CN114142344B - 一种提高蓝、绿光半导体激光器电学特性的方法及器件 - Google Patents

一种提高蓝、绿光半导体激光器电学特性的方法及器件 Download PDF

Info

Publication number
CN114142344B
CN114142344B CN202111384516.7A CN202111384516A CN114142344B CN 114142344 B CN114142344 B CN 114142344B CN 202111384516 A CN202111384516 A CN 202111384516A CN 114142344 B CN114142344 B CN 114142344B
Authority
CN
China
Prior art keywords
layer
algan
blue
gan
ingan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111384516.7A
Other languages
English (en)
Other versions
CN114142344A (zh
Inventor
王新强
杨嘉嘉
黄振
陶仁春
沈波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN202111384516.7A priority Critical patent/CN114142344B/zh
Publication of CN114142344A publication Critical patent/CN114142344A/zh
Application granted granted Critical
Publication of CN114142344B publication Critical patent/CN114142344B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2018Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3407Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers characterised by special barrier layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3425Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers comprising couples wells or superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34346Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明公开了一种提高蓝、绿光半导体激光器电学特性的方法及器件。本发明在蓝、绿光半导体激光器的上限制层的上、下表面各设置一层Al组分渐变的p‑AlGaN极化诱导层,通过双层极化诱导p型掺杂的的方式增加空穴注入,减少电子泄漏,提高有源区载流子复合效率,改善蓝、绿光激光器电学特性。本发明采用的处理方法具有工艺稳定、成本低廉、成品率高、设备简单易操作、适合产业化生产等优点。

Description

一种提高蓝、绿光半导体激光器电学特性的方法及器件
技术领域
本发明涉及半导体器件技术领域,具体涉及一种采用双层极化诱导p型掺杂提高蓝、绿光激光器电学特性的方法及相应器件。
背景技术
氮化镓GaN及其合金因禁带宽度大、电子迁移率高等优点,适用于制造光电子器件、微波功率器件,在航天航空、国防科技等领域具有良好的应用前景。但由于未掺杂氮化物材料背景电子浓度高,作为p型掺杂剂的Mg激活效率低,Mg扩散等因素,导致氮化物材料p型掺杂困难,成为制约相关器件进一步发展的主要技术瓶颈之一。因电子浓度高、扩散长度长而引入电子阻挡层阻碍电子溢出,但同时也产生降低空穴注入效率的势垒。
发明内容
针对以上现有技术中存在的问题,本发明提出了一种双层极化诱导p型掺杂的方式,提高空穴浓度,降低材料电阻率,改善蓝、绿光半导体激光器的电学特性。
本发明的技术方案如下:
一种提高蓝、绿光半导体激光器电学特性的方法,在蓝、绿光半导体激光器的上限制层的上、下表面各设置一层Al组分渐变的p-AlGaN极化诱导层,在增加空穴注入的同时减少电子泄漏,其中位于下层的p-AlGaN极化诱导层的Al组分由30%~40%线性渐变至10%~20%(例如由40%线性渐变至20%或由30%线性渐变至10%),位于上层的p-AlGaN极化诱导层的Al组分由30%线性渐变至0%。
基于上述提高蓝、绿光半导体激光器电学特性的方法,本发明提供了一种蓝、绿光半导体激光器,包括GaN衬底或SiC衬底,在衬底上从下到上依次层叠再生长外延层、下限制层、下波导层、插入层、量子阱层、上保护层、上波导层、极化诱导p-AlGaN电子阻挡层、上限制层、极化诱导p-AlGaN外延层和欧姆接触层,其中,所述极化诱导p-AlGaN电子阻挡层中Al组分由30%~40%线性渐变至10%~20%(例如由40%线性渐变至20%或由30%线性渐变至10%),所述极化诱导p-AlGaN外延层中Al组分由30%线性渐变至0%。
上述蓝、绿光半导体激光器采用双层Al组分渐变的p-AlGaN极化诱导层,作为空穴注入层的同时阻挡电子溢出有源区,提高了蓝、绿光激光器的电学特性。
上述蓝、绿光半导体激光器在制备时,通常先对GaN衬底或SiC衬底进行化学清洗,即依次采用甲苯溶液、丙酮溶液、乙醇溶液和去离子水超声清洗衬底,除去衬底表面的有机物及颗粒沾污,并用氮气枪吹干。然后通过MOCVD方法外延生长再生长外延层、下限制层、下波导层、插入层、量子阱层、上保护层、上波导层、极化诱导p-AlGaN电子阻挡层、上限制层、极化诱导p-AlGaN外延层和欧姆接触层,如果以p-NiO外延层作为欧姆接触层,则采用磁控溅射方式生长p-NiO外延层。
上述蓝、绿光半导体激光器中,依据外延质量及器件性能决定,所述再生长外延层可以是未掺杂GaN或n-GaN再生长外延层,在800~1050℃外延生长,厚度为600纳米~2微米,其中以SiH4作为掺杂剂生长n-GaN外延层。
上述蓝、绿光半导体激光器中,依据外延质量及器件性能决定,所述下限制层为n-AlGaN下限制层或n-AlGaN/n-GaN超晶格下限制层,在1050~1100℃外延生长Al组分为5~10%,厚度为1~2微米,霍尔电子浓度为1E18 cm-3~5E18 cm-3的n-AlGaN下限制层;或者,在1050~1100℃外延生长Al组分为16~20%,厚度为2.5纳米/2.5纳米,霍尔电子浓度为1E18cm-3~5E18 cm-3的n-AlGaN/n-GaN超晶格下限制层。
上述蓝、绿光半导体激光器中,所述下波导层为未掺杂InGaN或n-InGaN下波导层,或者为n-InGaN/n-GaN下双波导层,在785~820℃外延生长In组分1~3%的未掺杂InGaN或n-InGaN下波导层,或In组分1~3%的n-InGaN/n-GaN下双波导层结构,降低光损耗,以上生长厚度依据蓝绿激光器激射条件决定,即激光波长除以2再除以膜层折射率的整数倍,通常蓝绿激光器下波导层厚度为110~500纳米。
上述蓝、绿光半导体激光器中,为改善后续外延生长量子阱结构的表面平整度,设置低温未掺杂GaN或未掺杂InGaN插入层。在下波导层上外延生长厚度2~3纳米的低温未掺杂GaN或In组分为1~2%的未掺杂InGaN层,In组分与量子阱势垒InGaN一致,外延生长温度与量子阱生长温度一致。
上述蓝、绿光半导体激光器中中,所述量子阱层为InGaN/GaN或InGaN/InGaN多量子阱,外延生长1~3对3纳米/15纳米InGaN/GaN或InGaN/InGaN量子阱结构,其中InGaN势垒中In组分为1~2%,外延生长温度依据蓝绿光发光波长决定。
上述蓝、绿光半导体激光器中,所述上保护层为未掺杂GaN或未掺杂InGaN上保护层,外延生长温度、厚度及组分与量子阱势垒结构一致。
上述蓝、绿光半导体激光器中,所述上波导层为未掺杂InGaN上波导层或未掺杂InGaN/未掺杂GaN上双波导层,在720~740℃外延生长In组分1~3%的未掺杂InGaN上波导层,或In组分1~3%的未掺杂InGaN/GaN上双波导层结构,降低光损耗,以上生长厚度依据蓝绿激光器激射条件决定,即激光波长除以2再除以膜层折射率的整数倍,通常蓝绿激光器上波导层厚度为110~500纳米。
上述蓝、绿光半导体激光器中,为了保护量子阱结构,在900~920℃外延生长Al组分由30%~40%线性渐变至10%~20%,厚度20~40纳米的极化诱导p-AlGaN电子阻挡层。
上述蓝、绿光半导体激光器中,依据外延质量及器件性能决定,所述上限制层为p-AlGaN上限制层或p-AlGaN/p-GaN超晶格上限制层。在900~920℃外延生长Al组分5~10%,厚度0.5~1微米的p-AlGaN上限制层,或者Al组分16~20%,厚度2.5纳米/2.5纳米的p-AlGaN/p-GaN超晶格上限制层,以上外延层霍尔空穴浓度为5E17 cm-3~2E18 cm-3
上述蓝、绿光半导体激光器中,为增加空穴注入并改善器件电学特性,针对Ga极性激光器,在上限制层上于900~920℃外延生长Al组分由30%线性渐变至0%,厚度60~80纳米的极化诱导p-AlGaN外延层,霍尔空穴浓度为1E18 cm-3~2E18 cm-3
上述蓝、绿光半导体激光器中,所述欧姆接触层为p++-GaN重掺层或p-InGaN层或p-NiO外延层,在极化诱导p-AlGaN外延层上外延生长5~10纳米p++-GaN重掺层或In组分10~20%的p-InGaN欧姆接触层,之后在N2氛围中退火,取出外延片。或者,先在N2氛围中退火,取出外延片,再通过磁控溅射的方式溅射厚度10~20纳米的p-NiO高p型材料。
本发明通过在蓝、绿光激光器外延片生长时采用双层Al组分渐变的p-AlGaN极化诱导层结构的方式,增加空穴注入,减少电子泄漏,提高有源区载流子复合效率,改善蓝、绿光激光器电学特性。本发明采用的处理方法具有工艺稳定、成本低廉、成品率高、设备简单易操作、适合产业化生产等优点。
附图说明
图1为本发明采用双层极化诱导p型掺杂的蓝、绿光激光器的结构示意图,其中:101-衬底,102-再生长外延层,103-下限制层,104-下波导层(或下双波导层),105-插入层,106-量子阱层,107-上保护层,108-上波导层(或上双波导层),109-极化诱导p-AlGaN电子阻挡层,110-上限制层,111-极化诱导p-AlGaN外延层,112-欧姆接触层。
具体实施方式
下面结合附图,通过具体实施例进一步阐述本发明,但不以任何方式限制本发明的保护范围。
本实施例提供一种采用双层极化诱导p型掺杂的蓝、绿光激光器,包括从下到上依次层叠设置在GaN衬底或SiC衬底上的未掺杂GaN或n-GaN再生长外延层、n-AlGaN或n-AlGaN/n-GaN超晶格下限制层、未掺杂InGaN或n-InGaN下波导层或n-InGaN/n-GaN下双波导层、低温未掺杂GaN或未掺杂InGaN插入层、InGaN/GaN或InGaN/InGaN量子阱层、未掺杂GaN或未掺杂InGaN上保护层、未掺杂InGaN上波导层或未掺杂InGaN/未掺杂GaN上双波导层、极化诱导p-AlGaN电子阻挡层、p-AlGaN或p-AlGaN/p-GaN超晶格上限制层、极化诱导p-AlGaN外延层、p++-GaN或p-InGaN欧姆接触层或p-NiO外延层。
该蓝、绿光激光器通过如下步骤制备得到:
1)对GaN衬底或SiC衬底进行化学清洗,即依次采用甲苯溶液、丙酮溶液、乙醇溶液和去离子水超声清洗衬底,除去衬底表面的有机物及颗粒沾污,并用氮气枪吹干。
2)通过MOCVD方法,在GaN或SiC衬底上从下到上依次生长未掺杂GaN或n-GaN再生长外延层、n-AlGaN或n-AlGaN/n-GaN超晶格下限制层、未掺杂InGaN或n-InGaN下波导层或n-InGaN/n-GaN下双波导层、低温未掺杂GaN或未掺杂InGaN插入层、InGaN/GaN或InGaN/InGaN量子阱层、未掺杂GaN或未掺杂InGaN上保护层、未掺杂InGaN或未掺杂InGaN/未掺杂GaN上波导层、极化诱导p-AlGaN电子阻挡层、p-AlGaN或p-AlGaN/p-GaN超晶格上限制层、极化诱导p-AlGaN外延层、p++-GaN或p-InGaN或p-NiO(磁控溅射方式)欧姆接触层。
所述未掺杂GaN再生长外延层在800~1050℃外延,厚度为600纳米~2微米。所述n-GaN再生长外延层以SiH4作为掺杂剂,在800~1050℃外延,厚度为600纳米~2微米。
所述n-AlGaN下限制层在1050~1100℃外延,Al组分为5~10%,厚度为1~2微米,霍尔电子浓度为1E18 cm-3~5E18 cm-3。所述n-AlGaN/n-GaN超晶格下限制层在1050~1100℃外延,Al组分为16~20%,厚度为2.5纳米/2.5纳米,霍尔电子浓度为1E18 cm-3~5E18cm-3
所述未掺杂InGaN下波导层在785~820℃外延,In组分为1~3%,厚度依据蓝绿激光器激射条件决定,即厚度为激射波长除以2再除以膜层平均折射率所得数值的整数倍。所述n-InGaN下波导层在785~820℃外延,In组分为1~3%,厚度依据蓝绿激光器激射条件决定。所述n-InGaN/n-GaN下双波导层在785~820℃外延,In组分为1~3%,厚度依据蓝绿激光器激射条件决定。
所述低温未掺杂GaN插入层,外延生长温度依据蓝绿光发光波长决定,厚度为2~3纳米。所述未掺杂InGaN插入层,外延生长温度依据蓝绿光发光波长决定,In组分为1~2%,厚度为2~3纳米。
所述InGaN/GaN量子阱层结构为1~3对厚度3纳米/15纳米的周期结构,外延生长温度依据蓝绿光发光波长决定,In组分为1~2%。所述InGaN/InGaN量子阱层结构为1~3对厚度3纳米/15纳米的周期结构,外延生长温度依据蓝绿光发光波长决定,其中InGaN势垒中In组分为1~2%。
所述未掺杂GaN或未掺杂InGaN上保护层外延生长温度、厚度及组分与前述量子阱层势垒结构一致。
所述未掺杂InGaN上波导层在720~740℃外延,In组分为1~3%,厚度依据蓝绿激光器激射条件决定。所述未掺杂InGaN/未掺杂GaN上双波导层在720~740℃外延,In组分为1~3%,厚度依据蓝绿激光器激射条件决定。
所述极化诱导p-AlGaN电子阻挡层以Cp2Mg作为掺杂剂,在900~920℃外延,Al组分由40%线性渐变至20%或由30%线性渐变至10%,厚度为20~40纳米。
所述p-AlGaN上限制层在900~920℃外延,Al组分为5~10%,厚度为0.5~1微米,霍尔空穴浓度为5E17 cm-3~2E18 cm-3。所述p-AlGaN/p-GaN超晶格上限制层在900~920℃外延,Al组分为16~20%,厚度为2.5纳米/2.5纳米,霍尔空穴浓度为5E17 cm-3~2E18 cm-3
所述极化诱导p-AlGaN外延层在900~920℃外延,Al组分由30%线性渐变至0%,厚度为60~80纳米,霍尔空穴浓度为1E18 cm-3~2E18 cm-3
所述p++-GaN重掺层厚度为5~10纳米。所述p-InGaN欧姆接触层In组分为10~20%,厚度为5~10纳米。所述p-NiO外延层通过磁控溅射方式溅射,厚度为10~20纳米。
3)对蓝、绿光激光器外延片进行后续工艺处理。

Claims (10)

1.一种提高蓝、绿光半导体激光器电学特性的方法,在蓝、绿光半导体激光器的上限制层的上、下表面各设置一层Al组分渐变的p-AlGaN极化诱导层,在增加空穴注入的同时减少电子泄漏,其中位于下层的p-AlGaN极化诱导层的Al组分从下到上由30%~40%线性渐变至10%~20%,位于上层的p-AlGaN极化诱导层的Al组分从下到上由30%线性渐变至0%。
2.一种蓝、绿光半导体激光器,包括GaN衬底或SiC衬底,在衬底上从下到上依次层叠再生长外延层、下限制层、下波导层、插入层、量子阱层、上保护层、上波导层、极化诱导p-AlGaN电子阻挡层、上限制层、极化诱导p-AlGaN外延层和欧姆接触层,其中,所述极化诱导p-AlGaN电子阻挡层中Al组分从下到上由30%~40%线性渐变至10%~20%,所述极化诱导p-AlGaN外延层中Al组分从下到上由30%线性渐变至0%。
3.如权利要求2所述的蓝、绿光半导体激光器,其特征在于,所述再生长外延层为未掺杂GaN或n-GaN再生长外延层,厚度为600纳米~2微米。
4.如权利要求2所述的蓝、绿光半导体激光器,其特征在于,所述下限制层为n-AlGaN下限制层或n-AlGaN/n-GaN超晶格下限制层,其中:所述n-AlGaN下限制层的Al组分为5~10%,厚度为1~2微米,霍尔电子浓度为1E18 cm-3~5E18 cm-3;所述n-AlGaN/n-GaN超晶格下限制层的Al组分为16~20%,厚度为2.5纳米/2.5纳米,霍尔电子浓度为1E18 cm-3~5E18cm-3
5.如权利要求2所述的蓝、绿光半导体激光器,其特征在于,所述下波导层为未掺杂InGaN或n-InGaN下波导层,或者为n-InGaN/n-GaN下双波导层,其中In组分为1~3%;所述上波导层为未掺杂InGaN上波导层或未掺杂InGaN/未掺杂GaN上双波导层,其中In组分为1~3%。
6.如权利要求2所述的蓝、绿光半导体激光器,其特征在于,所述插入层为厚度2~3纳米的低温未掺杂GaN或未掺杂InGaN插入层,其中未掺杂InGaN插入层中In组分为1~2%。
7.如权利要求2所述的蓝、绿光半导体激光器,其特征在于,所述量子阱层为InGaN/GaN或InGaN/InGaN多量子阱;所述上保护层为未掺杂GaN或未掺杂InGaN上保护层,其厚度及组分与量子阱层的势垒结构一致。
8.如权利要求2所述的蓝、绿光半导体激光器,其特征在于,所述极化诱导p-AlGaN电子阻挡层是在900~920℃外延生长的Al组分从下到上由30%~40%线性渐变至10%~20%的p-AlGaN层,厚度为20~40纳米。
9.如权利要求2所述的蓝、绿光半导体激光器,其特征在于,所述上限制层为p-AlGaN上限制层或p-AlGaN/p-GaN超晶格上限制层,其中:所述p-AlGaN上限制层的Al组分为5~10%,厚度为0.5~1微米,霍尔空穴浓度为5E17 cm-3~2E18 cm-3;所述p-AlGaN/p-GaN超晶格上限制层的Al组分为16~20%,厚度为2.5纳米/2.5纳米,霍尔空穴浓度为5E17 cm-3~2E18 cm-3
10.如权利要求2所述的蓝、绿光半导体激光器,其特征在于,所述极化诱导p-AlGaN外延层是在900~920℃外延生长的Al组分从下到上由30%线性渐变至0%的p-AlGaN层,厚度为60~80纳米,霍尔空穴浓度为1E18 cm-3~2E18 cm-3
CN202111384516.7A 2021-11-19 2021-11-19 一种提高蓝、绿光半导体激光器电学特性的方法及器件 Active CN114142344B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111384516.7A CN114142344B (zh) 2021-11-19 2021-11-19 一种提高蓝、绿光半导体激光器电学特性的方法及器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111384516.7A CN114142344B (zh) 2021-11-19 2021-11-19 一种提高蓝、绿光半导体激光器电学特性的方法及器件

Publications (2)

Publication Number Publication Date
CN114142344A CN114142344A (zh) 2022-03-04
CN114142344B true CN114142344B (zh) 2023-11-17

Family

ID=80390590

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111384516.7A Active CN114142344B (zh) 2021-11-19 2021-11-19 一种提高蓝、绿光半导体激光器电学特性的方法及器件

Country Status (1)

Country Link
CN (1) CN114142344B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299482A (zh) * 2011-07-25 2011-12-28 中国科学院苏州纳米技术与纳米仿生研究所 氮化镓基半导体激光器外延结构及其制作方法
CN103956653A (zh) * 2014-05-15 2014-07-30 中国科学院半导体研究所 减小GaN基蓝紫光端发射激光器电子泄漏的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6535536B2 (en) * 2000-04-10 2003-03-18 Fuji Photo Film Co., Ltd. Semiconductor laser element
US6618413B2 (en) * 2001-12-21 2003-09-09 Xerox Corporation Graded semiconductor layers for reducing threshold voltage for a nitride-based laser diode structure
JP5480192B2 (ja) * 2011-03-31 2014-04-23 株式会社東芝 半導体発光素子の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299482A (zh) * 2011-07-25 2011-12-28 中国科学院苏州纳米技术与纳米仿生研究所 氮化镓基半导体激光器外延结构及其制作方法
CN103956653A (zh) * 2014-05-15 2014-07-30 中国科学院半导体研究所 减小GaN基蓝紫光端发射激光器电子泄漏的方法

Also Published As

Publication number Publication date
CN114142344A (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
US20220181513A1 (en) Hybrid growth method for iii-nitride tunnel junction devices
US8623683B2 (en) Method of fabricating a nitride semiconductor light emitting device
US20040213309A9 (en) Nitride semiconductor layer structure and a nitride semiconductor laser incorporating a portion of same
JP4767020B2 (ja) 窒化物系化合物半導体素子の製造方法
KR100705886B1 (ko) 질화물 반도체층 구조물 및 질화물 반도체 레이저
US10685835B2 (en) III-nitride tunnel junction with modified P-N interface
US20050098793A1 (en) Nitride based semiconductor photo-luminescent device
CN109873299B (zh) 低V型缺陷密度的GaN基多量子阱激光器外延片及制备方法
JP4837012B2 (ja) 発光素子
US8987026B2 (en) Semiconductor light emitting device
CN114142344B (zh) 一种提高蓝、绿光半导体激光器电学特性的方法及器件
KR20130063378A (ko) 질화물 반도체 소자 및 그 제조 방법
CN102332510A (zh) 采用金属有机化合物气相外延技术生长高抗静电能力发光二极管的方法
JP2011258843A (ja) 窒化物半導体発光素子及びその製造方法
JP3763701B2 (ja) 窒化ガリウム系半導体発光素子
CN111490453B (zh) 含有分步掺杂下波导层的GaN基激光器及其制备方法
JP2008071832A (ja) Iii族窒化物半導体素子およびその作製方法
US7642565B2 (en) Radiation-emitting semiconductor component based on gallium nitride, and method for fabricating the semiconductor component
KR101072199B1 (ko) 발광소자 및 그 제조방법
JP2007207929A (ja) Iii−v化合物半導体光装置を作製する方法
CN114142338A (zh) 一种改善蓝、绿光半导体激光器散热性能的方法
CN116435428A (zh) Iii族氮化物半导体光电器件结构及其制备方法
US20200028328A1 (en) Vertical cavity surface emitting laser
KR100493145B1 (ko) GaN계레이저다이오드
CN115986016A (zh) 一种深紫外AlGaN基多量子阱发光二极管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant