correct target fragment is the correct transformant, and the plasmid which is verified to be correct by single enzyme digestion of the plasmid PmlI is extracted and named as the correct plasmid pHMG 1.
Plasmid construction of ptHMG1, pERG8 and pERG10
The amplified tHMG1, ERG8 and ERG10 gene fragments are respectively recombined with pINA1269 plasmid after PmlI linearization by utilizing a one-step cloning kit by utilizing the same method of the second pHMG1 plasmid construction, and correct recombinant plasmids are obtained after escherichia coli transformation, transformant verification and plasmid enzyme digestion verification extraction and are respectively named as ptHMG1, pERG8 and pERG 10.
Example 3 construction of recombinant yarrowia lipolytica YL-STS-01 (recombinant 2)
The BsrGI single-restriction enzyme plasmid pHMG1 was used to purify and recover a linearized plasmid fragment (containing the expression cassette P) of about 10259bphp4d-HMG1-TXPR2)。
The same procedure as in example 1 was followed to prepare YL-STS competent cells and transform them into linearized pHMG1, which was then cultured in LEU and URA-deficient medium to obtain transformants. The screening culture condition is 30 ℃, the culture is carried out for more than 48h, a transformant is selected for overnight culture, a genome is extracted, and check primers are used for verifying to obtain a correct target fragment which is a correct clone and is named as a strain YL-STS-01 (recombinant strain 2), the nucleotide sequence of the gene STS is shown as SEQ ID NO.1, and the nucleotide sequence of the gene HMG1 is shown as SEQ ID NO. 2.
Example 4 construction of recombinant yarrowia lipolytica YL-STS-02 (recombinant 3) to YL-STS-04 (recombinant 5)
The plasmids ptHMG1, pERG8 and pERG10 were digested with BsrGI single enzyme, and the linearized plasmid fragment of about 10259bp was purified and recovered.
The same procedure as in example 1 was followed to prepare YL-STS competent cells and transform them into linearized pHMG1, which was then cultured in LEU and URA-deficient medium to obtain transformants. The screening culture condition is 30 ℃, the culture is carried out for more than 48h, a transformant is selected for overnight culture, a genome is extracted, and check primers are used for verifying to obtain correct target fragments which are named as correct clones, namely strains YL-STS-02 (recombinant strain 3), YL-STS-03 (recombinant strain 4) and YL-STS-04 (recombinant strain 5).
The nucleotide sequence of the gene tHMG1 is shown as SEQ ID NO. 3; the nucleotide sequence of the gene ERG8 is shown in SEQ ID NO. 4; the nucleotide sequence of the gene ERG10 is shown in SEQ ID NO. 5.
Example 5 construction of recombinant yarrowia lipolytica YL-STS-05 (recombinant 6) and YL-STS-06 (recombinant 7)
The promoters FBAIN (SEQ ID NO.8), GPD1(SEQ ID NO. 9); terminator XPR2(SEQ ID NO.7), CYC1(SEQ ID NO.10), zeta DNA-up (SEQ ID NO.15), zeta DNA-down (SEQ ID NO.16) are all from yarrowia lipolytica ATCC201249 genome, and screening marker gene LEU2(SEQ ID NO.12) sequence is from yarrowia lipolytica ATCC201249, and is synthesized by a chemical synthesis method by K.K. Bioengineering Ltd;
zeta DNA-up, 3-hydroxy-3-methylglutaryl coenzyme A reductase coding gene expression box P of upstream homologous arm of the zeta DNA siteFBAIN-HMG1-TXPR2tExpression cassette P for mevalonate phosphokinase coding GeneGPD1p-ERG8-TCYC1tAnd the zeta DNA site downstream homology arm LEU 2-zeta DNA-down containing the selection marker gene A was prepared by the method described in example 7; the primer sequences of FBAIN fragment are (SEQ ID NO.37) and (SEQ ID NO.38), the primer sequences of GPD1 are (SEQ ID NO.39) and (SEQ ID NO.40),the primer sequences of XPR2 are (SEQ ID NO.41) and (SEQ ID NO.42), that of CYC1 are (SEQ ID NO.43) and (SEQ ID NO.44), that of ERG8 are (SEQ ID NO.45) and (SEQ ID NO.46), that of HMG1 is (SEQ ID NO.47) and (SEQ ID NO.48), that of the LEU fragment is (SEQ ID NO.49) and (SEQ ID NO.50), and that of zeta-UP DNAand zeta-DNAdown are (SEQ ID NO.51) and (SEQ ID NO.52), (SEQ ID NO.53) and (SEQ ID NO.54), respectively.
The PCR enzyme used in the present invention is that of Nanjing NuoZan Biotech Co., Ltd
Figure BDA0002380306120000081
Max Super-Fidelity polymerase. A50. mu.L PCR amplification system was as follows: DNA template, 1. mu.L; 2 μ L of each of the front lead (10 μ M) and the rear lead (10 μ M); dNTP (10mM), 1. mu.L; 2 × Phanta Max Buffer, 25 μ L;
Figure BDA0002380306120000083
max Super-Fidelity polymerase, 1 μ L; finally, 50 mu L of double distilled water is used for supplementing. An amplification program is set up on the PCR instrument. The amplification conditions were 95 ℃ pre-denaturation for 4min (1 cycle); denaturation at 95 ℃ for 15sec, annealing at 60 ℃ for 15sec, and extension at 72 ℃ for 1min (34 cycles); extension at 72 ℃ for 5min (1 cycle).
The fusion PCR system used in the invention is as follows: the total amount of DNA fragments is 800ng, and the molar ratio is 1: 1; dNTP (10mM), 1. mu.L; 2 × Phanta Max Buffer, 25 μ L;
Figure BDA0002380306120000082
max Super-Fidelity polymerase, 1 μ L; finally, the solution is replenished to 50 mu L by double distilled water. An amplification program is set up on the PCR instrument. The amplification conditions were 95 ℃ pre-denaturation for 4min (1 cycle); denaturation at 95 ℃ for 15sec, annealing at 60 ℃ for 30sec, extension at 72 ℃ for 1min (11 cycles), and extension at 72 ℃ for 5min (1 cycle).
Finally obtaining DNA fragments used for transforming yarrowia lipolytica, respectively connecting with gene expression cassettes P of upstream homology arm rDNaupFBAIN-HMG1-TXPR2tAnd expression cassette PGPD1p-ERG8-TCYC1tThe downstream homology arm URA3-rDNA-down of rDNA locus containing screening marker gene LEU 2;
using the same yeast transformation method as in example 1, HMG1 expression cassettes P for genes HMG1 ligated respectively with upstream homology arms ζ DNUp were transformedFBAIN-HMG1-TXPR2tERG8 expression cassette PGPD1p-ERG8-TCYC1tAnd 400ng each of the four fragments of the homology arm LEU 2-zeta DNA-down downstream of the zeta DNA site containing the selection marker gene LEU 2. Culturing on a LEU-deleted yeast synthetic culture medium, selecting a culture condition of culturing at 30 ℃ for more than 48h, selecting a transformant for overnight culture, extracting a genome, verifying by pcr to obtain correct clones of all correct target fragments, and naming the correct clones as a strain YL-STS-05 (recombinant strain 6).
Using the same method as in example 5 above, the gene tHMG1 expression cassette P linked respectively to the upstream homology arms ζ DNUp was transformedFBAIN-tHMG1-TXPR2tERG8 expression cassette PGPD1p-ERG8-TCYC1tAnd 400ng each of the four fragments of the homology arm LEU 2-zeta DNA-down downstream of the zeta DNA site containing the selection marker gene LEU 2. Culturing on a LEU-deleted yeast synthetic culture medium, selecting a culture condition of culturing at 30 ℃ for more than 48h, selecting a transformant for overnight culture, extracting a genome, verifying by pcr to obtain correct clones of all correct target fragments, and naming the correct clones as a strain YL-STS-06 (recombinant strain 7).
Example 6 recombinant production of α -Sandalkene
1. Recombinant bacterium culture and product extraction
The recombinant yarrowia lipolytica strains YL-STS, YL-STS-01, YL-STS-02, YL-STS-03, YL-STS-04, YL-STS-05, YL-STS-06, and ATCC201249 obtained in examples 1, 2, 4, and 5 were activated on solid screening media; fermentation seed solutions were prepared in YPD liquid medium (30 ℃ C., 220rmp, 16 hours), and the cells were collected by centrifugation, transferred to a 250mL Erlenmeyer flask containing 30mL YPD fermentation medium, and cultured while adjusting OD to 0.5 (30 ℃ C., 220 rmp). Centrifuging after 6d, collecting cells, adding acetone, performing ultrasonic disruption in ice water bath for 10min, centrifuging at 12000rpm at normal temperature for 2min, and collecting supernatant and passing through 0.22mm organic membrane for use.
2. GC-MS identification α -santalene
α -qualitative and quantitative determination of santalene is carried out by GC-MS, the quantitative determination of α -santalene uses a-lupalene as an internal standard, the relative response factor RRF is 1, the detection conditions of GC-MS are that a chromatographic column Rxi-1HT, nitrogen flow rate is 1.2mL/min, sample inlet temperature is 250 ℃, an FID detector is 250 ℃, no-flow sampling is carried out, sample inlet amount is 1 muL, the temperature program in a furnace is that the initial temperature is 80 ℃, the initial temperature is maintained for 1min, 10 ℃/min is increased to 120 ℃, 3 ℃/min is increased to 160 ℃, 10 ℃/min is increased to 270 ℃, the temperature is maintained for 270 ℃, and the ion scanning range is 40-500 m/z.
3. Results
Yarrowia lipolytica ATCC201249 did not synthesize α -santalene.
And (3) detecting an extracted product of YL-STS (recombinant bacteria 1) by GC-MS, wherein the mass spectrum of the extracted product of the recombinant bacteria 1 is the same as that of the α -santalene standard library, and the result shows that α -santalene exists in the extracted product of the recombinant bacteria 1.
The result shows that the YL-STS (recombinant bacterium 1) α -santalene fermentation yield reaches 5.19 mg/L.
Based on YL-STS, recombinant bacteria for improving the yield of a target product α -santalene are obtained by up-regulating the expression of HMG1, tHMG1, ERG8 and ERG10 genes in yarrowia lipolytica, the yield of each recombinant bacteria after fermentation for 6 days is shown in Table 3, and the data listed in the table are averaged by three parallel experiments.
TABLE 3 yield of engineering bacteria α -santalene
Engineered bacterial strains Up-regulated gene STS yield (mg/L)
YL-STS-01 (recombinant bacterium 2) HMG1 7.49
YL-STS-02 (recombinant bacterium 3) tHMG1 6.71
YL-STS-03 (recombinant bacterium 4) ERG8 5.93
YL-STS-04 (recombinant bacterium 5) ERG10 6.20
YL-STS-05 (recombinant bacterium 6) HMG1、ERG8 9.43
YL-STS-6 (recombinant bacterium 7) tHMG1、ERG8 8.42
Sequence listing
<110> Tianjin university
<120> recombinant yarrowia lipolytica for heterologous synthesis of α -santalene and construction method thereof
<160>54
<170>SIPOSequenceListing 1.0
<210>1
<211>1656
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>1
atgtcaactc aacaagtttc atcagagaac attgttcgta acgctgcgaa tttccatcct 60
aatatatggg gaaaccattt cctcacatgt ccttctcaga cgattgatag ttggactcaa 120
cagcaccaca aagaactgaa agaagaggtg aggaaaatga tggtgtctga tgcaaataaa 180
cctgcccaga gattgcgctt gattgatact gtccaaaggc taggtgtggc ttaccacttt 240
gaaaaggaga ttgatgatgc attggagaaa ataggtcatg acccttttga tgataaagat 300
gatctctaca ttgtctctct ttgttttcga ttgctgaggc agcatggaat taagatatca 360
tgtgatgtgt ttgagaagtt taaagatgac gatggaaaat tcaaggcatc attgatgaat 420
gatgttcaag gcatgctaag tttatatgag gcagcacacc tagccattca cggagaagat 480
attttagatg aagcaattgt tttcacgacc actcacctta agtcaacggt atctaattct 540
cctgtaaact ctacttttgc tgaacaaata cgtcattctc tcagagttcc tctccgtaaa 600
gctgtaccta ggttagagtc gaggtatttc ttggatatct attcaagaga tgatttgcac 660
gataaaactt tgctcaattt cgcaaagtta gactttaata tactacaagc aatgcaccag 720
aaggaagcaa gtgagatgac caggtggtgg agagattttg acttccttaa aaagctgcct 780
tatataagag acagagtcgt ggagctatat ttttggattc tggtgggagt gtcttatcag 840
cccaaattca gcactggtag aatttttttg tccaaaataa tatgccttga gaccctcgta 900
gatgatacat ttgacgccta cggtactttt gacgagctcg caatctttac tgaagcagtt 960
acaagatggg accttggcca cagagatgca ctaccagaat acatgaaatt cattttcaag 1020
acactcattg atgtctacag tgaagctgag caagaactgg caaaggaagg gagatcatac 1080
agcatacact atgcaatacg atcgttccaa gaactagtta tgaagtactt ctgcgaagcc 1140
aagtggttaa ataaaggtta tgttccgagc ctggacgatt ataaatcagt ttcattaaga 1200
agtatcggtt ttttaccgat agcggtagct tccttcgttt tcatgggtga tattgcaact 1260
aaggaggtct ttgaatggga aatgaataac cctaagatca taatagccgc agaaacgatt 1320
ttcagattcc tggatgacat agcaggccat aggtttgagc aaaagagaga acatagtcca 1380
tcagctattg aatgctacaa gaatcaacat ggagtgtctg aggaagaggc agttaaagcg 1440
ttgtcgttag aagttgctaa tagttggaaa gatataaatg aggagctgct tctcaaccca 1500
atggctattc ctttacctct gcttcaggtg attcttgatc tctcacgttc ggccgatttt 1560
atgtacggta atgctcaaga tcgcttcacg cattcaacga tgatgaaaga ccaagttgat 1620
ttggtgctga aggaccccgt taagcttgac gattaa 1656
<210>2
<211>3000
<212>DNA
<213> Yarrowia lipolytica
<400>2
atgctacaag cagctattgg aaagattgtg ggatttgcgg tcaaccgacc catccacaca 60
gttgtcctga cgtccatcgt ggcgtcaacc gcatacctcg ccatcctcga cattgccatc 120
ccgggtttcg agggcacaca acccatctca tactaccacc ctgcagcaaa atcttacgac 180
aaccctgctg attggaccca cattgcagag gccgacatcc cttcagacgc ctaccgactt 240
gcatttgccc agatccgtgt cagtgatgtt cagggcggag aggcccccac catccctggc 300
gccgtggccg tgtctgatct cgaccacaga atcgtcatgg actacaaaca gtgggccccc 360
tggaccgcca gcaacgagca gatcgcctcg gagaaccaca tctggaagca ctccttcaag 420
gaccacgtgg ccttcagctg gatcaagtgg ttccgatggg cctacctgcg tttgtccact 480
ctcatccagg gggcagacaa cttcgacatt gccgtggtcg cccttggcta tcttgccatg 540
cactacacct tcttcagtct cttccgatcc atgcgaaagg ttggctcgca cttttggctt 600
gcctccatgg ctctggtctc ttccaccttc gctttcctgc ttgcggtggt ggcttcctct 660
agcctgggtt accgacctag catgatcacc atgtccgagg gcctgccctt cctcgtggtc 720
gccattggct ttgaccgaaa ggtcaacctg gctagcgagg tgctcacatc caagagcagc 780
cagctcgctc ccatggtgca ggtgatcaca aagatcgcct ccaaggcgct gtttgagtac 840
agccttgagg tggccgccct gtttgctggc gcctataccg gagttcctcg actgtcccag 900
ttttgcttct tatctgcttg gatcctcatc ttcgactaca tgtttttgct gaccttctac 960
tctgctgtcc ttgctatcaa gtttgagatc aatcacatta agcgaaaccg aatgatccag 1020
gatgctctca aggaggatgg tgtatctgct gctgttgccg agaaggtagc cgactcttct 1080
cccgacgcca agctcgaccg aaagtccgac gtttctcttt ttggagcctc tggcgccatt 1140
gcggtgttca agatcttcat ggtccttggg ttccttggtc tcaacctcat caacctgact 1200
gccatccctc accttggcaa ggcggccgcc gctgcccagt ctgtgactcc catcaccctc 1260
tcccccgagc ttctccatgc catccccgcc tctgtgcccg ttgttgtcac ctttgtgccc 1320
agcgttgtgt acgagcactc ccagctcatt ctgcagctgg aggacgccct cactaccttc 1380
ctggctgcct gctccaaaac tattggtgac cccgtcatct ccaagtacat cttcctgtgc 1440
ctgatggtct ccaccgccct gaacgtctac ctgtttggag ccacccgaga agttgtgcga 1500
acccagtctg tgaaggtggt tgagaagcac gttcctatcg tcattgagaa gcccagcgag 1560
aaggaggagg acacctcttc tgaagactcc attgagctga ctgtcggaaa gcagcccaag 1620
cccgtgaccg agacccgttc tctggacgac ctagaggcta tcatgaaggc aggtaagacc 1680
aagcttctgg aggaccacga ggttgtcaag ctctctctcg agggcaagct tcctttgtat 1740
gctcttgaga agcagcttgg tgacaacacc cgagctgttg gcatccgacg atctatcatc 1800
tcccagcagt ctaataccaa gactttagag acctcaaagc ttccttacct gcactacgac 1860
tacgaccgtg tttttggagc ctgttgcgag aacgttattg gttacatgcc tctccccgtt 1920
ggtgttgctg gccccatgaa cattgatggc aagaactacc acattcctat ggccaccact 1980
gagggttgtc ttgttgcctc aaccatgcga ggttgcaagg ccatcaacgc cggtggcggt 2040
gttaccactg tgcttactca ggacggtatg acacgaggtc cttgtgtttc cttcccctct 2100
ctcaagcggg ctggagccgc taagatctgg cttgattccg aggagggtct caagtccatg 2160
cgaaaggcct tcaactccac ctctcgattt gctcgtctcc agtctcttca ctctaccctt 2220
gctggtaacc tgctgtttat tcgattccga accaccactg gtgatgccat gggcatgaac 2280
atgatctcca agggcgtcga acactctctg gccgtcatgg tcaaggagta cggcttccct 2340
gatatggaca ttgtgtctgt ctcgggtaac tactgcactg acaagaagcc cgcagcgatc 2400
aactggatcg aaggccgagg caagagtgtt gttgccgaag ccaccatccc tgctcacatt 2460
gtcaagtctg ttctcaaaag tgaggttgac gctcttgttg agctcaacat cagcaagaat 2520
ctgatcggta gtgccatggc tggctctgtg ggaggtttca atgcacacgc cgcaaacctg 2580
gtgaccgcca tctaccttgc cactggccag gatcctgctc agaatgtcga gtcttccaac 2640
tgcatcacgc tgatgagcaa cgtcgacggt aacctgctca tctccgtttc catgccttct 2700
atcgaggtcg gtaccattgg tggaggtact attttggagc cccagggggc tatgctggag 2760
atgcttggcg tgcgaggtcc tcacatcgag acccccggtg ccaacgccca acagcttgct 2820
cgcatcattg cttctggagt tcttgcagcg gagctttcgc tgtgttctgc tcttgctgcc 2880
ggccatcttg tgcaaagtca tatgacccac aaccggtccc aggctcctac tccggccaag 2940
cagtctcagg ccgatctgca gcgtctacaa aacggttcga atatttgcat acggtcatag 3000
<210>3
<211>1503
<212>DNA
<213> Yarrowia lipolytica
<400>3
atgacccagt ctgtgaaggt ggttgagaag cacgttccta tcgtcattga gaagcccagc 60
gagaaggagg aggacacctc ttctgaagac tccattgagc tgactgtcgg aaagcagccc 120
aagcccgtga ccgagacccg ttctctggac gacctagagg ctatcatgaa ggcaggtaag 180
accaagcttc tggaggacca cgaggttgtc aagctctctc tcgagggcaa gcttcctttg 240
tatgctcttg agaagcagct tggtgacaac acccgagctg ttggcatccg acgatctatc 300
atctcccagc agtctaatac caagacttta gagacctcaa agcttcctta cctgcactac 360
gactacgacc gtgtttttgg agcctgttgc gagaacgtta ttggttacat gcctctcccc 420
gttggtgttg ctggccccat gaacattgatggcaagaact accacattcc tatggccacc 480
actgagggtt gtcttgttgc ctcaaccatg cgaggttgca aggccatcaa cgccggtggc 540
ggtgttacca ctgtgcttac tcaggacggt atgacacgag gtccttgtgt ttccttcccc 600
tctctcaagc gggctggagc cgctaagatc tggcttgatt ccgaggaggg tctcaagtcc 660
atgcgaaagg ccttcaactc cacctctcga tttgctcgtc tccagtctct tcactctacc 720
cttgctggta acctgctgtt tattcgattc cgaaccacca ctggtgatgc catgggcatg 780
aacatgatct ccaagggcgt cgaacactct ctggccgtca tggtcaagga gtacggcttc 840
cctgatatgg acattgtgtc tgtctcgggt aactactgca ctgacaagaa gcccgcagcg 900
atcaactgga tcgaaggccg aggcaagagt gttgttgccg aagccaccat ccctgctcac 960
attgtcaagt ctgttctcaa aagtgaggtt gacgctcttg ttgagctcaa catcagcaag 1020
aatctgatcg gtagtgccat ggctggctct gtgggaggtt tcaatgcaca cgccgcaaac 1080
ctggtgaccg ccatctacct tgccactggc caggatcctg ctcagaatgt cgagtcttcc 1140
aactgcatca cgctgatgag caacgtcgac ggtaacctgc tcatctccgt ttccatgcct 1200
tctatcgagg tcggtaccat tggtggaggt actattttgg agccccaggg ggctatgctg 1260
gagatgcttg gcgtgcgagg tcctcacatc gagacccccg gtgccaacgc ccaacagctt 1320
gctcgcatca ttgcttctgg agttcttgca gcggagcttt cgctgtgttc tgctcttgct 1380
gccggccatc ttgtgcaaag tcatatgacc cacaaccggt cccaggctcc tactccggcc 1440
aagcagtctc aggccgatct gcagcgtcta caaaacggtt cgaatatttg catacggtca 1500
tag 1503
<210>4
<211>1257
<212>DNA
<213> Yarrowia lipolytica
<400>4
atgaccacct attcggctcc gggaaaggcc ctcctttgcg gcggttattt ggttattgat 60
ccggcgtatt cagcatacgt cgtgggcctc tcggcgcgta tttacgcgac agtttcggct 120
tccgaggcct ccaccacctc tgtccatgtc gtctctccgc agtttgacaa gggtgaatgg 180
acctacaact acacgaacgg ccagctgacg gccatcggac acaacccatt tgctcacgcg 240
gccgtcaaca ccgttctgca ttacgttcct cctcgaaacc tccacatcaa catcagcatc 300
aaaagtgaca acgcgtacca ctcgcaaatt gacagcacgc agagaggcca gtttgcatac 360
cacaaaaagg cgatccacga ggtgcctaaa acgggcctcg gtagctccgc tgctcttacc 420
accgttcttg tggcagcttt gctcaagtca tacggcattg atcccttgca taacacccac 480
ctcgttcaca acctgtccca ggttgcacac tgctcggcac agaagaagat tgggtctgga 540
tttgacgtgg cttcggccgt ttgtggctct ctagtctata gacgtttccc ggcggagtcc 600
gtgaacatgg tcattgcagc tgaagggacc tccgaatacg gggctctgtt gagaactacc 660
gttaatcaaa agtggaaggt gactctggaa ccatccttct tgccgccggg aatcagcctg 720
cttatgggag acgtccaggg aggatctgag actccaggta tggtggccaa ggtgatggca 780
tggcgaaaag caaagccccg agaagccgag atggtgtgga gagatctcaa cgctgccaac 840
atgctcatgg tcaagttgtt caacgacctg cgcaagctct ctctcactaa caacgaggcc 900
tacgaacaac ttttggccga ggctgctcct ctcaacgctc taaagatgat aatgttgcag 960
aaccctctcg gagaactagc acgatgcatt atcactattc gaaagcatct caagaagatg 1020
acacgggaga ctggtgctgc tattgagccg gatgagcagt ctgcattgct caacaagtgc 1080
aacacttata gtggagtcat tggaggtgtt gtgcctggag caggaggcta cgatgctatt 1140
tctcttctgg tgatcagctc tacggtgaac aatgtcaagc gagagagcca gggagtccaa 1200
tggatggagc tcaaggagga gaacgagggt ctgcggctcg agaaggggtt caagtag 1257
<210>5
<211>1179
<212>DNA
<213> Yarrowia lipolytica
<400>5
atggagcccg tctacattgt ttctactgct cgaaccccca ttggttcttt tctgagctcg 60
ctgagcggcc agacctacgt ggatctggga gcccatgccg tgaaggccgc actcgccaag 120
accgacatca agcccgacca ggtcgacgag atcatcttcg gtaacgttct ctccgccggc 180
gtcggacagg cccctgctcg acaggttgcc ctcaaggctg gtctccctga caccattgtc 240
gctaccaccg tcaacaaggt ctgtgcctcc ggtatgaagg ccatcatcca gggtgcccag 300
gccatcatga ccggatctgc cgacattgtc attgctggcg gtgccgagtc catgtccaac 360
gtgccccact acgtgcaggc ccgtgtcgct aacaagtacg gcaacggctc tctggtcgac 420
ggtatccagc gagacggtct gtttgacgcc tacgatggcc aggccatggg tgtggccgct 480
gaggtctgtg ctgacaccca ctccatctcc cgagaggagc aggacgagtt tgccattggc 540
tcttacaaga agacccaggc tgcctatgcc gccggcaagt ttaaggacga gattgccccc 600
attgagctgc ccggcttccg aggcaagcct ggtgtcgttg tctccgagga cgaggagtac 660
aagaacctca acgaggacaa gctcaagtct gcccgaactg tttttaagaa ggacggtacc 720
gtgactgccc ccaacgcctc ccctatcaac gacggtggag ctgccgtcat tctggcctct 780
gctgccaagg tcaaggagct tggtcttaag cccctgctca agattgtctc ttggggcgag 840
gctgccaacg agcccgtcaa gttcaccact gctcccgctc tggccgtccc cgttgccctc 900
aagcgagctg gtctcgaggc caaggacatt gacttttacg agttcaacga ggccttctct 960
gttgttggta tcgccaacac caagctgctt ggtctggact ccagcaaggt caacgtctac 1020
ggaggtgctg ttgccattgg tcaccctctg ggctgctctg gtgcccgagt cattgtcact 1080
ctcaactctg ttctgcacca ggaaggcggc aagtacggat gtgctgccat ctgcaacggt 1140
ggtggtggcg cttcctctat cattgttgag aagtgttag 1179
<210>6
<211>406
<212>DNA
<213> Yarrowia lipolytica
<400>6
agagaccggg ttggcggcgt atttgtgtcc caaaaaacag ccccaattgc cccaattgac 60
cccaaattga cccagtagcg ggcccaaccc cggcgagagc ccccttcacc ccacatatca 120
aacctccccc ggttcccaca cttgccgtta agggcgtagg gtactgcagt ctggaatcta 180
cgcttgttca gactttgtac tagtttcttt gtctggccat ccgggtaacc catgccggac 240
gcaaaataga ctactgaaaa tttttttgct ttgtggttgg gactttagcc aagggtataa 300
aagaccaccg tccccgaatt acctttcctc ttcttttctc tctctccttg tcaactcaca 360
cccgaaatcg ttaagcattt ccttctgagt ataagaatca ttcaaa 406
<210>7
<211>411
<212>DNA
<213> Yarrowia lipolytica
<400>7
cctgtcccca cgttgccggt cttgcctcct actacctgtc catcaatgac gaggttctca 60
cccctgccca ggtcgaggct cttattactg agtccaacac cggtgttctt cccaccacca 120
acctcaaggg ctctcccaac gctgttgcct acaacggtgt tggcatttag gcaattaaca 180
gatagtttgc cggtgataat tctcttaacc tcccacactc ctttgacata acgatttatg 240
taacgaaact gaaatttgac cagatattgt tgtaaataga aaatctggct tgtaggtggc 300
aaaatcccgt ctttgttcat caattccctc tgtgactact cgtcatccct ttatgttcga 360
ctgtcgtatt tttattttcc atacatacgc aagtgagatg cccgtgtccg a 411
<210>8
<211>998
<212>DNA
<213> Yarrowia lipolytica
<400>8
aacagtgtac gcagtactat agaggaacaa ttgccccgga gaagacggcc aggccgccta 60
gatgacaaat tcaacaactc acagctgact ttctgccatt gccactaggg gggggccttt 120
ttatatggcc aagccaagct ctccacgtcg gttgggctgc acccaacaat aaatgggtag 180
ggttgcacca acaaagggat gggatggggg gtagaagata cgaggataac ggggctcaat 240
ggcacaaata agaacgaatactgccattaa gactcgtgat ccagcgactg acaccattgc 300
atcatctaag ggcctcaaaa ctacctcgga actgctgcgc tgatctggac accacagagg 360
ttccgagcac tttaggttgc accaaatgtc ccaccaggtg caggcagaaa acgctggaac 420
agcgtgtaca gtttgtctta gcaaaaagtg aaggcgctga ggtcgagcag ggtggtgtga 480
cttgttatag cctttagagc tgcgaaagcg cgtatggatt tggctcatca ggccagattg 540
agggtctgtg gacacatgtc atgttagtgt acttcaatcg ccccctggat atagccccga 600
caataggccg tggcctcatt tttttgcctt ccgcacattt ccattgctcg gtacccacac 660
cttgcttctc ctgcacttgc caaccttaat actggtttac attgaccaac atcttacaag 720
cggggggctt gtctagggta tatataaaca gtggctctcc caatcggttg ccagtctctt 780
ttttcctttc tttccccaca gattcgaaat ctaaactaca catcacacaa tgcctgttac 840
tgacgtcctt aagcgaaagt ccggtgtcat cgtcggcgac gatgtccgag ccgtgagtat 900
ccacgacaag atcagtgtcg agacgacgcg ttttgtgtaa tgacacaatc cgaaagtcgc 960
tagcaacaca cactctctac acaaactaac ccagctct 998
<210>9
<211>931
<212>DNA
<213> Yarrowia lipolytica
<400>9
cgcagtagga tgtcctgcac gggtcttttt gtggggtgtg gagaaagggg tgcttggaga 60
tggaagccgg tagaaccggg ctgcttgggg ggatttgggg ccgctgggct ccaaagaggg 120
gtaggcattt cgttggggtt acgtaattgc ggcatttggg tcctgcgcgc atgtcccatt 180
ggtcagaatt agtccggata ggagacttat cagccaatca cagcgccgga tccacctgta 240
ggttgggttg ggtgggagca cccctccaca gagtagagtc aaacagcagc agcaacatga 300
tagttggggg tgtgcgtgtt aaaggaaaaa aaaagaagct tgggttatat tcccgctcta 360
tttagaggtt gcgggataga cgccgacgga gggcaatggc gccatggaac cttgcggata 420
tcgatacgcc gcggcggact gcgtccgaac cagctccagc agcgtttttt ccgggccatt 480
gagccgactg cgaccccgcc aacgtgtctt ggcccacgca ctcatgtcat gttggtgttg 540
ggaggccact ttttaagtag cacaaggcac ctagctcgca gcaaggtgtc cgaaccaaag 600
aagcggctgc agtggtgcaa acggggcgga aacggcggga aaaagccacg ggggcacgaa 660
ttgaggcacg ccctcgaatt tgagacgagt cacggcccca ttcgcccgcg caatggctcg 720
ccaacgcccg gtcttttgca ccacatcagg ttaccccaag ccaaaccttt gtgttaaaaa 780
gcttaacata ttataccgaa cgtaggtttg ggcgggcttg ctccgtctgt ccaaggcaac 840
atttatataa gggtctgcat cgccggctca attgaatctt ttttcttctt ctcttctcta 900
tattcattct tgaattaaac acacatcaac a 931
<210>10
<211>251
<212>DNA
<213> Yarrowia lipolytica
<400>10
atcatgtaat tagttatgtc acgcttacat tcacgccctc ctcccacatc cgctctaacc 60
gaaaaggaag gagttagaca acctgaagtc taggtcccta tttatttttt ttaatagtta 120
tgttagtatt aagaacgtta tttatatttc aaatttttct tttttttctg tacaaacgcg 180
tgtacgcatg taacattata ctgaaaacct tgcttgagaa ggttttggga cgctcgaagg 240
ctttaatttg c 251
<210>11
<211>1907
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>11
ggtgtgttct gtggagcatt ctcacttttg gtaaacgaca ttgcttcaag tgcagcggaa 60
tcaaaaagta taaagtgggc agcgagtata cctgtacaga ctgtaggcga taactcaatc 120
caattacccc ccacaacatg actggccaaa ctgatctcaa gactttattg aaatcagcaa 180
caccgattct caatgaaggc acatacttct tctgcaacat tcacttgacg cctaaagttg 240
gtgagaaatg gaccgacaag acatattctg ctatccacgg actgttgcct gtgtcggtgg 300
ctacaatacg tgagtcagaa gggctgacgg tggtggttcc caaggaaaag gtcgacgagt 360
atctgtctga ctcgtcattg ccgcctttgg agtacgactc caactatgag tgtgcttgga 420
tcactttgac gatacattct tcgttggagg ctgtgggtct gacagctgcg ttttcggcgc 480
ggttggccga caacaatatc agctgcaacg tcattgctgg ctttcatcat gatcacattt 540
ttgtcggcaa aggcgacgcc cagagagcca ttgacgttct ttctaatttg gaccgatagc 600
cgtatagtcc agtctatcta taagttcaac taactcgtaa ctattaccat aacatatact 660
tcactgcccc agataaggtt ccgataaaaa gttctgcaga ctaaatttat ttcagtctcc 720
tcttcaccac caaaatgccc tcctacgaag ctcgagctaa cgtccacaag tccgcctttg 780
ccgctcgagt gctcaagctc gtggcagcca agaaaaccaa cctgtgtgct tctctggatg 840
ttaccaccac caaggagctc attgagcttg ccgataaggt cggaccttat gtgtgcatga 900
tcaagaccca tatcgacatc attgacgact tcacctacgc cggcactgtg ctccccctca 960
aggaacttgc tcttaagcac ggtttcttcc tgttcgagga cagaaagttc gcagatattg 1020
gcaacactgt caagcaccag tacaagaacg gtgtctaccg aatcgccgag tggtccgata 1080
tcaccaacgc ccacggtgta cccggaaccg gaatcattgc tggcctgcga gctggtgccg 1140
aggaaactgt ctctgaacag aagaaggagg acgtctctga ctacgagaac tcccagtaca 1200
aggagttcct ggtcccctct cccaacgaga agctggccag aggtctgctc atgctggccg 1260
agctgtcttg caagggctct ctggccactg gcgagtactc caagcagacc attgagcttg 1320
cccgatccga ccccgagttt gtggttggct tcattgccca gaaccgacct aagggcgact 1380
ctgaggactg gcttattctg acccccgggg tgggtcttga cgacaaggga gacgctctcg 1440
gacagcagta ccgaactgtt gaggatgtca tgtctaccgg aacggatatc ataattgtcg 1500
gccgaggtct gtacggccag aaccgagatc ctattgagga ggccaagcga taccagaagg 1560
ctggctggga ggcttaccag aagattaact gttagaggtt agactatgga tatgtaattt 1620
aactgtgtat atagagagcg tgcaagtatg gagcgcttgt tcagcttgta tgatggtcag 1680
acgacctgtc tgatcgagta tgtatgatac tgcacaacct gtgtatccgc atgatctgtc 1740
caatggggca tgttgttgtg tttctcgata cggagatgct gggtacaagt agctaatacg 1800
attgaactac ttatacttat atgaggcttg aagaaagctg acttgtgtat gacttattct 1860
caactacatc cccagtcaca ataccaccac tgcactacca ctacacc 1907
<210>12
<211>2347
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>12
gaattccgtc gtcgcctgag tcatcattta tttaccagtt ggccacaaac ccttgacgat 60
ctcgtatgtc ccctccgaca tactcccggc cggctggggt acgttcgata gcgctatcgg 120
catcgacaag gtttgggtcc ctagccgata ccgcactacc tgagtcacaa tcttcggagg 180
tttagtcttc cacatagcac gggcaaaagt gcgtatatat acaagagcgt ttgccagcca 240
cagattttca ctccacacac cacatcacac atacaaccac acacatccac aatggaaccc 300
gaaactaaga agaccaagac tgactccaag aagattgttc ttctcggcgg cgacttctgt 360
ggccccgagg tgattgccga ggccgtcaag gtgctcaagt ctgttgctga ggcctccggc 420
accgagtttg tgtttgagga ccgactcatt ggaggagctg ccattgagaa ggagggcgag 480
cccatcaccg acgctactct cgacatctgc cgaaaggctg actctattat gctcggtgct 540
gtcggaggcg ctgccaacac cgtatggacc actcccgacg gacgaaccga cgtgcgaccc 600
gagcagggtc tcctcaagct gcgaaaggac ctgaacctgt acgccaacct gcgaccctgc 660
cagctgctgt cgcccaagct cgccgatctc tcccccatcc gaaacgttga gggcaccgac 720
ttcatcattg tccgagagct cgtcggaggt atctactttg gagagcgaaa ggaggatgac 780
ggatctggcg tcgcttccga caccgagacc tactccgttc ctgaggttga gcgaattgcc 840
cgaatggccg ccttcctggc ccttcagcac aacccccctc ttcccgtgtg gtctcttgac 900
aaggccaacg tgctggcctc ctctcgactt tggcgaaaga ctgtcactcg agtcctcaag 960
gacgaattcc cccagctcga gctcaaccac cagctgatcg actcggccgc catgatcctc 1020
atcaagcagc cctccaagat gaatggtatc atcatcacca ccaacatgtt tggcgatatc 1080
atctccgacg aggcctccgt catccccggt tctctgggtc tgctgccctc cgcctctctg 1140
gcttctctgc ccgacaccaa cgaggcgttc ggtctgtacg agccctgtca cggatctgcc 1200
cccgatctcg gcaagcagaa ggtcaacccc attgccacca ttctgtctgc cgccatgatg 1260
ctcaagttct ctcttaacat gaagcccgcc ggtgacgctg ttgaggctgc cgtcaaggag 1320
tccgtcgagg ctggtatcac taccgccgat atcggaggct cttcctccac ctccgaggtc 1380
ggagactttg ttgccaacaa ggtcaaggag ctgctcaaga aggagtaagt cgtttctacg 1440
acgcattgat ggaaggagca aactgacgcg cctgcgggtt ggtctaccgg cagggtccgc 1500
tagtgtataa gactctataa aaagggccca gccctgctaa tgaaatgatg atttataatt 1560
taccggtgta gcaaccttga ctagaagaag cagattgggt gtgtttgtag tggaggacag 1620
tggtacgttt tggaaacagt cttcttgaaa gtgtcttgtc tacagtatat tcactcataa 1680
cctcaatagc caagggtgta gtcggtttat taaaggaagg gagttgtggc tgatgtggat 1740
agatatcttt aaagctggcg actgcaccca acgagtgtgg tggtagcttg ttactgtata 1800
ttcggtaaga tatattttgt ggggttttta gtggtgtttg gtaggttagt gtctggtata 1860
tgagttgtag gcatgacaat ttggaaaggg gtggactttg ggaatattgt gggatttcaa 1920
taccttagtt tgtacagggt aattgttaca aatgatacaa agaactgtat ttcttttcat 1980
ttgttttaat tggttgtata tcaagtccgt tagacgagct cagtgccatg gcttttggca 2040
ctgtatttca tttttagagg tacactacat ccagtgaggt atggtaaggt tgagggcata 2100
atgaaggcac cttgtactga cagtcacaga cctctcaccg agaattttat gagatatact 2160
cgggttcatt ttaggctccg attcgattca aattattact gtcgaaatcg gttgagcatc 2220
cgttgatttc cgaacagatc tcggcagtct ctcggatgta gaattaggtt tccttgaggc 2280
gagatgagac ggtaagttgg aggggtttga gaagagatag agatcggttt gtgtgacatg 2340
aattctt 2347
<210>13
<211>700
<212>DNA
<213> Yarrowia lipolytica
<400>13
tcgatcctaa ggggtggcat aactgtcgcg tacggcccga taagggcctt ctccaaaagg 60
gaagccggtt gaaattccgg cacttggatg tggattctcc acggcaacgt aactgaatgt 120
ggggacggtg gcacaagtct tggaaggagt tatcttttct ttttaacgga gtcaacaccc 180
tggaattagt ttgtctagag atagggtatc gttccggaag aggggggcag ctttgtcccc 240
tccgatgcac ttgtgacgcc ccttgaaaac ccgcaggaag gaatagtttt cacgccaagt 300
cgtactgata accgcagcag gtctccaagg tgaacagcct ctagttgata gaataatgta 360
gataagggaa gtcggcaaaa tagatccgta acttcgggat aaggattggc tctgggggtt 420
ggtggatgga agcgtgggag accccaaggg actggcggct gggcaactgg cagccggacc 480
cgcggcagac actgcgtcgc tccgtccaca tcatcaaccg ccccagaact ggtacggaca 540
aggggaatct gactgtctaa ttaaaacata gctttgcgat ggttgtaaaa caatgttgac 600
gcaaagtgat ttctgcccag tgctctgaat gtcaaagtga agaaattcaa ccaagcgcgg 660
gtaaacggcg ggagtaacta tgactctctt aaggtagcca 700
<210>14
<211>599
<212>DNA
<213> Yarrowia lipolytica
<400>14
aatgcctcgt catctaatta gtgacgcgca tgaatggatt aacgagattc ccactgtccc 60
tatctactat ctagcgaaac cacagccaag ggaacgggct tggcagaatc agcggggaaa 120
gaagaccctg ttgagcttga ctctagtttg acattgtgaa gagacatagg gggtgtagaa 180
taagtgggag cttcggcgcc ggtgaaatac cactaccctt atcgtttctt tacttattta 240
gtaagtggaa gtggtttaac aaccattttc tagcattcct ttccaggctg aagacattgt 300
caggtgggga gtttggctgg ggcggcacat ctgttaaaag ataacgcaga tgtcctaagg 360
gggactcaat gagaacagaa atctcatgta gaacaaaagg gtaaaagtcc ccttgatttt 420
gattttcagt gtgaatacaa accatgaaag tgtggcctat cgatccttta gttgttcgga 480
gtttgaacct agaggtgcca gaaaagttac cacagggata actggcttgt ggcagtcaag 540
cgttcatagc gacattgctt tttgatcctt cgatgtcggc tcttcctatc ataccgaag 599
<210>15
<211>348
<212>DNA
<213> Yarrowia lipolytica
<400>15
agagaatcgg cgttacctct ctcacaaagc ccttcagtac cgccgcctgt cgggaatcgc 60
gttcaggtgg aacaggacca cctcccttgc acttcttggt atatcagtat aggctgatgt 120
attcatagtg gggtttttca taataaattt actaacggca ggcaacattc actcggctta 180
aacgcaaaac ggaccgtctt gatatcttct gacgcattga ccaccgagaa atagtgttag 240
ttaccgggtg agttattgtt cttctacaca ggcgacgccc atcgtctaga gttgatgtac 300
taactcagat ttcactacct accctatccc tggtacgcac aaagcact 348
<210>16
<211>353
<212>DNA
<213> Yarrowia lipolytica
<400>16
tgtaacactc gctctggaga gttagtcatc cgacagggta actctaatct cccaacacct 60
tattaactct gcgtaactgt aactcttctt gccacgtcga tcttactcaa ttttcctgct 120
catcatctgc tggattgttg tctatcgtct ggctctaata catttattgt ttattgccca 180
aacaactttc attgcacgta agtgaattgt tttataacag cgttcgccaa ttgctgcgcc 240
atcgtcgtcc ggctgtccta ccgttagggg tagtgtgtct cacactaccg aggttactag 300
agttgggaaa gcgatactgc ctcggacaca ccacctgggt cttacgactg cag 353
<210>17
<211>41
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>17
acgccgccaa cccggtctct tggctacctt aagagagtca t 41
<210>18
<211>41
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>18
acgccgccaa cccggtctct tggctacctt aagagagtca t 41
<210>19
<211>42
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>19
atgactctct taaggtagcc aagagaccgg gttggcggcg ta 42
<210>20
<211>42
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>20
gaaacctgct gggtggacat tttgaatgat tcttatactc ag 42
<210>21
<211>42
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>21
ctgagtataa gaatcattca aaatgtccac ccagcaggtt tc 42
<210>22
<211>37
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>22
ccggcaacgt ggggacaggt tagtcgtcca gcttgac 37
<210>23
<211>37
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>23
gtcaagctgg acgactaacc tgtccccacg ttgccgg 37
<210>24
<211>62
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>24
aatgtcgttt accaaaagtg agaatgctcc acagaacaca cctcggacac gggcatctca 60
ct 62
<210>25
<211>63
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>25
ttttattttc catacatacg caagtgagat gcccgtgtcc gaggtgtgtt ctgtggagca 60
ttc 63
<210>26
<211>46
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>26
gtcactaatt agatgacgag gcattggtgt agtggtagtg cagtgg 46
<210>27
<211>43
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>27
accactgcac taccactaca ccaatgcctc gtcatctaat tag 43
<210>28
<211>29
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>28
cttcggtatg ataggaagag ccgacatcg 29
<210>29
<211>45
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>29
acaaccacac acatccacgt gatgctacaa gcagctattg gaaag 45
<210>30
<211>46
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>30
ttagtttcgg gttcccacgt gctatgaccg tatgcaaata ttcgaa 46
<210>31
<211>43
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>31
acaaccacac acatccacgt gatgacccag tctgtgaagg tgg 43
<210>32
<211>46
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>32
ttagtttcgg gttcccacgt gctatgaccg tatgcaaata ttcgaa 46
<210>33
<211>42
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>33
acaaccacac acatccacgt gatgaccacc tattcggctc cg 42
<210>34
<211>43
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>34
ttagtttcgg gttcccacgt gctacttgaa ccccttctcg agc 43
<210>35
<211>41
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>35
acaaccacac acatccacgt gatgcgactc actctgcccc g 41
<210>36
<211>41
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>36
ttagtttcgg gttcccacgt gctactcgac agaagagacc t 41
<210>37
<211>39
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>37
gtataagaat cattcaaaat gctacaagca gctattgga 39
<210>38
<211>39
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>38
tccaatagct gcttgtagca ttttgaatga ttcttatac 39
<210>39
<211>60
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>39
ttattttcca tacatacgca agtgagatgc ccgtgtccga cgcagtagga tgtcctgcac 60
<210>40
<211>41
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>40
agccgaatag gtggtcattg ttgatgtgtg tttaattcaa g 41
<210>41
<211>40
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>41
gaattaaaca cacatcaaca atgaccacct attcggctcc 40
<210>42
<211>42
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>42
gcgtgacata actaattaca tgatctactt gaaccccttc tc 42
<210>43
<211>41
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>43
cgagaagggg ttcaagtaga tcatgtaatt agttatgtca c 41
<210>44
<211>60
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>44
ctcaggcgac gacggaattc gcaaattaaa gccttcgagc gtcccaaaac cttctcaagc 60
<210>45
<211>40
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>45
gaattaaaca cacatcaaca atgaccacct attcggctcc 40
<210>46
<211>42
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>46
gcgtgacata actaattaca tgatctactt gaaccccttc tc 42
<210>47
<211>33
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>47
tgcatacggt catagcctgt ccccacgttg ccg 33
<210>48
<211>41
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>48
cggcaacgtg gggacaggct atgaccgtat gcaaatattc g 41
<210>49
<211>31
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>49
ctttaatttg cgaattccgt cgtcgcctga g 31
<210>50
<211>33
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>50
gagtgttaca aagaattcat gtcacacaaa ccg 33
<210>51
<211>30
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>51
agagaatcgg cgttacctct ctcacaaagc 30
<210>52
<211>31
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>52
gcgtacactg ttagtgcttt gtgcgtacca g 31
<210>53
<211>40
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>53
catgaattct ttgtaacact cgctctggag agttagtcat 40
<210>54
<211>28
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>54
ctgcagtcgt aagacccagg tggtgtgt 28

Claims (8)

1. The construction method of the recombinant yarrowia lipolytica for the heterologous synthesis of α -santalene is characterized by comprising the following steps:
(1) introducing an optimized α -santalene synthase coding gene STS into yarrowia lipolytica to obtain a recombinant bacterium 1, wherein the nucleotide sequence of the gene STS is shown as SEQ ID NO. 1;
(2) introducing a coding gene HMG1 of 3-hydroxy-3-methylglutaryl coenzyme A reductase into the recombinant bacterium 1 to obtain a recombinant bacterium 2; the nucleotide sequence of the gene HMG1 is shown as SEQ ID NO. 2.
2. The construction method of the recombinant yarrowia lipolytica for the heterologous synthesis of α -santalene is characterized by comprising the following steps:
(1) introducing an optimized α -santalene synthase coding gene STS into yarrowia lipolytica to obtain a recombinant bacterium 1, wherein the nucleotide sequence of the gene STS is shown as SEQ ID NO.1, 1500 nucleotides at the 5' end of a coding gene HMG1 of 3-hydroxy-3-methylglutaryl coenzyme A reductase are removed to obtain a truncated coding gene tHMG1 of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the nucleotide sequence of the gene HMG1 is shown as SEQ ID NO.2, and the nucleotide sequence of the gene tHMG1 is shown as SEQ ID NO. 3;
(2) the gene tHMG1 was introduced into recombinant bacterium 1 to obtain recombinant bacterium 3.
3. The construction method of the recombinant yarrowia lipolytica for the heterologous synthesis of α -santalene is characterized by comprising the following steps:
(1) introducing an optimized α -santalene synthase coding gene STS into yarrowia lipolytica to obtain a recombinant bacterium 1, wherein the nucleotide sequence of the gene STS is shown as SEQ ID NO. 1;
(2) introducing an encoding gene ERG8 of phosphomevalonate kinase into the recombinant bacterium 1 to obtain a recombinant bacterium 4; the nucleotide sequence of the gene ERG8 is shown in SEQ ID NO. 4.
4. The construction method of the recombinant yarrowia lipolytica for the heterologous synthesis of α -santalene is characterized by comprising the following steps:
(1) introducing an optimized α -santalene synthase coding gene STS into yarrowia lipolytica to obtain a recombinant bacterium 1, wherein the nucleotide sequence of the gene STS is shown as SEQ ID NO. 1;
(2) introducing an acetoacetyl-CoA thiolase encoding gene ERG10 into the recombinant strain 1 to obtain a recombinant strain 5; the nucleotide sequence of the gene ERG10 is shown in SEQ ID NO. 5.
5. The construction method of the recombinant yarrowia lipolytica for the heterologous synthesis of α -santalene is characterized by comprising the following steps:
(1) introducing an optimized α -santalene synthase coding gene STS into yarrowia lipolytica to obtain a recombinant bacterium 1, wherein the nucleotide sequence of the gene STS is shown as SEQ ID NO. 1;
(2) introducing a coding gene HMG1 of 3-hydroxy-3-methylglutaryl coenzyme A reductase and a coding gene ERG8 of phosphomevalonate kinase into the recombinant bacterium 1 to obtain a recombinant bacterium 6; the nucleotide sequence of the gene HMG1 is shown as SEQ ID NO. 2; the nucleotide sequence of the gene ERG8 is shown in SEQ ID NO. 4.
6. The construction method of the recombinant yarrowia lipolytica for the heterologous synthesis of α -santalene is characterized by comprising the following steps:
(1) introducing an optimized α -santalene synthase coding gene STS into yarrowia lipolytica to obtain a recombinant bacterium 1, wherein the nucleotide sequence of the gene STS is shown as SEQ ID NO.1, 1500 nucleotides at the 5' end of a coding gene HMG1 of 3-hydroxy-3-methylglutaryl coenzyme A reductase are removed to obtain a truncated coding gene tHMG1 of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the nucleotide sequence of the gene HMG1 is shown as SEQ ID NO.2, and the nucleotide sequence of the gene tHMG1 is shown as SEQ ID NO. 3;
(2) introducing a gene tHMG1 and a coding gene ERG8 of phosphomevalonate kinase into the recombinant bacterium 1 to obtain a recombinant bacterium 7;
the nucleotide sequence of the gene ERG8 is shown in SEQ ID NO. 4.
7. The recombinant yarrowia lipolytica for the heterologous synthesis of α -santalene constructed by the method of construction of one of the claims 1-6.
8. The use of the recombinant yarrowia lipolytica fermentation of the heterologously synthesized α -santalene of claim 7 to produce α -santalene.
CN202010080980.6A 2020-02-05 2020-02-05 Recombinant yarrowia lipolytica for heterologous synthesis of α -santalene and construction method thereof Pending CN111235046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010080980.6A CN111235046A (en) 2020-02-05 2020-02-05 Recombinant yarrowia lipolytica for heterologous synthesis of α -santalene and construction method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010080980.6A CN111235046A (en) 2020-02-05 2020-02-05 Recombinant yarrowia lipolytica for heterologous synthesis of α -santalene and construction method thereof

Publications (1)

Publication Number Publication Date
CN111235046A true CN111235046A (en) 2020-06-05

Family

ID=70874944

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010080980.6A Pending CN111235046A (en) 2020-02-05 2020-02-05 Recombinant yarrowia lipolytica for heterologous synthesis of α -santalene and construction method thereof

Country Status (1)

Country Link
CN (1) CN111235046A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112831519A (en) * 2020-12-28 2021-05-25 上海交通大学 Method for preparing santalol by utilizing sweet wormwood herbs
CN112941063A (en) * 2021-04-22 2021-06-11 杭州师范大学 Alpha-santalene synthetase, gene and application
CN114181964A (en) * 2021-11-02 2022-03-15 云南大学 Expression cassette combination, recombinant vector, recombinant saccharomyces cerevisiae and application thereof
WO2023143136A1 (en) * 2022-01-26 2023-08-03 浙江大学杭州国际科创中心 YEAST ENGINEERING BACTERIUM FOR FERMENTATIVE PRODUCTION OF α-SANTALENE AND USE THEREOF

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104039973A (en) * 2012-01-06 2014-09-10 弗门尼舍有限公司 Genetically engineered yeast cells
CN107002109A (en) * 2014-08-21 2017-08-01 马努斯生物合成股份有限公司 The production method of oxy-terpenes
WO2018160066A1 (en) * 2017-03-02 2018-09-07 Isobionics B.V. Santalene synthase
CN110106209A (en) * 2019-05-09 2019-08-09 山东大学 A method of synthesis terpenoid is positioned using Yarrowia lipolytica approach
WO2020072908A1 (en) * 2018-10-05 2020-04-09 Manus Bio, Inc. Biosynthesis and recovery of secondary metabolites
CN111434773A (en) * 2019-01-15 2020-07-21 天津大学 Recombinant yeast for high-yield sandalwood oil and construction method and application thereof
CN112852650A (en) * 2019-11-27 2021-05-28 暨南大学 Saccharomyces cerevisiae engineering bacterium for high yield of santalene and santalol and construction method and application thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104039973A (en) * 2012-01-06 2014-09-10 弗门尼舍有限公司 Genetically engineered yeast cells
CN107002109A (en) * 2014-08-21 2017-08-01 马努斯生物合成股份有限公司 The production method of oxy-terpenes
WO2018160066A1 (en) * 2017-03-02 2018-09-07 Isobionics B.V. Santalene synthase
WO2020072908A1 (en) * 2018-10-05 2020-04-09 Manus Bio, Inc. Biosynthesis and recovery of secondary metabolites
CN111434773A (en) * 2019-01-15 2020-07-21 天津大学 Recombinant yeast for high-yield sandalwood oil and construction method and application thereof
CN110106209A (en) * 2019-05-09 2019-08-09 山东大学 A method of synthesis terpenoid is positioned using Yarrowia lipolytica approach
CN112852650A (en) * 2019-11-27 2021-05-28 暨南大学 Saccharomyces cerevisiae engineering bacterium for high yield of santalene and santalol and construction method and application thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DAN JIA等: "Yarrowia lipolytica construction for heterologous synthesis of α-santalene and fermentation optimization", 《APPLIED MICROBIOLOGY AND BIOTECHNOLOGY》 *
樊婧婧等: "酿酒酵母乙酰辅酶A精细调控合成萜类化合物研究进展", 《化工进展》 *
贾丹: "解脂耶氏酵母异源合成α-檀香烯的菌株构建及发酵探究", 《中国学位论文全文数据库》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112831519A (en) * 2020-12-28 2021-05-25 上海交通大学 Method for preparing santalol by utilizing sweet wormwood herbs
CN112941063A (en) * 2021-04-22 2021-06-11 杭州师范大学 Alpha-santalene synthetase, gene and application
CN112941063B (en) * 2021-04-22 2022-08-05 杭州师范大学 Alpha-santalene synthetase, gene and application
CN114181964A (en) * 2021-11-02 2022-03-15 云南大学 Expression cassette combination, recombinant vector, recombinant saccharomyces cerevisiae and application thereof
WO2023143136A1 (en) * 2022-01-26 2023-08-03 浙江大学杭州国际科创中心 YEAST ENGINEERING BACTERIUM FOR FERMENTATIVE PRODUCTION OF α-SANTALENE AND USE THEREOF

Similar Documents

Publication Publication Date Title
CN111235046A (en) Recombinant yarrowia lipolytica for heterologous synthesis of α -santalene and construction method thereof
Yang et al. Improvement of Tropane alkaloids production in hairy root cultures of'Atropa belladonna'by overexpressing pmt and h6h genes
Zhang et al. Enhanced flavonoid production in hairy root cultures of Glycyrrhiza uralensis Fisch by combining the over-expression of chalcone isomerase gene with the elicitation treatment
CN108949601B (en) Recombinant saccharomyces cerevisiae for producing dammarenediol and protopanoxadiol by using xylose and construction method
CN111778167B (en) Saccharomyces cerevisiae engineering bacterium for high yield of betulinic acid and construction method and application thereof
CN111235045A (en) Recombinant yarrowia lipolytica for heterologous synthesis of β -balsam stem and oleanolic acid and construction method thereof
CN110423732B (en) Enzyme expressed in saccharomyces cerevisiae, genetic engineering bacteria for high yield of alpha-and gamma-tocotrienols and construction method thereof
CN110982720A (en) Recombinant yarrowia lipolytica producing dammarane diol and protopanoxadiol and use thereof
CN109988722B (en) Recombinant saccharomyces cerevisiae strain, application thereof and method for producing tyrosol and/or salidroside
CN113416748A (en) Expression vector for synthesizing cannabidiol, heterologous expression method and application
CN111205993A (en) Recombinant yeast for producing ursolic acid and oleanolic acid as well as construction method and application thereof
CN107723252A (en) Produce the restructuring Yarrowia lipolytica and construction method of valencia orange alkene and nootkatone
CN111235047A (en) Recombinant yarrowia lipolytica for heterogeneously synthesizing α -coumarol and ursolic acid and construction method
CN115927029A (en) Recombinant saccharomyces cerevisiae for producing cannabigerol acid and construction method and application thereof
CN115109763B (en) Flavonol 3-O-glucosyltransferase related to flavonol 3-O-glucoside biosynthesis and application thereof
CN116987603A (en) Recombinant saccharomyces cerevisiae strain for high yield of cannabigerolic acid as well as construction method and application thereof
CN110117582B (en) Fusion protein, encoding gene thereof and application thereof in biosynthesis
CN109136119B (en) Microorganisms and uses thereof
CN104673814B (en) A kind of L threonine aldolases for coming from enterobacter cloacae and its application
CN111690549A (en) Recombinant yarrowia lipolytica strain for producing protopanoxadiol by using xylose and construction method and application thereof
CN109136120B (en) Microorganisms and uses thereof
CN114736918B (en) Recombinant escherichia coli for producing salidroside by integrated expression and application thereof
CN114525215B (en) Recombinant strain for producing terpenoid, construction method thereof, method for producing terpenoid through fermentation and application of recombinant strain
CN115873836A (en) Nerolidol synthetase and application thereof
CN110551702A (en) Recombinant aspergillus tubingensis tannase and expression and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200605

WD01 Invention patent application deemed withdrawn after publication