CN114177291A - 一种二硫化钼药物传递系统及其制备方法和应用 - Google Patents

一种二硫化钼药物传递系统及其制备方法和应用 Download PDF

Info

Publication number
CN114177291A
CN114177291A CN202210040103.5A CN202210040103A CN114177291A CN 114177291 A CN114177291 A CN 114177291A CN 202210040103 A CN202210040103 A CN 202210040103A CN 114177291 A CN114177291 A CN 114177291A
Authority
CN
China
Prior art keywords
mos
mno
dox
preparation
delivery system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210040103.5A
Other languages
English (en)
Other versions
CN114177291B (zh
Inventor
葛飞
刘琴
陶玉贵
张伟伟
宋平
李婉珍
张佳佳
朱龙宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Polytechnic University
Original Assignee
Anhui Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Polytechnic University filed Critical Anhui Polytechnic University
Priority to CN202210040103.5A priority Critical patent/CN114177291B/zh
Publication of CN114177291A publication Critical patent/CN114177291A/zh
Application granted granted Critical
Publication of CN114177291B publication Critical patent/CN114177291B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/52Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an inorganic compound, e.g. an inorganic ion that is complexed with the active ingredient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Immunology (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了一种二硫化钼药物传递系统及其制备方法和应用,属于生物医药领域。上述药物传递系统以MoS2纳米颗粒为基本骨架结构,在其表面进行MnO2包覆,形成介孔核壳结构,负载抗肿瘤化疗药物DOX,最后在MnO2表面进行PEG修饰,其有效成分为:MoS260%‑65%、MnO222‑30%、DOX10%‑13%,PEG5%‑10%。该药物传递系统的制备方法包括利用水热法制备得到MoS2纳米颗粒;将KMnO4加入MoS2的分散液中搅拌得到MoS2@MnO2的介孔核壳结构材料;将DOX按一定比例加入含有MoS2@MnO2的分散液中搅拌,得到负载DOX的MoS2@DOX/MnO2;再用PEG进一步修饰MoS2@DOX/MnO2得到MoS2@DOX/MnO2‑PEG药物传递系统,具有肿瘤微环境响应、水溶性好、稳定性好和DOX装载率高等优点,能够利用光热联合化疗增强对肿瘤的治疗效果。

Description

一种二硫化钼药物传递系统及其制备方法和应用
技术领域
本发明属于生物医药领域,具体涉及一种二硫化钼药物传递系统及其制备方法和应用。
背景技术
肿瘤的发病率呈逐年上升趋势,已成为威胁人类健康的第一大疾病,其特征为人体部分细胞不受控制地增殖,并且扩散乃至入侵到身体的其他部位。目前使用最为广泛的癌症治疗手段主要分为三大类,分别是手术、化疗和放疗。手术治疗是最传统的一种治疗方式,治疗理念为通过物理切除的方式移除体内的肿瘤细胞,但是这种方式操作风险大且效率低下,往往无法根治;化学治疗是采用各种化学药物来杀死肿瘤细胞,所使用的通常是干扰细胞分裂的药物,对部分需要靠自身来维持机能的正常组织也会造成损害;放射治疗指的是用高能量的射线来杀死癌症细胞,然而射线会对人体造成很大伤害,患者通常会面临一系列其他问题(例如脱发等)。因此,对于肿瘤治疗方法的提出和改进是解决这些问题的重要出路。目前,纳米材料介导的各种治疗,如光热、光动力、化动力治疗等由于具有创伤小、毒副作用低、无抗药性等优点而被作为新型的肿瘤治疗方式而广泛应用。
但是,长期的单一治疗仍然会对周围正常组织造成不可避免的附带损伤。因此,多元协同治疗的研究得到越来越广泛的重视。
阿霉素(DOX)是一种抗肿瘤抗生素,可抑制RNA和DNA的合成,对RNA的抑制作用最强,抗瘤谱较广,对多种肿瘤均有作用。阿霉素作为化疗药物,长期用于抗肿瘤治疗,但存在给药后缺乏靶向性的问题。
发明内容
1.发明目的
本发明的目的是提供一种二硫化钼药物传递系统及其制备方法和应用,该药物传递系统包括二硫化钼(MoS2)、二氧化锰(MnO2)、阿霉素(DOX)和聚乙二醇(PEG),是以MoS2纳米颗粒为基本骨架结构,利用液相沉积的方法在其表面进行MnO2的包覆,形成介孔核壳结构,再负载抗肿瘤化疗药物DOX,最后进行PEG修饰,制备获得MoS2@DOX/MnO2-PEG药物传递系统,该系统具有肿瘤微环境响应、水溶性好、稳定性好、生物相容性好和DOX装载率高等优点,能够利用光热联合化疗增强对肿瘤的治疗效果。
2.技术方案
为了达到上述目的,本发明所采用的技术方案如下:
本发明提供了一种二硫化钼药物传递系统,该药物传递系统包括如下组分:二硫化钼纳米颗粒(MoS2)、二氧化锰(MnO2)、阿霉素(DOX)和聚乙二醇(PEG),其中二硫化钼纳米颗粒为基本骨架结构,二氧化锰包覆二硫化钼形成介孔核壳结构,阿霉素负载于该介孔核壳结构中,MoS2纳米颗粒材料因为具有载流子迁移率高和内在带隙大的性质,其光热转换效率高,因此在NIR区有很好的光热转换能力;肿瘤微环境具有高谷胱甘肽(GSH)、高H2O2、低pH、缺氧等特点,二氧化锰可以与GSH反应,因而能够响应肿瘤微环境,使得药物传递系统靶向识别肿瘤微环境,二氧化锰还可以与H+反应,调节肿瘤微环境的pH值,二氧化锰还可以促进H2O2的分解从而产生O2,有利于抗肿瘤治疗;二氧化锰包覆于二硫化钼表面可以准确将二硫化钼药物传递系统富集在肿瘤区域,同时介孔结构的二氧化锰具有高药物负载能力,并分解为水溶性Mn2+离子而不会产生长期毒性,有利于抗肿瘤免疫反应的综合效应;负载的DOX具有荧光特性,在纳米复合材料合成和抗肿瘤活性研究过程中便于观察;聚乙二醇的修饰使药物传递系统具有更好的生物稳定性,在体内可以被充分利用。
优选地,上述组分的质量比例为:二硫化钼纳米颗粒60%-65%,二氧化锰22-30%,阿霉素10%-13%,聚乙二醇5%-10%。
优选地,上述组分的质量比例为:二硫化钼纳米颗粒60%,二氧化锰24%,阿霉素11%,聚乙二醇5%。
本发明还提供了上述一种二硫化钼药物传递系统的制备方法,该方法以二硫化钼纳米颗粒为基本骨架结构,利用液相沉积的方法在其表面进行二氧化锰的包覆,形成介孔核壳结构,再负载抗肿瘤化疗药物阿霉素,最后进行聚乙二醇修饰。
优选地,上述一种二硫化钼药物传递系统的制备方法,具体包括如下步骤:
S1:MoS2@MnO2的制备,利用液相沉淀法将MnO2包覆在MoS2表面,将MoS2纳米颗粒分散于去离子水中,调节溶液pH至中性;加入KMnO4粉末,搅拌使KMnO4充分溶解;加入无水乙醇,在30-40℃下搅拌10-12h,然后升温至45-55℃,继续搅拌4-6h后离心,洗涤沉淀后收集得到MoS2@MnO2纳米材料;
S2:MoS2@DOX/MnO2的制备,将DOX负载在MoS2@MnO2上,将DOX按一定比例添加至S1中制备的MoS2@MnO2的分散液中,搅拌,离心洗涤收集沉淀;
S3:MoS2@DOX/MnO2-PEG的制备,为了增强传递系统的生物相容性,进行PEG修饰,将S2中制备的MoS2@DOX/MnO2重新分散于去离子水中;加入聚丙烯酸(PAA)并调节pH值到7.0~8.0;搅拌、离心后分散到磷酸盐缓冲液(PBS)中,超声分散后加入1-乙基-(3-二甲基氨基丙基)碳酰二亚胺(EDC),搅拌后加入mPEG-NH2和EDC,继续搅拌后离心洗涤,得到MoS2@DOX/MnO2-PEG。
优选地,上述S1:MoS2@MnO2的制备中,KMnO4与MoS2的质量比为5:(2-2.5),KMnO4被还原成MnO2,具有肿瘤微环境靶向的特性,包覆MoS2后可将MoS2带至肿瘤区域而富集,进一步使MoS2发挥光热的抗肿瘤效果;此外,MnO2在包覆MoS2的过程中形成介孔的结构,可以大大增加DOX的负载,将光热治疗和化学治疗结合在一起,联合治疗的效果优于单一治疗。
优选地,上述S1:MoS2@MnO2的制备中,加入KMnO4粉末后,将混合液在磁力搅拌器上260-300rpm搅拌10min使KMnO4充分溶解,之后在60min内将1.5mL无水乙醇滴入分散液;在30-40℃下搅拌10-12h,之后升温至45-55℃,继续搅拌4-6h,在8000-10000rpm的转速下离心10min;收集沉淀后用去离子水洗涤沉淀,得到MoS2@MnO2
优选地,上述S1:MoS2@MnO2的制备中MoS2纳米颗粒的制备方法包括:将Na2MoO4·2H2O溶解在一定体积的水中;超声后将溶液pH调节至6.0-7.0;将L-半胱氨酸添加至该溶液,超声后加入聚乙烯吡咯烷酮(PVP)并搅拌均匀;将混合物转移到不锈钢高压釜中,并在200℃下反应24-40h;溶液自然冷却后,离心,得到MoS2纳米颗粒。
优选地,上述MoS2纳米颗粒的制备方法,Na2MoO4·2H2O的浓度为3-5mg/mL,Na2MoO4·2H2O与L-半胱氨酸的质量比为1:(1.5-2.5),PVP与Na2MoO4·2H2O的质量比为(0.05-0.15):1,采用该体系,MoS2在生成过程中会分散的更均匀且颗粒表面会更紧密。
优选地,上述MoS2纳米颗粒的制备方法,将Na2MoO4·2H2O溶解在一定体积的水中;超声处理5min后,将溶液的pH调节至6.5;将L-半胱氨酸添加至该溶液,超声处理10min后加入聚乙烯吡咯烷酮(PVP)并搅拌均匀;将混合物转移到不锈钢高压釜中,并在200℃下反应36h;溶液自然冷却后,用乙醇和去离子水交替洗涤沉淀,得到MoS2纳米颗粒。
优选地,上述S2:MoS2@DOX/MnO2的制备中,DOX与MoS2@MnO2的质量比为(1-1.25):1。
优选地,上述S2:MoS2@DOX/MnO2的制备中,将DOX添加至MoS2@MnO2的分散液中;将混合液放在磁力搅拌器上260-300rpm磁力搅拌反应12-18h;在8000-10000rpm的转速下离心10min;收集沉淀后用去离子水洗涤沉淀,得到MoS2@DOX/MnO2
优选地,上述S3:MoS2@DOX/MnO2-PEG的制备中,mPEG-NH2的浓度为1.5-2.0mg/mL。
优选地,上述S3:MoS2@DOX/MnO2-PEG的制备中,将15-20mg的mPEG-NH2加入10mL的MoS2@DOX/MnO2分散体系中。
优选地,上述S3:MoS2@DOX/MnO2-PEG的制备中,将S2中制备的MoS2@DOX/MnO2重新分散于去离子水中并超声分散均匀;加入聚丙烯酸(PAA)并调节pH值到7.0~8.0;搅拌1h后离心后分散到磷酸盐缓冲液(PBS)中,超声分散后加入1-乙基-(3-二甲基氨基丙基)碳酰二亚胺(EDC),搅拌1h后加入mPEG-NH2和EDC,在磁力搅拌器上260-300rpm磁力搅拌反应20-24h;在8000-10000rpm的转速下离心10min;收集沉淀后用去离子水洗涤沉淀,得到MoS2@DOX/MnO2-PEG。
本发明还提供了上述一种二硫化钼药物传递系统及其制备方法在抗肿瘤中的应用。
本发明还提供了上述一种二硫化钼药物传递系统及其制备方法在制备抗肿瘤药物中的应用。
3.有益效果
本发明与现有技术相比,其有益效果在于:
(1)本发明提供的一种二硫化钼药物传递系统及其制备方法和应用,包括如下组分:二硫化钼纳米颗粒(MoS2)、二氧化锰(MnO2)、阿霉素(DOX)和聚乙二醇(PEG),其中二硫化钼纳米颗粒为基本骨架结构,二氧化锰包覆二硫化钼形成介孔核壳结构,阿霉素负载于该介孔核壳结构中,聚乙二醇用于修饰,MnO2具有肿瘤微环境靶向的特性,包覆MoS2后可将MoS2带至肿瘤区域而富集,进一步使MoS2发挥光热的抗肿瘤效果;此外,MnO2在包覆MoS2的过程中形成介孔的结构,相比于无孔的载体,可以大大增加DOX的负载,将光热治疗和化学治疗结合在一起,具有光热化疗联合治疗的效果,优于单一治疗。
(2)本发明提供的一种二硫化钼药物传递系统及其制备方法和应用,使用二硫化钼纳米颗粒(MoS2),相比于二氧化钼的药物传递系统,无须先进行聚乙二醇修饰,利用二氧化锰包覆二硫化钼形成介孔核壳结构,阿霉素负载于该介孔核壳结构中,增加了药物传递系统的载药率和稳定性,最后再进行聚乙二醇的修饰,使药物传递系统具有更好的生物稳定性,在体内可以被充分利用。
(3)本发明提供的一种二硫化钼药物传递系统及其制备方法和应用,以二硫化钼纳米颗粒为基本骨架结构,利用液相沉积的方法在其表面进行二氧化锰的包覆,形成介孔核壳结构,再负载抗肿瘤化疗药物阿霉素,最后进行聚乙二醇修饰,制备方法简单,通过扫描电镜观察,MoS2纳米片颗粒直径在200nm左右,分布均匀。此外,本发明的二硫化钼药物传递系统负载的阿霉素具有荧光特性,在纳米复合材料合成和抗肿瘤活性研究过程中便于观察。
附图说明
图1是本发明MoS2纳米颗粒的扫描电镜图;
图2是本发明MoS2@MnO2的EDS能谱图和元素含量分析图,其中Ⅰ为EDS能谱图,Ⅱ为元素含量分析图;
图3是本发明紫外、红外光谱图,其中Ⅰ为紫外光谱图,Ⅱ为红外光谱图;
图4是本发明MoS2@DOX/MnO2-PEG的光热曲线;其中Ⅰ为在808nm红外1.5W功率照射下不同浓度MoS2@DOX/MnO2-PEG的温度变化,Ⅱ为MoS2@DOX/MnO2-PEG在808nm红外0.5W、1W、1.5W功率照射下的温度变化;
图5是本发明MoS2@DOX/MnO2-PEG抗肿瘤纳米材料的细胞摄取效果图;
图6是本发明MoS2@DOX/MnO2-PEG抗肿瘤纳米材料的细胞毒性效果图;
图7是本发明MoS2@DOX/MnO2-PEG在流式细胞仪观察下的细胞凋亡率。
具体实施方式
下面结合具体实施例对本发明进一步进行描述。
需要说明的是,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”等用语,亦仅为便于叙述的明了,而非用以限定可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同;本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
如本文所使用,术语“约”用于提供与给定术语、度量或值相关联的灵活性和不精确性。本领域技术人员可以容易地确定具体变量的灵活性程度。
如本文所使用,术语“......中的至少一个”旨在与“......中的一个或多个”同义。例如,“A、B和C中的至少一个”明确包括仅A、仅B、仅C以及它们各自的组合。
浓度、量和其他数值数据可以在本文中以范围格式呈现。应当理解,这样的范围格式仅是为了方便和简洁而使用,并且应当灵活地解释为不仅包括明确叙述为范围极限的数值,而且还包括涵盖在所述范围内的所有单独的数值或子范围,就如同每个数值和子范围都被明确叙述一样。例如,约1至约4.5的数值范围应当被解释为不仅包括明确叙述的1至约4.5的极限值,而且还包括单独的数字(诸如2、3、4)和子范围(诸如1至3、2至4等)。相同的原理适用于仅叙述一个数值的范围,诸如“小于约4.5”,应当将其解释为包括所有上述的值和范围。此外,无论所描述的范围或特征的广度如何,都应当适用这种解释。
任何方法或过程权利要求中所述的任何步骤可以以任何顺序执行,并且不限于权利要求中提出的顺序。
实施例1
本实施例提供一种二硫化钼药物传递系统及其制备方法。
一种二硫化钼药物传递系统,以二硫化钼纳米颗粒为基本骨架结构,二氧化锰包覆二硫化钼形成介孔核壳结构,阿霉素负载于该介孔核壳结构,并通过聚乙二醇修饰,其中各组分的质量比例为:二硫化钼纳米颗粒60%,二氧化锰24%,阿霉素11%,聚乙二醇5%。
上述一种二硫化钼药物传递系统的制备方法包括如下步骤:
MoS2纳米颗粒的制备:
将0.25g的Na2MoO4·2H2O溶解在25mL的水中;超声处理5min后,用0.1mol/L的HCl将溶液的pH调节至6.5;将0.5g的L-半胱氨酸和50mL的水添加至该溶液,随后超声处理10min,然后加入0.025g的PVP搅拌均匀,继续超声10min;最后将混合物转移到衬有100mL铁氟龙不锈钢高压釜中,并在200℃下反应36h;溶液自然冷却后,将含有MoS2纳米颗粒的混合液以10000rpm的速度离心30min后收集沉淀;用乙醇和去离子水交替洗涤沉淀,收集;
MoS2@MnO2的制备:
称取10mg上述已经制备好的MoS2重新分散于50mL的去离子水中,加入1g的十六烷基三甲基溴化铵(CTAB)和1.3mL0.1mol/L的NaOH;然后加入25mg的KMnO4粉末;搅拌10min使KMnO4充分溶解,之后在60min内将1.5mL无水乙醇滴入分散液;然后在35℃下搅拌12h,之后升温至50℃继续搅拌6h,离心洗涤沉淀后收集备用;
MoS2@DOX/MnO2的制备:
将DOX与MoS2@MnO2按质量比1:1的比例添加至MoS2@MnO2的分散液中,进行混合搅拌12h,离心洗涤收集沉淀,得到MoS2@DOX/MnO2
MoS2@DOX/MnO2-PEG的制备:
将上述已经制备好的MoS2@DOX/MnO2重新分散到10mL的去离子水中并超声分散均匀;然后加入15.0mg的PAA并调节pH值到7.0~8.0之间;搅拌1h后离心并分散到10mL的PBS中,超声分散后加入5.0mg的EDC,继续搅拌1h,随后加入20.0mg的mPEG-NH2和5.0mg的EDC,继续搅拌24h后离心去除多余的mPEG-NH2,取沉淀物真空干燥后待用。
结果分析:
(1)扫描电镜观察
本实施例制备的MoS2纳米颗粒用扫描电镜进行微观结构观察,结果见图1,由图1可知,纳米颗粒分布良好,大小均匀,直径约200nm。
(2)EDS能谱观察
本实施例制备的MoS2@MnO2用EDS能谱进行二氧化锰的合成情况观察,结果见图2,从图中可以看出Mn元素和O元素为主要存在元素而且Mn元素原子百分比(24.29%)约是O元素原子百分比(49.88%)的一半,S元素和Mo元素则分别为1.8%和2.12%,说明MnO2的成功合成并包覆在了MoS2表面。
(3)紫外、红外分析
本实施例制备的MoS2@DOX/MnO2-PEG的紫外、红外分析分别如图3中的I和II所示,由图3中的出峰位置可知,MoS2@DOX/MnO2-PEG的药物传递系统已经成功制备。
(4)光热性能分析
本实施例制备的MoS2@DOX/MnO2-PEG在不同浓度和不同瓦数照射下进行了光热性能的分析,结果如图4中的I和II,随着时间的增加,温度也是在不断对应的升高,说明本发明具有良好的光热转换效率。
(5)载药量测试
通过检测,DOX载药量约为11%。
实施例2
本实施例提供一种二硫化钼药物传递系统MoS2@DOX/MnO2-PEG的体外细胞实验,其中MoS2@DOX/MnO2-PEG的制备如实施例1所示。
(1)细胞摄取实验
本发明以MCF-7细胞为研究对象,通过DAPI试剂盒测定了细胞对MoS2@DOX/MnO2-PEG的摄取情况,结果如图5所示。将细胞和MoS2@DOX/MnO2-PEG与培养基混合液共培养2、4、12h后用荧光显微镜来观察细胞摄取的情况。结果如图所示,蓝色荧光代表MCF-7细胞的细胞核,红色荧光代表MoS2@DOX/MnO2-PEG。随着培养时间的延长,肿瘤细胞细胞质内的红色荧光也在不断增加,说明细胞对MoS2@DOX/MnO2-PEG的摄取量也越来越多,证明合成的MoS2@DOX/MnO2-PEG可以被肿瘤细胞摄取,从而用于肿瘤细胞的治疗。
(2)细胞毒性实验
本发明以MCF-7细胞为研究对象,通过CCK-8试剂盒测定了MoS2@DOX/MnO2-PEG对细胞存活率的影响。从图6可以看出,在与不同浓度的MoS2和MoS2@MnO2孵育24h后,细胞活力仍然很高。这表明MoS2和MoS2@MnO2在MoS2@DOX/MnO2-PEG中均没有明显的细胞毒性。
此外,MoS2@DOX/MnO2-PEG+808nm的癌细胞杀伤效果取决于剂量且与其他处理组的肿瘤细胞相比,在最高浓度下细胞活力下降至12%,低于同浓度其他处理组。说明相较于单独的光热治疗或化学治疗,光热和化学的联合治疗效果是最佳的。
(3)细胞凋亡实验
本发明MoS2@DOX/MnO2-PEG用于细胞凋亡实验,结果如图7所示。应用的MoS2@DOX/MnO2-PEG中DOX浓度为0.75、1.5、3和6μg ml-1。可以观察到随着MoS2@DOX/MnO2-PEG浓度的增加,各组的细胞凋亡率也在增加,这与上述细胞毒性试验结果一致。当浓度为6μg ml-1时,用808nm的激发器照射纳米材料和细胞的共培养物,然后进行细胞凋亡测试。结果显示,在照射后细胞凋亡率由照射前的46.7%增加到54.3%,说明光热治疗和化疗联合的治疗对肿瘤细胞有明显的杀伤效果。

Claims (10)

1.一种二硫化钼药物传递系统,其特征在于,包括如下组分:二硫化钼纳米颗粒、二氧化锰、阿霉素和聚乙二醇,所述二硫化钼纳米颗粒为基本骨架结构,所述二氧化锰包覆二硫化钼形成介孔核壳结构,所述阿霉素负载于该介孔核壳结构中。
2.根据权利要求1所述的一种二硫化钼药物传递系统,其特征在于,所述组分的质量比例为:二硫化钼纳米颗粒60%-65%,二氧化锰22-30%,阿霉素10%-13%,聚乙二醇5%-10%。
3.权利要求1或2所述的一种二硫化钼药物传递系统的制备方法,其特征在于,所述制备方法以二硫化钼纳米颗粒为基本骨架结构,利用液相沉积的方法在其表面进行二氧化锰的包覆,形成介孔核壳结构,再负载抗肿瘤化疗药物阿霉素,最后进行聚乙二醇修饰
4.根据权利要求4所述的一种二硫化钼药物传递系统的制备方法,其特征在于,所述方法包括如下步骤:
S1:MoS2@MnO2的制备,利用液相沉淀法将MnO2包覆在MoS2表面,将MoS2纳米颗粒分散于去离子水中,调节溶液pH至中性;加入KMnO4粉末,搅拌使KMnO4充分溶解;加入无水乙醇,在30-40℃下搅拌10-12h,然后升温至45-55℃,继续搅拌4-6h后离心,洗涤沉淀后收集得到MoS2@MnO2纳米材料;
S2:MoS2@DOX/MnO2的制备,将DOX负载在MoS2@MnO2上,将DOX按一定比例添加至S1中制备的MoS2@MnO2的分散液中,搅拌,离心洗涤收集沉淀得到MoS2@DOX/MnO2
S3:MoS2@DOX/MnO2-PEG的制备,将S2中制备的MoS2@DOX/MnO2重新分散于去离子水中;加入聚丙烯酸并调节pH值到7.0~8.0;搅拌、离心后分散到磷酸盐缓冲液中,超声分散后加入1-乙基-(3-二甲基氨基丙基)碳酰二亚胺,搅拌后加入mPEG-NH2和1-乙基-(3-二甲基氨基丙基)碳酰二亚胺,继续搅拌后离心洗涤,得到MoS2@DOX/MnO2-PEG。
5.根据权利要求4所述的一种二硫化钼药物传递系统的制备方法,其特征在于,所述S1:MoS2@MnO2的制备中,KMnO4与MoS2的质量比为5:(2-2.5)。
6.根据权利要求5所述的一种二硫化钼药物传递系统的制备方法,其特征在于,所述S2:MoS2@DOX/MnO2的制备中,DOX与MoS2@MnO2的质量比为(1-1.25):1。
7.根据权利要求6所述的一种二硫化钼药物传递系统的制备方法,其特征在于,所述S3:MoS2@DOX/MnO2-PEG的制备中,mPEG-NH2的浓度为1.5-2.0mg/mL。
8.根据权利要求4-7任一所述的一种二硫化钼药物传递系统的制备方法,其特征在于,所述MoS2纳米颗粒的制备方法包括:将Na2MoO4·2H2O溶解在一定体积的水中;超声后将溶液pH调节至6.0-7.0;将L-半胱氨酸添加至该溶液,超声后加入聚乙烯吡咯烷酮(PVP)并搅拌均匀;将混合物转移到不锈钢高压釜中,并在200℃下反应24-40h;溶液自然冷却后,离心,得到MoS2纳米颗粒。
9.根据权利要求8所述的一种二硫化钼药物传递系统的制备方法,其特征在于,所述Na2MoO4·2H2O与L-半胱氨酸的质量比为1:(1.5-2.5),PVP与Na2MoO4·2H2O的质量比为(0.05-0.15):1。
10.权利要求1或2所述的一种二硫化钼药物传递系统和/或权利要求3-9任一所述的一种二硫化钼药物传递系统及其制备方法在抗肿瘤中的应用或制备抗肿瘤药物中的应用。
CN202210040103.5A 2022-01-14 2022-01-14 一种二硫化钼药物传递系统及其制备方法和应用 Active CN114177291B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210040103.5A CN114177291B (zh) 2022-01-14 2022-01-14 一种二硫化钼药物传递系统及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210040103.5A CN114177291B (zh) 2022-01-14 2022-01-14 一种二硫化钼药物传递系统及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114177291A true CN114177291A (zh) 2022-03-15
CN114177291B CN114177291B (zh) 2024-02-13

Family

ID=80545671

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210040103.5A Active CN114177291B (zh) 2022-01-14 2022-01-14 一种二硫化钼药物传递系统及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114177291B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114452406A (zh) * 2022-03-16 2022-05-10 安徽工程大学 一种抑菌材料及其制备方法和应用
CN114642742A (zh) * 2022-04-13 2022-06-21 南京邮电大学 多重刺激响应纳米材料-高分子复合水凝胶及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103553034A (zh) * 2013-11-12 2014-02-05 哈尔滨工业大学 一种三维孔状石墨烯骨架的制备方法及其应用
US20160367489A1 (en) * 2015-06-22 2016-12-22 National Tsing Hua University PREPARATION OF pH-RESPONSIVE NANOPARTICLES AND PROMOTED DELIVERY OF ANTICANCER DRUGS INTO DEEP TUMOR TISSUES AND APPLICATION THEREOF
CN107375242A (zh) * 2017-08-03 2017-11-24 东华大学 一种叶酸修饰的二硫化钼包裹周期性介孔有机硅纳米载药复合物的制备方法
CN108295256A (zh) * 2018-02-08 2018-07-20 东华大学 一种靶向修饰的二硫化钼纳米载药复合物及其制备方法
CN112569367A (zh) * 2020-12-15 2021-03-30 安徽工程大学 一种5-氟尿嘧啶-介孔二氧化硅-海藻酸钠药物传递系统及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103553034A (zh) * 2013-11-12 2014-02-05 哈尔滨工业大学 一种三维孔状石墨烯骨架的制备方法及其应用
US20160367489A1 (en) * 2015-06-22 2016-12-22 National Tsing Hua University PREPARATION OF pH-RESPONSIVE NANOPARTICLES AND PROMOTED DELIVERY OF ANTICANCER DRUGS INTO DEEP TUMOR TISSUES AND APPLICATION THEREOF
CN107375242A (zh) * 2017-08-03 2017-11-24 东华大学 一种叶酸修饰的二硫化钼包裹周期性介孔有机硅纳米载药复合物的制备方法
CN108295256A (zh) * 2018-02-08 2018-07-20 东华大学 一种靶向修饰的二硫化钼纳米载药复合物及其制备方法
CN112569367A (zh) * 2020-12-15 2021-03-30 安徽工程大学 一种5-氟尿嘧啶-介孔二氧化硅-海藻酸钠药物传递系统及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI LIU等: "PEGylated MoS2 quantum dots for traceable and pH-responsive chemotherapeutic drug delivery" *
XUFENG ZHU等: "In situ fabrication of MS@MnO2 hybrid as nanozymes for enhancing ROS-mediated breast cancer therapy" *
杨扬等: "纳米MnO2/MoS2复合材料的制备及其电化学性能" *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114452406A (zh) * 2022-03-16 2022-05-10 安徽工程大学 一种抑菌材料及其制备方法和应用
CN114452406B (zh) * 2022-03-16 2023-05-23 安徽工程大学 一种抑菌材料及其制备方法和应用
CN114642742A (zh) * 2022-04-13 2022-06-21 南京邮电大学 多重刺激响应纳米材料-高分子复合水凝胶及其制备方法
CN114642742B (zh) * 2022-04-13 2023-07-28 南京邮电大学 多重刺激响应纳米材料-高分子复合水凝胶及其制备方法

Also Published As

Publication number Publication date
CN114177291B (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
Yu et al. Thiol-capped Bi nanoparticles as stable and all-in-one type theranostic nanoagents for tumor imaging and thermoradiotherapy
Ruan et al. Interfacially Engineered Zn x Mn1–x S@ Polydopamine Hollow Nanospheres for Glutathione Depleting Photothermally Enhanced Chemodynamic Therapy
Dong et al. Upconversion-mediated ZnFe 2 O 4 nanoplatform for NIR-enhanced chemodynamic and photodynamic therapy
Zhang et al. SnWO4-based nanohybrids with full energy transfer for largely enhanced photodynamic therapy and radiotherapy
Wang et al. Se@ SiO 2–FA–CuS nanocomposites for targeted delivery of DOX and nano selenium in synergistic combination of chemo-photothermal therapy
Sun et al. In situ synthesis of graphene oxide/gold nanorods theranostic hybrids for efficient tumor computed tomography imaging and photothermal therapy
Ding et al. cis-Platinum pro-drug-attached CuFeS 2 nanoplates for in vivo photothermal/photoacoustic imaging and chemotherapy/photothermal therapy of cancer
Wang et al. Ultrathin CuFe2S3 nanosheets derived from CuFe-layered double hydroxide as an efficient nanoagent for synergistic chemodynamic and NIR-II photothermal therapy
CN114177291B (zh) 一种二硫化钼药物传递系统及其制备方法和应用
Cheng et al. AgBiS2 nanoparticles with synergistic photodynamic and bioimaging properties for enhanced malignant tumor phototherapy
Ma et al. Platinum nanoworms for imaging-guided combined cancer therapy in the second near-infrared window
CN106729738A (zh) 一种枝状金铂双金属纳米粒子及其制备方法和应用
Zhang et al. Intelligent protein-coated bismuth sulfide and manganese oxide nanocomposites obtained by biomineralization for multimodal imaging-guided enhanced tumor therapy
Song et al. Fabrication of the biomimetic DOX/Au@ Pt nanoparticles hybrid nanostructures for the combinational chemo/photothermal cancer therapy
Gao et al. AuNRs@ MIL-101-based stimuli-responsive nanoplatform with supramolecular gates for image-guided chemo-photothermal therapy
Li et al. An erythrocyte membrane-camouflaged biomimetic nanoplatform for enhanced chemo-photothermal therapy of breast cancer
CN111603559B (zh) 铜碘簇化合物@光敏剂复合纳米颗粒及其作为x射线光动力治疗药物的应用
Zhao et al. Immunostimulatory multi-interfacial bimetallic phosphide nanoparticles as photo-enhanced cascade nanozyme for cancer therapy
Geng et al. Metal-drug nanoparticles-mediated osteolytic microenvironment regulation for enhanced radiotherapy of orthotopic osteosarcoma
Wang et al. Mesoporous silica nanoparticles combined with MoS 2 and FITC for fluorescence imaging and photothermal therapy of cancer cells
Wang et al. In situ growth of Au nanoparticles on natural melanin as biocompatible and multifunctional nanoagent for efficient tumor theranostics
CN113134012A (zh) 一种CaO2/Fe3O4@OA纳米复合物及其制备方法与应用
CN113577273B (zh) 一种掺杂铜、锰的类普鲁士蓝-二硫化钼纳米复合材料及其制备和应用
Su et al. Polydopamine nanoparticles coated with a metal-polyphenol network for enhanced photothermal/chemodynamic cancer combination therapy
Zhu et al. Synthesis of CoSnS 2 hollow nanocubes with NIR-enhanced chemodynamic therapy and glutathione depletion for combined cancer therapy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant