CN114134567B - 一种高温高压合成羟基氧化铁FeOOH晶体的方法 - Google Patents

一种高温高压合成羟基氧化铁FeOOH晶体的方法 Download PDF

Info

Publication number
CN114134567B
CN114134567B CN202111484708.5A CN202111484708A CN114134567B CN 114134567 B CN114134567 B CN 114134567B CN 202111484708 A CN202111484708 A CN 202111484708A CN 114134567 B CN114134567 B CN 114134567B
Authority
CN
China
Prior art keywords
pressure
sample
phi
iron
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111484708.5A
Other languages
English (en)
Other versions
CN114134567A (zh
Inventor
梁文
李增胜
白杰
孟勇
柳凯祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANDONG GEOLOGICAL SCIENCES INSTITUTE
Guangdong University of Technology
Guizhou Minzu University
Original Assignee
SHANDONG GEOLOGICAL SCIENCES INSTITUTE
Guangdong University of Technology
Guizhou Minzu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANDONG GEOLOGICAL SCIENCES INSTITUTE, Guangdong University of Technology, Guizhou Minzu University filed Critical SHANDONG GEOLOGICAL SCIENCES INSTITUTE
Priority to CN202111484708.5A priority Critical patent/CN114134567B/zh
Publication of CN114134567A publication Critical patent/CN114134567A/zh
Application granted granted Critical
Publication of CN114134567B publication Critical patent/CN114134567B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/10Single-crystal growth directly from the solid state by solid state reactions or multi-phase diffusion
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/12Single-crystal growth directly from the solid state by pressure treatment during the growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/02Production of homogeneous polycrystalline material with defined structure directly from the solid state

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了提供一种高温高压合成羟基氧化铁FeOOH晶体的方法,使用分析纯的氢氧化铁Fe(OH)3和分析纯的铁粉Fe以摩尔比2:1混合研磨均匀作为起始原料,在密闭的铁样品腔中通过高温高压反应得到羟基氧化铁FeOOH晶体样品。参照铁锈生成原理,构建中间产物氢氧化亚铁Fe(OH)2,并设计相对应的组装,在高温高压极端条件下完成羟基氧化铁FeOOH的合成反应。利用羟基氧化铁的高压稳定性,通过高温高压重结晶过程获得了大尺寸的晶体,解决了目前存在的技术难题。

Description

一种高温高压合成羟基氧化铁FeOOH晶体的方法
技术领域
本发明涉及地球科学矿物学研究领域,涉及一种高温高压合成羟基氧化铁FeOOH晶体的方法。
背景技术
羟基氧化铁FeOOH的矿物学名为针铁矿,是一种自然界广泛分布的、由赤铁矿风化形成的重要的含水铁矿,也是生活中常见的铁锈的主要成分。最近实验研究表明,羟基氧化铁具有极高的高压稳定性,能够在下地幔底部的极高压力、温度以及氧逸度条件下形成更稳定的、具有黄铁矿结构的过氧化亚铁FeO2。这意味着羟基氧化铁可以通过洋壳俯冲进入地球内部甚至进入下地幔,在地球下地幔乃至核幔边界可能富集结构特殊的过氧化物,它将对地幔模型的建立和地球演化的研究提供新的实验证据。然而,目前的实验基本都采用粉晶同步辐射的结果以及理论计算晶体结构相结合的方法,缺少精确的晶体结构数据来支撑计算结果。因此,需要人工合成羟基氧化铁FeOOH晶体来进一步验证。目前合成羟基氧化铁大多采用化学湿法沉淀,所得产物为颗粒度细小的纳米晶,缺少大尺寸晶体定量其晶体结构。
发明内容
本发明要解决的技术问题是:提供一种高温高压合成羟基氧化铁FeOOH晶体的方法,以填补目前羟基氧化铁晶体生长研究的空白。
本发明的技术方案是:一种高温高压合成羟基氧化铁FeOOH晶体的方法,包括以下步骤:
步骤1、使用分析纯的氢氧化铁Fe(OH)3和分析纯的铁粉Fe以摩尔比2:1混合研磨均匀作为起始原料;
步骤2、使用粉末压片机,将混合物粉末置于Φ5磨具中压成Φ5×4mm圆柱形,将圆柱形样品塞入内腔为Φ5×4mm,外径7mm、厚1mm的铁子母扣中密封;将铁子母扣包裹样品的圆柱形置于h-BN管中,以h-BN为传压介质;
步骤3、将步骤2中装有样品的h-BN管组装在高压合成组装块中并放置在六面顶大压机进行高温高压反应;
步骤4,高温高压反应完成后,将铁子母扣包裹的圆柱形取出,然后使用金刚石切刀剥离表面铁样品腔,将样品取出,在超声中使用酒精清洗后,自然风干样品,即得羟基氧化铁FeOOH晶体。
步骤2所述h-BN管具体操作为:在车床上将大小为Φ10mm的h-BN棒中心钻Φ7mm的孔作成h-BN管,将样品塞入管中,两端拿Φ7mm厚度为2mm的h-BN片密封。
步骤3所述的将h-BN管组装在高压合成组装块中的方法,具体操作包括:选取一块叶腊石块,在叶腊石块中心打一个Φ12mm圆形通孔;在圆形通孔内套一个外径12mm、内径Φ10mm的圆形石墨加热炉;在石墨加热炉中间放置10mm的h-BN管密封的样品;将圆形石墨加热炉上下两端用叶腊石堵头密封。
步骤3所述高温高压反应条件为,升压至3GPa,然后升温到700-750℃,保压保温48h后淬火。
步骤4所述得到的羟基氧化铁为晶体,晶体尺寸为50-100μm,其形态为针状,呈赤黄色。
步骤4所述得到的合成产物为羟基氧化铁,无其他杂质,其晶体结构为Pbnm正交晶系,晶格参数
本发明的创新点和有益效果:
实验研究表明,羟基氧化铁FeOOH晶体合成的难点在于氧逸度的控制。由于FeOOH超高的高压稳定性,容易想到,Fe2O3在H2O溶液中通过长时间的高温高压作用会形成更稳定的FeOOH:
Fe2O3+H2O→2FeOOH+O2
通过在密封含水环境中尝试这个反应,高温高压实验结果发现产物为Fe3O4,无法生成FeOOH。这是因为高压环境本身具有较强的还原性,Fe2O3无法稳定存在而被部分还原为Fe3O4。为了解决这一问题,通过在含水密封样品腔中加入KClO4作为氧源,高温高压实验结果发现产物为Fe2O3,也无法生成FeOOH。这是因为尽管超高氧压条件保护了Fe3+不被部分还原,但是也迫使FeOOH生成反应无法朝着释放氧气的正反应进行。为了解决上述难题,本发明参考铁锈生成的原理,即析氢-吸氧腐蚀中间过程必须生成过度产物氢氧化亚铁Fe(OH)2,然后Fe(OH)2再被氧化生成FeOOH,根据此原理重新设计反应过程和样品组装:
第一步:2Fe(OH)3+Fe→3Fe(OH)2
第二步:4Fe(OH)2+O2→4FeOOH+2H2O
考虑到氢氧化亚铁Fe(OH)2非常不稳定、极易氧化,本发明采用密闭的铁样品腔将外部的氧阻隔,确保在样品腔内Fe(OH)3被Fe还原生成Fe(OH)2,此过程反应极快。由于在长时间的高温高压条件下,铁样品腔会逐渐被氢氧化物碱性腐蚀后失去延展性、进而被破坏后使得外界氧气进入样品腔。事实上,实验也观察到反应完成后,铁样品腔发生龟壳一般的龟裂,可以轻松从样品剥落。在缺少铁样品腔密闭保护作用下,腔体中Fe(OH)2被氧化而生成FeOOH;在更长时间的高温高压条件下,含水矿物FeOOH会进一步通过重结晶快速长大,形成针状的FeOOH的晶体。综上所述,本发明的创新点在于针对铁锈生成原理,构建中间产物氢氧化亚铁Fe(OH)2,设计相对应的组装,在高温高压极端条件下完成羟基氧化铁FeOOH的合成反应。由于羟基氧化铁的高压稳定性,高温高压条件有利于其晶体生长,获得了大尺寸的晶体,解决了目前存在的技术难题。
具体实施方式
实施例1:
一种高温高压合成羟基氧化铁FeOOH晶体的方法,包括以下步骤:
步骤1、使用分析纯的氢氧化铁Fe(OH)3和分析纯的铁粉Fe以摩尔比2:1混合研磨均匀作为起始原料;
步骤2、使用粉末压片机,将混合物粉末置于Φ5磨具中压成Φ5×4mm圆柱形,将圆柱形样品塞入内腔为Φ5×4mm,外径7mm、厚1mm的铁子母扣中密封;将铁子母扣包裹样品的圆柱形置于h-BN管中,以h-BN为传压介质;
步骤3、将步骤2中装有样品的h-BN管组装在高压合成组装块中并放置在六面顶大压机进行高温高压反应,所述高温高压反应条件为,升压至3GPa,然后升温到700℃,保压保温48h后淬火;
步骤4,高温高压反应完成后,将铁子母扣包裹的圆柱形取出,然后使用金刚石切刀剥离表面铁样品腔,将样品取出,在超声中使用酒精清洗后,自然风干样品,即得羟基氧化铁FeOOH晶体,晶体尺寸为50-100μm,其形态为针状,呈赤黄色。
实施例2:
一种高温高压合成羟基氧化铁FeOOH晶体的方法,包括以下步骤:
步骤1、使用分析纯的氢氧化铁Fe(OH)3和分析纯的铁粉Fe以摩尔比2:1混合研磨均匀作为起始原料;
步骤2、使用粉末压片机,将混合物粉末置于Φ5磨具中压成Φ5×4mm圆柱形,将圆柱形样品塞入内腔为Φ5×4mm,外径7mm、厚1mm的铁子母扣中密封;将铁子母扣包裹样品的圆柱形置于h-BN管中,以h-BN为传压介质;
步骤3、将步骤2中装有样品的h-BN管组装在高压合成组装块中并放置在六面顶大压机进行高温高压反应,所述高温高压反应条件为,升压至3GPa,然后升温到750℃,保压保温48h后淬火;
步骤4,高温高压反应完成后,将铁子母扣包裹的圆柱形取出,然后使用金刚石切刀剥离表面铁样品腔,将样品取出,在超声中使用酒精清洗后,自然风干样品,即得羟基氧化铁FeOOH晶体,晶体尺寸为50-100μm,其形态为针状,呈赤黄色。
实施例1-2中,步骤2所述h-BN管具体操作为:在车床上将大小为Φ10mm的h-BN棒中心钻Φ7mm的孔作成h-BN管,将样品塞入管中,两端拿Φ7mm厚度为2mm的h-BN片密封。步骤3所述的将h-BN管组装在高压合成组装块中的方法,具体操作包括:选取一块叶腊石块,在叶腊石块中心打一个Φ12mm圆形通孔;在圆形通孔内套一个外径12mm、内径Φ10mm的圆形石墨加热炉;在石墨加热炉中间放置10mm的h-BN管密封的样品;将圆形石墨加热炉上下两端用叶腊石堵头密封。
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (5)

1.一种高温高压合成羟基氧化铁FeOOH晶体的方法,其特征在于,包括以下步骤:
步骤1、使用分析纯的氢氧化铁Fe(OH)3和分析纯的铁粉Fe以摩尔比2:1混合研磨均匀作为起始原料;
步骤2、使用粉末压片机,将混合物粉末置于Φ5磨具中压成Φ5×4mm圆柱形,将圆柱形样品塞入内腔为Φ5×4mm,外径7mm、厚1mm的铁子母扣中密封;将铁子母扣包裹样品的圆柱形置于h-BN管中,以h-BN为传压介质;
步骤3、将步骤2中装有样品的h-BN管组装在高压合成组装块中并放置在六面顶大压机进行高温高压反应;
所述高温高压反应条件为,升压至3GPa,然后升温到700-750℃,保压保温48h后淬火;
步骤4,高温高压反应完成后,将铁子母扣包裹的圆柱形取出,然后使用金刚石切刀剥离表面铁样品腔,将样品取出,在超声中使用酒精清洗后,自然风干样品,即得羟基氧化铁FeOOH晶体。
2.按照权利要求1所述方法,其特征在于,步骤2所述h-BN管具体操作为:在车床上将大小为Φ10mm的h-BN棒中心钻Φ7mm的孔作成h-BN管,将样品塞入管中,两端拿Φ7mm厚度为2mm的h-BN片密封。
3.按照权利要求1所述方法,其特征在于,步骤3所述的将h-BN管组装在高压合成组装块中的方法,具体操作包括:选取一块叶腊石块,在叶腊石块中心打一个Φ12mm圆形通孔;在圆形通孔内套一个外径12 mm、内径Φ10mm的圆形石墨加热炉;在石墨加热炉中间放置10mm的h-BN管密封的样品;将圆形石墨加热炉上下两端用叶腊石堵头密封。
4.按照权利要求1所述方法,其特征在于,步骤4中得到的所述羟基氧化铁为晶体,晶体尺寸为50-100μm,其形态为针状,呈赤黄色。
5.按照权利要求1所述方法,其特征在于,步骤4中所述羟基氧化铁,无其他杂质,其晶体结构为Pbnm正交晶系,晶格参数a =4-5 Å,b=9-10 Å,c=3-4 Å。
CN202111484708.5A 2021-12-07 2021-12-07 一种高温高压合成羟基氧化铁FeOOH晶体的方法 Active CN114134567B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111484708.5A CN114134567B (zh) 2021-12-07 2021-12-07 一种高温高压合成羟基氧化铁FeOOH晶体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111484708.5A CN114134567B (zh) 2021-12-07 2021-12-07 一种高温高压合成羟基氧化铁FeOOH晶体的方法

Publications (2)

Publication Number Publication Date
CN114134567A CN114134567A (zh) 2022-03-04
CN114134567B true CN114134567B (zh) 2024-02-06

Family

ID=80384519

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111484708.5A Active CN114134567B (zh) 2021-12-07 2021-12-07 一种高温高压合成羟基氧化铁FeOOH晶体的方法

Country Status (1)

Country Link
CN (1) CN114134567B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020049595A (ko) * 2000-12-19 2002-06-26 신현준 뫼스바우어 분석법을 이용한 α―수산화철의 입도 측정방법
KR20040087814A (ko) * 2003-04-10 2004-10-15 한국원자력연구소 나노 산화철 화이버 및 그 제조방법
CN1675133A (zh) * 2002-08-16 2005-09-28 阿尔伯麦尔荷兰有限公司 通过水热转化制备铁化合物
CN102838172A (zh) * 2012-09-24 2012-12-26 浙江原野化工有限公司 一种制备纳米α-Fe2O3材料的方法
CN103011176A (zh) * 2011-09-21 2013-04-03 李文志 粉煤灰铁硅玻璃体微珠精细开发利用的方法
CN109792039A (zh) * 2017-06-20 2019-05-21 株式会社Lg化学 制备羟基氧化铁(FeOOH)的方法和包含羟基氧化铁的锂硫电池正极
CN111961851A (zh) * 2020-08-10 2020-11-20 中南大学 一种含亚铁溶液针铁矿法除铁的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120135539A (ko) * 2011-06-07 2012-12-17 한국지질자원연구원 철산화수산화물 및 이의 제조방법
EP3508448A4 (en) * 2016-09-01 2020-01-15 Hitachi Chemical Company, Ltd. METHOD FOR PRODUCING HYDROGEN GAS AND METHOD FOR PRODUCING STEEL

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020049595A (ko) * 2000-12-19 2002-06-26 신현준 뫼스바우어 분석법을 이용한 α―수산화철의 입도 측정방법
CN1675133A (zh) * 2002-08-16 2005-09-28 阿尔伯麦尔荷兰有限公司 通过水热转化制备铁化合物
KR20040087814A (ko) * 2003-04-10 2004-10-15 한국원자력연구소 나노 산화철 화이버 및 그 제조방법
CN103011176A (zh) * 2011-09-21 2013-04-03 李文志 粉煤灰铁硅玻璃体微珠精细开发利用的方法
CN102838172A (zh) * 2012-09-24 2012-12-26 浙江原野化工有限公司 一种制备纳米α-Fe2O3材料的方法
CN109792039A (zh) * 2017-06-20 2019-05-21 株式会社Lg化学 制备羟基氧化铁(FeOOH)的方法和包含羟基氧化铁的锂硫电池正极
CN111961851A (zh) * 2020-08-10 2020-11-20 中南大学 一种含亚铁溶液针铁矿法除铁的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A study of nanostructures formed in the hydrogen reduction of Fe(OH)3;BALDOKHIN et al.;Russian Journal of Physical Chemistry B;第6卷(第1期);88-96 *
羟基氧化铁及其衍生物的可控制备及其在锂电池中的应用研究;马萌;中国优秀硕士学位论文全文数据库工程科技Ⅱ辑(第02期);C042-2199 *

Also Published As

Publication number Publication date
CN114134567A (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
CN100542949C (zh) 粗粒度立方氮化硼的合成方法
CN109928761B (zh) SrTaO2N氧氮化物纳米粉及其制备方法
JP2006045004A (ja) 活性化処理されたアルミニウム微粒子を使用した水素ガス発生方法
CN105363386A (zh) 生命钻石的高温高压制备工艺
JP6097125B2 (ja) 硫化リチウムの製造方法
CN108793259A (zh) 一种在高温高压下合成含铁水镁石的方法
AU2019275612A1 (en) Method for producing cobalt powder
US20170022061A1 (en) Production of boron phosphide by reduction of boron phosphate with an alkaline metal
CN114134567B (zh) 一种高温高压合成羟基氧化铁FeOOH晶体的方法
CN113371755B (zh) 一种高温高压合成碳酸铅钙PbCa(CO3)2的方法
CN108854850B (zh) 一种个性化宝石级金刚石的合成工艺
CN113415812A (zh) 一种高纯硫化锂的制备方法及应用
CN112897568B (zh) 一种层状羟基氯化铜粉体材料及其制备方法
RU2662911C2 (ru) Порошок металлического хрома
CN112892411A (zh) 一种高温高压下生长大颗粒金刚石的方法
CN113388887B (zh) 一种高温高压合成三方钡钙石BaCa(CO3)2晶体的方法
KR101533654B1 (ko) 단결정 입방정 질화붕소 및 이의 제조 방법
CN108557896A (zh) 一种过渡金属锑硫化物的制备方法
CN107159060A (zh) 一种合成金刚石的方法和合成金刚石用的白云石衬管
CA2461624A1 (en) Process for producing nickel carbonyl, nickel powder and use thereof
CN112479202A (zh) 一种人造金刚石提纯工艺
CN113247957A (zh) 一种高温高压合成碳酸钡锰-三方钡钙石固溶体的方法
CN110862069A (zh) 一种硼氢化钠生产新工艺
CN113502537B (zh) 一种合成三元含钡双碳酸盐晶体的方法
CN112110731A (zh) Sc2SC层状材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant