CN114164387B - 一种强韧与润滑功能一体化热喷涂陶瓷涂层及其制备方法与应用 - Google Patents

一种强韧与润滑功能一体化热喷涂陶瓷涂层及其制备方法与应用 Download PDF

Info

Publication number
CN114164387B
CN114164387B CN202111492180.6A CN202111492180A CN114164387B CN 114164387 B CN114164387 B CN 114164387B CN 202111492180 A CN202111492180 A CN 202111492180A CN 114164387 B CN114164387 B CN 114164387B
Authority
CN
China
Prior art keywords
coating
ceramic coating
thermal spraying
toughness
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111492180.6A
Other languages
English (en)
Other versions
CN114164387A (zh
Inventor
李双建
刘军
张鹏
王启伟
俞传永
李卫
曹琳
关子朋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinan University
Original Assignee
Jinan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinan University filed Critical Jinan University
Priority to CN202111492180.6A priority Critical patent/CN114164387B/zh
Publication of CN114164387A publication Critical patent/CN114164387A/zh
Application granted granted Critical
Publication of CN114164387B publication Critical patent/CN114164387B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明涉及表面改性技术领域,具体提供了一种金属表面自润滑涂层的制备方法,包括以下步骤:采用热喷涂技术在金属基材表面制备氧化物陶瓷涂层;将磨抛超声后的氧化物陶瓷涂层置于一定量的含有润滑相元素的反应物溶液中,进行真空浸渍处理;再进行水热反应后,将制备好的样品进一步放入树脂内,通过真空浸渍、固化后即获得强韧与润滑功能一体化热喷涂陶瓷涂层。该发明采用两步法,首先通过水热反应在涂层原有缺陷处合成固体润滑剂;其次,通过真空浸渍工艺引入增强相,从而实现强韧与润滑功能一体化的设计。本发明简单可靠、可操作性强,得到的复合涂层具有低摩擦因数、高抗磨损能力,并有效延长金属基材的服役寿命、节省能源。

Description

一种强韧与润滑功能一体化热喷涂陶瓷涂层及其制备方法与 应用
技术领域
本发明涉及表面改性技术领域,具体一种强韧与润滑功能一体化热喷涂陶瓷涂层及其制备方法与应用。
背景技术
在诸多表面涂层制备技术中,热喷涂技术十分重要并应用广泛,可在金属基材上制备金属、金属陶瓷和陶瓷涂层。陶瓷因其硬度高、蠕变小、化学和热稳定性好,具有优异的耐磨损、抗氧化、耐腐蚀、绝缘等特点,广泛应用于空间机构、发动机部件、动密封零件、高速切削工具等领域,成为机械耐磨部位用涂层材料的最佳选择之一,因此研究陶瓷涂层的摩擦学性能日益受到人们的重视。利用热喷涂技术在金属上制备陶瓷涂层,其在室温大气下作为润滑耐磨涂层,目前仍存在的主要问题有:①陶瓷材料本身固有的脆性高和韧性差;②陶瓷涂层内存在孔隙/微裂纹等缺陷;③陶瓷涂层虽具有高的耐磨性,但不具有室温润滑性能。在热喷涂涂层内引入润滑剂是赋予其润滑性能、降低其磨损率的有效方式。但碳作为一种优异的润滑材料,在热喷涂过程中极易发生氧化分解,因此常规热喷涂方式难以制备陶瓷/碳复合涂层。赵晓琴等(Tribology International 101(2016)168–177)通过采用镍包石墨作为碳源,从而减少了碳在喷涂过程中的氧化,成功制备了莫来石/碳复合涂层。但是该涂层硬度等力学性能发生了明显的降低。此外,由于陶瓷涂层固有的脆性高和韧性差等问题并未等到解决,因此涂层在高载荷(球盘式载荷>10N,最大赫兹应力大于1.5GPa)下磨损率会显著增加。
发明内容
本发明针对上述问题,本发明首要目的在于提供一种强韧与润滑功能一体化热喷涂陶瓷涂层的制备方法,本发明利用热喷涂涂层内固有的孔隙、微裂纹等缺陷,通过真空浸渍工艺引入含有润滑相(碳)元素的溶液,经水热反应,原位生成碳球作为固体润滑剂,赋予涂层润滑性能;此外,在原位生长润滑剂后的涂层内,进一步通过真空浸渍工艺引入增强相树脂,对润滑剂进一步固定的同时提高涂层的韧性,实现涂层强韧与润滑功能一体化的设计。通过碳球润滑剂和树脂增韧相的协同作用实现热喷涂陶瓷涂层在高载荷下的减摩、耐磨功能。
本发明另一目的在于提供上述方法制备得到的一种强韧与润滑功能一体化热喷涂陶瓷涂层。
本发明再一目的在于提供上述强韧与润滑功能一体化热喷涂陶瓷涂层在减摩、耐磨方面的应用。
为达到上述目的,本发明采取了如下技术方案,
一种强韧与润滑功能一体化热喷涂陶瓷涂层的制备方法,包括以下步骤:
S1:采用热喷涂工艺,先在金属基材上喷涂金属相过渡层,再喷涂氧化物陶瓷涂层;
S2:将涂层置于含有碳源的反应物溶液中经超声、真空浸渍处理后,将溶液与涂层一起置于反应釜内,进行水热反应;反应完成后即获得孔内含有润滑剂的热喷涂陶瓷涂层样品;
S3:将步骤S2制备的样品放入增强相树脂内,通过超声、真空浸渍、固化后去除表面多余的树脂,即获得强韧与润滑功能一体化热喷涂陶瓷涂层。
步骤S1所述的热喷涂工艺可以为超音速火焰喷涂、大气等离子喷涂、低压等离子喷涂、真空等离子喷涂等工艺中的任意一种。
步骤S1所述的金属相过渡层可以为NiCrAlY、NiCr、NiAl和NiCrAlYTa等成分中的任意一种。步骤S1所述金属过渡层的厚度为80~120μm。
步骤S1所述的氧化物陶瓷涂层可以为氧化锆、氧化钇稳定氧化锆、氧化铝、氧化铝-氧化钛等陶瓷涂层中的任意一种。所述氧化物陶瓷涂层的厚度为250~600μm。
优选的,步骤S1得到氧化物陶瓷涂层后,对获得的涂层进行表面抛光、超声、烘干处理。
步骤S2所述碳源为葡萄糖;所述碳源在反应物溶液中的浓度为0.1~0.5g/ml,优选为0.15~0.2g/ml。
步骤S2所述的水热反应的温度为180-320℃;所述水热反应的时间为6-48h,优选为12-36h。
步骤S3所述增强相树脂为环氧树脂、聚酰亚胺、聚氨酯和丙烯酸等中的至少一种。
步骤S3所述的真空浸渍条件为:压力为-0.060~-0.085Mpa,浸渍时间为0.5~6h;固化温度为20~120℃,优选为20~35℃。
一种强韧与润滑功能一体化热喷涂陶瓷涂层通过上述方法制备得到。
所述强韧与润滑功能一体化热喷涂陶瓷涂层在减摩、耐磨方面的应用。
本发明所具有的有益效果为:
(1)利用热喷涂涂层内固有的孔隙、微裂纹等缺陷,通过真空浸渍工艺引入含有润滑相(碳)元素的溶液,经水热反应,原位生成固体润滑剂,赋予涂层润滑性能。
(2)在原位生长润滑剂后的涂层内,进一步通过真空浸渍工艺引入增强相树脂,对润滑剂进一步固定的同时提高涂层的韧性,实现涂层强韧与润滑功能一体化的设计。
(3)将本发明制备的复合涂层应用于摩擦工况时可以在摩擦表面性能一层具有低剪切强度、高硬度、高弹性模量和强抗塑性变形能力的摩擦膜,从而实现降低摩擦因数、减少磨损的目的。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1所得氧化钇稳定氧化锆涂层(a),氧化钇稳定氧化锆—树脂复合涂层(b),氧化钇稳定氧化锆—碳复合涂层(c)和氧化钇稳定氧化锆—碳/树脂复合涂层(d)断面的扫描电镜图;
图2为本发明实施例1所得氧化钇稳定氧化锆涂层(a),氧化钇稳定氧化锆—树脂复合涂层(b),氧化钇稳定氧化锆—碳复合涂层(c)和氧化钇稳定氧化锆—碳/树脂复合涂层(d)表面的扫描电镜图;
图3为本发明实施例1所得氧化钇稳定氧化锆涂层(图示纯YSZ涂层)和氧化钇稳定氧化锆—碳/树脂复合涂层(图示YSZ-碳-树脂涂层)的XRD图;
具体实施方式
下面结合附图,通过实施例对本发明进一步说明,但不仅限于本发明保护范围。本发明所述室温和未指明的温度均为20~35℃。实施例中环氧树脂购买于GORAL(斑羚)BY0105
实施例1:
1)采用大气等离子喷涂工艺在不锈钢基材表面先制备一层NiCrAlY过渡层,厚度为100μm,然后再制备一层氧化钇稳定氧化锆涂层,厚度为350μm。
2)将制备好的氧化钇稳定氧化锆涂层经过磨抛、超声处理。
3)在100ml去离子水中,不断磁力搅拌过程中加入15g葡萄糖将步骤2)中获得的氧化钇稳定氧化锆涂层放入配置好的溶液中,后在-0.085MPa的压力下进行真空浸渍30分钟处理。
4)将步骤3)的样品和溶液一起放入水热反应釜内,升温至280℃,保温24h,反应结束后,自然冷却至室温后,取出样品,得到氧化钇稳定氧化锆—碳复合涂层。
5)将步骤4)制备的样品放入具有良好流动性的环氧树脂内,通过在-0.085MPa的压力下进行真空浸渍60分钟处理、室温24小时固化后去除表面多余的树脂,即获得氧化钇稳定氧化锆—碳/树脂复合涂层(YSZ-C/R)。
由图1和图2可以看出,通过本发明实施例得到的复合涂层相对与原始纯氧化物陶瓷涂层而言,微观结构更加致密,原始涂层中的孔隙和微裂纹等缺陷由于润滑剂的原位合成与树脂的引入而消失不见。图3的XRD图可以看出复合涂层中碳和树脂的成功引入。
实施例2:
1)采用大气等离子喷涂工艺在不锈钢基材表面先制备一层NiCrAlY过渡层,厚度为100μm,然后再制备一层氧化铝涂层,厚度为350μm。
2)将制备好的氧化铝涂层经过磨抛、超声处理。
3)在100ml去离子水中,不断磁力搅拌过程中加入20g葡萄糖,将步骤2)中获得的氧化铝涂层放入配置好的溶液中,后在-0.085MPa的压力下进行真空浸渍30分钟处理。
4)将步骤3)的样品和溶液一起放入水热反应釜内,升温至280℃,保温24h,反应结束后,自然冷却至室温后,取出样品,得到氧化钇稳定氧化锆—碳复合涂层。
5)将步骤4)制备的样品放入具有良好流动性的环氧树脂内,通过在-0.085MPa的压力下进行真空浸渍60分钟处理、室温24小时固化后去除表面多余的树脂,即获得氧化钇稳定氧化锆—碳/树脂复合涂层。
实施例2的电镜图和XRD图与实施例1相似。
对比例1
本对比例与实施例1的不同之处在于只进行步骤1)和2)得到氧化钇稳定氧化锆涂层(YSZ)。
对比例2
本对比例与实施例1的不同之处在于不实施步骤5)得到氧化钇稳定氧化锆—碳复合涂层(YSZ-C)。
对比例3
本对比例与实施例1的不同之处在于不实施步骤3)和4)得到氧化钇稳定氧化锆—树脂复合涂层(YSZ-R)。
性能表征
采用Retc多功能摩擦磨损试验机对所制备的YSZ、YSZ-C、YSC-R和YSZ-C/R四种涂层进行摩擦学性能表征,表征条件为:模式:球盘式,对偶球为5mm直径氧化铝球,速度为9Hz,摩擦时间为40分钟,室温,空气湿度为65±10%,载荷为8N和15N。
表1.对比例1制备的氧化钇稳定氧化锆涂层(YSZ),对比例2制备的氧化钇稳定氧化锆—碳复合涂层(YSZ-C)、对比例3制备的氧化钇稳定氧化锆—树脂复合涂层(YSZ-R)和实施例1制备的氧化钇稳定氧化锆—碳/树脂复合涂层(YSZ-C/R)的力学性能。
表2.对比例1制备的氧化钇稳定氧化锆涂层(YSZ),对比例2制备的氧化钇稳定氧化锆—碳复合涂层(YSZ-C)、对比例3制备的氧化钇稳定氧化锆—树脂复合涂层(YSZ-R)和实施例1制备的氧化钇稳定氧化锆—碳/树脂复合涂层(YSZ-C/R)的摩擦系数
表3.对比例1制备的氧化钇稳定氧化锆涂层(YSZ),对比例2制备的氧化钇稳定氧化锆—碳复合涂层(YSZ-C)、对比例3制备的氧化钇稳定氧化锆—树脂复合涂层(YSZ-R)和实施例1制备的氧化钇稳定氧化锆—碳/树脂复合涂层(YSZ-C/R)的磨损率(mm3/N·m)
表1、表2和表3给出了涂层的力学性能、润滑性能和耐磨损性能数据,可以看出本发明制备的复合涂层具有高硬度、高内聚强度(由划痕测试仪测定)的同时,在高载荷下也具有优异的减摩耐磨性能。

Claims (6)

1.一种强韧与润滑功能一体化热喷涂陶瓷涂层的制备方法,其特征在于:包括以下步骤:
S1:采用热喷涂工艺,先在金属基材上喷涂金属相过渡层,再喷涂氧化物陶瓷涂层;
S2:将涂层置于含有碳源的反应物溶液中经超声、真空浸渍处理后,将溶液与涂层一起置于反应釜内,进行水热反应;反应完成后即获得孔内含有润滑剂的热喷涂陶瓷涂层样品;
S3:将步骤S2制备的样品放入增强相树脂内,通过超声、真空浸渍、固化后去除表面多余的树脂,即获得强韧与润滑功能一体化热喷涂陶瓷涂层;
步骤S1所述的金属相过渡层为NiCrAlY、NiCr、NiAl和NiCrAlYTa成分中的任意一种;
步骤S1所述的氧化物陶瓷涂层为氧化锆、氧化钇稳定氧化锆、氧化铝和氧化铝-氧化钛陶瓷涂层中的任意一种;
步骤S2所述碳源为葡萄糖;步骤S2所述的水热反应的温度为180-320℃;所述水热反应的时间为6-48h;
步骤S3所述增强相树脂为环氧树脂、聚酰亚胺、聚氨酯和丙烯酸中的至少一种。
2.根据权利要求1所述的方法,其特征在于,所述碳源在反应物溶液中的浓度为0.1~0.5g/ml。
3.根据权利要求1所述的方法,其特征在于,步骤S1所述的热喷涂工艺为超音速火焰喷涂、大气等离子喷涂、低压等离子喷涂、真空等离子喷涂中的任意一种。
4.根据权利要求1所述的方法,其特征在于,步骤S3所述的真空浸渍条件为:压力为-0.060~-0.085Mpa,浸渍时间为0.5~6h;固化温度为20~120℃。
5.一种强韧与润滑功能一体化热喷涂陶瓷涂层,通过权利要求1~4任一项所述的方法得到。
6.根据权利要求5所述所述一种强韧与润滑功能一体化热喷涂陶瓷涂层在减摩、耐磨方面的应用。
CN202111492180.6A 2021-12-08 2021-12-08 一种强韧与润滑功能一体化热喷涂陶瓷涂层及其制备方法与应用 Active CN114164387B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111492180.6A CN114164387B (zh) 2021-12-08 2021-12-08 一种强韧与润滑功能一体化热喷涂陶瓷涂层及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111492180.6A CN114164387B (zh) 2021-12-08 2021-12-08 一种强韧与润滑功能一体化热喷涂陶瓷涂层及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN114164387A CN114164387A (zh) 2022-03-11
CN114164387B true CN114164387B (zh) 2023-11-24

Family

ID=80484290

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111492180.6A Active CN114164387B (zh) 2021-12-08 2021-12-08 一种强韧与润滑功能一体化热喷涂陶瓷涂层及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN114164387B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4418517C1 (de) * 1994-05-27 1995-07-20 Difk Deutsches Inst Fuer Feuer Verfahren zum Herstellen einer Verschließschicht und ihre Verwendung
CN106086766A (zh) * 2016-07-26 2016-11-09 中国科学院兰州化学物理研究所 一种高抗磨低摩擦系数热喷涂陶瓷涂层的制备方法
CN110205576A (zh) * 2019-04-25 2019-09-06 中国科学院兰州化学物理研究所 一种真空低磨损8YSZ+Ag陶瓷金属涂层的制备方法
CN110591287A (zh) * 2019-09-06 2019-12-20 中国科学院兰州化学物理研究所 适用于水润滑工况的环氧树脂基纳米复合材料的制备方法
CN111575636A (zh) * 2020-06-01 2020-08-25 西安工业大学 一种改善热喷涂陶瓷涂层自润滑性能的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4418517C1 (de) * 1994-05-27 1995-07-20 Difk Deutsches Inst Fuer Feuer Verfahren zum Herstellen einer Verschließschicht und ihre Verwendung
CN106086766A (zh) * 2016-07-26 2016-11-09 中国科学院兰州化学物理研究所 一种高抗磨低摩擦系数热喷涂陶瓷涂层的制备方法
CN110205576A (zh) * 2019-04-25 2019-09-06 中国科学院兰州化学物理研究所 一种真空低磨损8YSZ+Ag陶瓷金属涂层的制备方法
CN110591287A (zh) * 2019-09-06 2019-12-20 中国科学院兰州化学物理研究所 适用于水润滑工况的环氧树脂基纳米复合材料的制备方法
CN111575636A (zh) * 2020-06-01 2020-08-25 西安工业大学 一种改善热喷涂陶瓷涂层自润滑性能的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"The influence of carbon spheres on thermal and mechanical properties of epoxy composites";Xiaolong Wang等;《Journal of Polymer Research》;第25卷;第1-7页 *

Also Published As

Publication number Publication date
CN114164387A (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
CN108486565B (zh) 一种低压冷喷涂铜基自润滑涂层及其制备方法
CN113512459B (zh) 含渗硼层的超低摩擦固-液组合物及其减小工件摩擦的方法
CN106884149A (zh) 水环境耐磨涂层、其制备方法及应用
CN111575636A (zh) 一种改善热喷涂陶瓷涂层自润滑性能的方法
CN109837549A (zh) 一种钛合金表面制备减摩抗微动强化层的方法
CN106086766A (zh) 一种高抗磨低摩擦系数热喷涂陶瓷涂层的制备方法
CN114164387B (zh) 一种强韧与润滑功能一体化热喷涂陶瓷涂层及其制备方法与应用
CN108456883B (zh) 一种基体表面碳基减摩耐磨薄膜的制备方法
CN103602946B (zh) 一种提高钛合金轴承座表面耐磨性的方法
Li et al. Fabrication and service of all-ceramic ball bearings for extreme conditions applications
CN114164388A (zh) 一种碳/二硫化钼复合润滑剂及其制备方法与应用
Sharifahmadian et al. Doping effects on the tribological performance of diamond-like carbon coatings: A review
CN114315421A (zh) 一种可磨耗封严复合涂层材料及其制备方法
CN113512710A (zh) 一种45钢表面CrN-Cr梯度涂层及其制备方法与应用
CN110527891B (zh) 低钴硬质合金表面金刚石涂层及其制备方法
Jianfang et al. Synthesis of DLC Film on Titanium Alloy and Its Tribological Property Sliding against Different Mating Materials
Kapsa et al. Sliding damage on hot-pressed and sintered silicon nitride caused by a diamond tip under controlled humidity
CN113430421B (zh) 一种高强度镍铌基宽温域自润滑合金
Eryilmaz et al. Deposition, characterization, and tribological applications of near-frictionless carbon films on glass and ceramic substrates
CN109909139B (zh) 一种碳化硅基自润滑复合涂层及其制备方法
CN109957764B (zh) 水基液体环境用CrSiC复合涂层及其制备方法与应用
CN111411318A (zh) 一种钛合金轴类件及其制备方法和应用
CN110616359B (zh) 一种自润滑不锈钢及其制备方法
CN113967743B (zh) 一种结构形状复杂且耐磨损的316不锈钢件及其制备方法与应用
CN114717507B (zh) 同步提高钛合金耐磨及抗疲劳性能的低温离子氮化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant