CN114133250A - 一种反应烧结制备组分可调的含bn复相陶瓷制备方法 - Google Patents

一种反应烧结制备组分可调的含bn复相陶瓷制备方法 Download PDF

Info

Publication number
CN114133250A
CN114133250A CN202111398885.1A CN202111398885A CN114133250A CN 114133250 A CN114133250 A CN 114133250A CN 202111398885 A CN202111398885 A CN 202111398885A CN 114133250 A CN114133250 A CN 114133250A
Authority
CN
China
Prior art keywords
powder
sintering
ceramic
tin
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111398885.1A
Other languages
English (en)
Other versions
CN114133250B (zh
Inventor
邹冀
梁华岳
熊振刚
王为民
傅正义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202111398885.1A priority Critical patent/CN114133250B/zh
Publication of CN114133250A publication Critical patent/CN114133250A/zh
Application granted granted Critical
Publication of CN114133250B publication Critical patent/CN114133250B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58071Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on titanium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/421Boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及硼化物结构陶瓷领域,具体涉及一种反应烧结制备组分可调的含BN复相陶瓷制备方法,采用市售的TiN、Al和B三种粉体为原料,根据下列化学反应方程式进行粉体的配比:TiN+xAl+(3‑x)B=TiB2+xAlN+(1‑x)BN(1)其中,0≤x≤1,将原料粉体混料、干燥、过筛后进行放电等离子体烧结,得到所述复相陶瓷。TiN‑Al‑B体系化学计量比在一定范围内可调,不需要额外添加烧结产物,BN和AlN在复相陶瓷中的含量可以通过方程式(1)中x值的变化而变化,并对其微结构和性能进行调控,不需要添加任何烧结助剂。

Description

一种反应烧结制备组分可调的含BN复相陶瓷制备方法
技术领域
本发明涉及硼化物结构陶瓷领域,具体涉及一种反应烧结制备组分可调的含BN复相陶瓷制备方法。
背景技术
在金属冶炼和加工的过程中,都需要用到由先进结构陶瓷材料组成的部件。这类部件中使用的陶瓷材料具有合适的力学性能、与金属熔体接触时不润湿和抗液态金属侵蚀的性能等。例如,此类典型材料包括真空镀膜中的蒸发舟,常由TiB2、BN与AlN三相组成。TiB2具有较高的熔点、化学稳定性和高硬度等特点,更重要的是具有良好的导电性;h-BN热膨胀系数低,导热性好,具有良好的抗冲击性和加工性能;AlN具有良好的耐熔铝腐蚀性。因此,由TiB2、BN与AlN组成的复相陶瓷具有优良的复合性能。
含BN复相陶瓷是一种重要的结构陶瓷材料,且研究发现在BN基体中引入第二相可以明显改善BN陶瓷的力学性能,这对其工程应用具有重要的意义。然而从目前的研究结果来看,BN复相陶瓷的制备仍然存在一些问题,由于BN的共价键特性和低的扩散系数导致其无压烧结难以致密,热压烧结会造成材料力学性能各向异性。因此,利用陶瓷材料的反应合成与烧结来制备性能优异的材料是目前一个可行的思路也是一个重要的研究方向。
含BN复相陶瓷的制备方法目前主要有两种:直接混合烧结和反应烧结。大量发明研究主要采用直接混合烧结,直接混合烧结法将TiB2、BN和AlN粉体按照一定比例配料混匀后进行烧结。公开号为CN110342940A的专利申请公开了一种高使用寿命导电陶瓷蒸发舟的制备方法,采用Si、BN、AlN和TiB2粉末为原料,CaCO3作为添加剂,在N2气氛下热压烧结制备导电陶瓷。有发明研究是利用高温热压烧结制备BN复相陶瓷。公开号为CN112552031A的专利申请公开了一种SiO2-BN复相陶瓷及其制备方法,在SiO2中加入BN,将Y2O3、CaO和MgO等作为烧结助剂和稳定性剂,在惰性气体保护下进行高温热压烧结。也有发明研究通过感应热压烧结或通电加压烧结的方法。公开号为CN1358690的专利申请公开了一种制备TiB2-BN导电复合材料的方法,成分由导电相TiB2、非导电相BN、添加剂AlN和SiC构成,采用感应热压烧结或通电加压烧结的方法,在1700℃~2000℃之间烧结而成,产物组成和含量由添加原料粉体及其配比所决定。
如果采用反应烧结的方法制备,工艺相对简单,能耗小,成本低,生产周期短,可以实现材料显微结构调控和性能改善的目的。公开号为CN101100389的专利申请公开了一种SiC-BN-C复合材料及其制备方法,以Si3N4、B4C和C作为原料,在热压炉中进行原位反应烧结。同时也有实验验证了反应烧结制备含BN复相陶瓷的可行性(Zou J,Zhang G J,FuZ.In-situ ZrB2-hBN ceramics with high strength and low elasticity[J].Journalof Materials Science and Technology-Shenyang-,2020,48.)(Zhang G J,OhjiT.Effect of BN content on elastic modulus and bending strength of SiC-BN insitu composites[J].Journal of Materials Research,1999,15(9):1876-1880.)。一般来说,反应烧结的产物和含量受到反应方程式的化学计量比控制,调节产物组成和含量只能在反应物中额外添加产物作为原料来实现,但这样就无法通过原位的反应对该相晶粒进行有效调控。
发明内容
本发明的目的在于提供一种反应烧结制备组分可调的含BN复相陶瓷制备方法,通过反应烧结制备含BN复相陶瓷,目的是着重解决含BN复相陶瓷无压烧结难以致密化和热压烧结过程中BN容易取向的问题,其次,该方法得到的复相陶瓷中,无需额外添加BN和AlN,就可以实现BN和AlN的含量可调,以满足不同应用环境的需求。
本发明实现目的所采用的方案是:一种反应烧结制备组分可调的含BN复相陶瓷制备方法,采用市售的TiN、Al和B三种粉体为原料,根据下列化学反应方程式进行粉体的配比:
TiN+xAl +(3-x)B=TiB2+xAlN+(1-x)BN (1)
其中,0≤x≤1,将原料粉体混料、干燥、过筛后进行放电等离子体烧结,得到所述复相陶瓷。
本发明的方法通过改变参数x的值,可以在一定范围内改变所制备陶瓷中各组分含量并对其微结构和性能进行调控,不需要添加任何烧结助剂。
优选地,所述复相陶瓷中BN≤43vol%,AlN≤45vol%。
优选地,所述TiN的粉体的平均粒径为0.5~5μm,纯度为99.9%。
优选地,所述Al的粉体的平均粒径为0.1~5μm,纯度为99.9%。
优选地,B为无定形B,其粉体的平均粒径为1-2μm,纯度为95%及以上。
优选地,包括如下步骤:
步骤1、陶瓷粉体制备:以TiN、Al和B三种粉体为原料,按方程式配比混合后进行球磨,将球磨得到的浆料干燥后得到烧结所用原料粉体;
步骤2、放电等离子体烧结:根据需要的样品厚度,计算所原料需粉体的重量,将过筛后的原料粉体进行放电等离子体烧结,得到所述复相陶瓷。
优选地,所述步骤1中,采用的B粉体的质量过量1%~10%。
优选地,所述步骤1中,球磨的料球质量比为1:3.4~5。
优选地,所述步骤2中,烧结温度为1550℃~1850℃;烧结升温速度为100-200℃/min;烧结压力为30~60MPa;烧结保温时间为5-20min。
根据需要的样品厚度,计算所需粉体的重量,将过筛后的粉体倒入石墨模具中,模具套筒内壁和粉体之间用厚度为0.2mm的石墨纸隔开,烧结环境为真空,通过改变烧结温度、保温时间、加载压力和升温速度等参数实现复相陶瓷的致密化和性能优化。具体烧结过程是将混合好的烧结原料粉体通过100-200℃/min升温速度升温至1550~1850℃,然后在该温度下保温5~20min,其中烧结压力为30~60MPa,压力在达到烧结温度时施加,并持续保持压力至烧结过程结束。
本发明利用TiN-Al-B体系生成物化学计量比在一定范围内可调的特点,在反应中不额外添加生成相的情况下,仅仅改变反应物的比例就可以精确调控TiB2-AlN-BN复相陶瓷中AlN和BN的含量,且AlN和BN的含量可以在一定范围内变化。组成和含量可以随反应方程式的变化而变化,可以适应于不同的应用环境;同时烧结温度低,获得的晶粒得到细化,性能得到提升。
可以通过放电等离子体烧结制备出不同组成和含量的含BN复相陶瓷,可通过反应烧结中过程参数的改变(烧结温度、压力及保温时间等),调控材料的显微结构和力学性能,使之适应不同应用环境的需要。
本发明具有以下优点和有益效果:
1、TiN-Al-B体系化学计量比在一定范围内可调,不需要额外添加烧结产物,BN和AlN在复相陶瓷中的含量可以通过方程式(1)中x值的变化而变化,并对其微结构和性能进行调控,不需要添加任何烧结助剂。
2、和其他技术相比,放电等离子体烧结在制备含BN材料的过程中有独特的优势:烧结温度低(比普通热压烧结温度低200℃以上);可以解决含BN复相陶瓷无压烧结难以致密化和热压烧结容易造成材料性能各向异性的问题,且原位生成的BN晶粒适度降低了材料的模量,达到复相陶瓷的应变容限。
3、可以将纯度高、廉价且易于获得的原料粉末混合好后通过SPS的方式制备出细晶且性能良好的含BN复相陶瓷。原料价格便宜,方便易得,制备工艺简单,周期短,且不需要添加任何烧结助剂,有利于降低材料制备过程中所需的能耗。
附图说明
图1为实施例2得到的陶瓷的XRD;
图2为实施例2得到的陶瓷的SEM图;
图3为实施例4得到的陶瓷的XRD;
图4为实施例4得到的陶瓷的SEM图;
图5为实施例5得到的陶瓷的XRD;
图6为实施例5得到的陶瓷的SEM图。
具体实施方式
为更好的理解本发明,下面的实施例是对本发明的进一步说明,但本发明的内容不仅仅局限于下面的实施例。
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明,一种反应烧结制备组分可调的含BN复相陶瓷制备方法。以TiN粉末、Al粉以及无定形B粉为原料。将原料按照不同的比例倒入到球磨罐中,在球磨机中混料,以无水乙醇作为球磨介质,以氧化锆作为磨球,通过旋转蒸发和真空干燥箱干燥后得到烧结所用原料粉体。混合粉体倒入石墨模具中,模具套筒内壁和粉体之间用厚度为0.2mm的石墨纸隔开。在1550℃~1850℃烧结温度和30~60MPa烧结压力下对其进行SPS的方式,进而得到复相陶瓷。
实施例1
以TiN粉(平均粒径1~2μm)、Al粉(平均粒径100nm)和B粉(平均粒径1μm)为原料,按照方程式(2)进行配料。
TiN+Al+2B=TiB2+AlN (2)
获得样品相组成(体积含量)为55%TiB2-45%AlN。
分别称取TiN、Al和B三种粉体,将粉体倒入球磨罐中球磨机混料24h,料和球的质量比为1:3.03,称取50g无水乙醇和54g氧化锆球作为球磨介质,球磨转速为100r/min。混合后的料浆通过旋转蒸发60℃和真空干燥箱60℃干燥后得到烧结所用原料粉体。干燥后的粉体,经玛瑙研磨30min后倒入石墨模具中,模具套筒内壁和粉体之间用0.2mm厚度石墨纸隔开。室温至450℃,施加在样品上的压力为30MPa,样品以100℃/min升温速度升温至1800℃,在1800℃保持2min并将压力升至60MPa,在温度1800℃和压力60MPa条件下保持5min后将压力降低至3MPa并停止加热,整个过程在真空下进行,样品随炉冷却至室温。所获得的陶瓷的相对密度为98.1%,弯曲强度为515MPa,断裂韧性为5.65MPa·m1/2,维氏硬度为17.4Gpa,弯曲模量为505.2GPa,应变容限为1.019*10-3
实施例2
以TiN粉(平均粒径1~2μm)和B粉(平均粒径1μm)为原料,按照方程式(3)且将烧结原料粉体中的B粉过量1%进行配料。
TiN+3B=TiB2+BN (3)
获得样品相组成(体积含量)为57%TiB2-43%BN。
分别称取TiN和B两种粉体,将粉体倒入球磨罐中球磨机混料24h,料和球的质量比为1:3.34,称取50g无水乙醇和54g氧化锆球作为球磨介质,球磨转速为100r/min。混合后的料浆通过旋转蒸发60℃和真空干燥箱60℃干燥后得到烧结所用原料粉体。干燥后的粉体,经玛瑙研磨30min后倒入石墨模具中,模具套筒内壁和粉体之间用0.2mm厚度石墨纸隔开。室温至450℃,施加在样品上的压力为30MPa,样品以100℃/min升温速度升温至1800℃,在1800℃保持2min并将压力升至60MPa,在温度1800℃和压力60MPa条件下保持5min后将压力降低至3MPa并停止加热,整个过程在真空下进行,样品随炉冷却至室温。所获得的陶瓷的相对密度为97.7%,弯曲强度为221MPa,断裂韧性为2.69MPa·m1/2,维氏硬度4.13GPa,弯曲模量为202.99GPa,应变容限为1.088*10-3。烧结得到样品的XRD和SEM图分别如图1和图2所示。通过XRD物相分析,反应生成了TiB2和BN两相;通过扫描电镜(SEM)分析,BN相位于TiB2间隙。
实施例3
以TiN粉(平均粒径1~2μm)和B粉(平均粒径1μm)为原料,按照方程式(4)进行配料。
TiN+3B=TiB2+BN (4)
获得样品相组成(体积含量)为57%TiB2-43%BN。
分别称取TiN和B两种粉体,将粉体倒入球磨罐中球磨机混料24h,料和球的质量比为1:3.34,称取50g无水乙醇和54g氧化锆球作为球磨介质,球磨转速为100r/min。混合后的料浆通过旋转蒸发60℃和真空干燥箱60℃干燥后得到烧结所用原料粉体。干燥后的粉体,经玛瑙研磨30min后倒入石墨模具中,模具套筒内壁和粉体之间用0.2mm厚度石墨纸隔开。室温至450℃,施加在样品上的压力为30MPa,样品以100℃/min升温速度升温至1850℃,在1850℃保持2min并将压力升至60MPa,在温度1800℃和压力60MPa条件下保持5min后将压力降低至3MPa并停止加热,整个过程在真空下进行,样品随炉冷却至室温。所获得的陶瓷的相对密度为96.7%,弯曲强度为237MPa,断裂韧性为2.3MPa·m1/2,维氏硬度3.78GPa,弯曲模量为205.11GPa,应变容限为1.155*10-3
实施例4
以TiN粉(平均粒径1~2μm)、Al粉(平均粒径100nm)和B粉(平均粒径1μm)为原料,按照方程式(5)进行配料。
2TiN+Al+5B=2TiB2+AlN+BN (5)
获得样品相组成(体积含量)为56%TiB2-23%AlN-21%BN。
分别称取TiN、Al和B三种粉体,将粉体倒入球磨罐中球磨机混料24h,料和球的质量比为1:3.2,称取50g无水乙醇和54g氧化锆球作为球磨介质,球磨转速为100r/min。混合后的料浆通过旋转蒸发60℃和真空干燥箱60℃干燥后得到烧结所用原料粉体。干燥后的粉体,经玛瑙研磨30min后倒入石墨模具中,模具套筒内壁和粉体之间用0.2mm厚度石墨纸隔开。室温至450℃,施加在样品上的压力为30MPa,样品以100℃/min升温速度升温至1800℃,在1800℃保持2min并将压力升至60MPa,在温度1800℃和压力60MPa条件下保持5min后将压力降低至3MPa并停止加热,整个过程在真空下进行,样品随炉冷却至室温。所获得的陶瓷的相对密度为96.3%,弯曲强度为326MPa,断裂韧性为3.73MPa·m1/2,维氏硬度10.41GPa,弯曲模量为313.05GPa,应变容限为1.041*10-3。烧结得到样品的XRD和SEM图分别如图3和图4所示。通过XRD物相分析,反应生成了TiB2、AlN和BN三相;通过扫描电镜(SEM)分析,TiB2和AlN交替分布BN相位于两相间隙,BN片层结构不明显。
实施例5
以TiN粉(平均粒径1~2μm)、Al粉(平均粒径100nm)和B粉(平均粒径1μm)为原料,按照方程式(6)进行配料。
3TiN+Al+8B=3TiB2+AlN+2BN (6)
获得样品相组成(体积含量)为57%TiB2-16%AlN-27%BN
分别称取TiN、Al和B三种粉体,将粉体倒入球磨罐中球磨机混料24h,料和球的质量比为1:3.24,称取50g无水乙醇和54g氧化锆球作为球磨介质,球磨转速为100r/min。混合后的料浆通过旋转蒸发60℃和真空干燥箱60℃干燥后得到烧结所用原料粉体。干燥后的粉体,经玛瑙研磨30min后倒入石墨模具中,模具套筒内壁和粉体之间用0.2mm厚度石墨纸隔开。室温至450℃,施加在样品上的压力为30MPa,样品以200℃/min升温速度升温至1800℃,在1800℃保持2min并将压力升至60MPa,在温度1800℃和压力60MPa条件下保持5min后将压力降低至3MPa并停止加热,整个过程在真空下进行,样品随炉冷却至室温。所获得的陶瓷的相对密度为97.3%,弯曲强度为276MPa,断裂韧性为3.77MPa·m1/2,维氏硬度7.41GPa,弯曲模量为265.85GPa,应变容限为1.038*10-3。烧结得到样品的XRD和SEM图分别如图5和图6所示。
实施例6
以TiN粉(平均粒径1~2μm)、Al粉(平均粒径100nm)和B粉(平均粒径1μm)为原料,按照方程式(7)且将烧结原料粉体中的B粉过量10%进行配料。
3TiN+2Al+7B=3TiB2+2AlN+BN (7)
获得样品相组成(体积含量)为56%TiB2-31%AlN-13%BN
分别称取TiN、Al和B三种粉体,将粉体倒入球磨罐中球磨机混料24h,料和球的质量比为1:3.13,称取50g无水乙醇和54g氧化锆球作为球磨介质,球磨转速为100r/min。混合后的料浆通过旋转蒸发60℃和真空干燥箱60℃干燥后得到烧结所用原料粉体。干燥后的粉体,经玛瑙研磨30min后倒入石墨模具中,模具套筒内壁和粉体之间用0.2mm厚度石墨纸隔开。室温至450℃,施加在样品上的压力为30MPa,样品以100℃/min升温速度升温至1800℃,在1800℃保持2min并将压力升至60MPa,在温度1800℃和压力60MPa条件下保持5min后将压力降低至3MPa并停止加热,整个过程在真空下进行,样品随炉冷却至室温。所获得的陶瓷的相对密度为97.5%,弯曲强度为303MPa,断裂韧性为4.12MPa·m1/2,维氏硬度13.1GPa,弯曲模量为393.99GPa,应变容限为0.769*10-3
实施例7
以TiN粉(平均粒径1~2μm)、Al粉(平均粒径1~2μm)和B粉(平均粒径1μm)为原料,按照方程式(8)进行配料。
2TiN+Al+5B=2TiB2+AlN+BN (8)
获得样品相组成(体积含量)为56%TiB2-23%AlN-21%BN。
分别称取TiN、Al和B三种粉体,将粉体倒入球磨罐中球磨机混料24h,料和球的质量比为1:3.13,称取50g无水乙醇和54g氧化锆球作为球磨介质,球磨转速为100r/min。混合后的料浆通过旋转蒸发60℃和真空干燥箱60℃干燥后得到烧结所用原料粉体。干燥后的粉体,经玛瑙研磨30min后倒入石墨模具中,模具套筒内壁和粉体之间用0.2mm厚度石墨纸隔开。室温至450℃,施加在样品上的压力为30MPa,样品以100℃/min升温速度升温至1850℃,在1850℃保持2min并将压力升至60MPa,在温度1800℃和压力60MPa条件下保持5min后将压力降低至3MPa并停止加热,整个过程在真空下进行,样品随炉冷却至室温。所获得的陶瓷的相对密度为96.2%,弯曲强度为450MPa,断裂韧性为4.0MPa·m1/2,维氏硬度7.36GPa,弯曲模量为303.05GPa,应变容限为1.485*10-3
实施例8
以TiN粉(平均粒径1~2μm)、Al粉(平均粒径1~2μm)和B粉(平均粒径1μm)为原料,按照方程式(9)进行配料。
3TiN+Al+8B=3TiB2+AlN+2BN (9)
获得样品相组成(体积含量)为57%TiB2-16%AlN-27%BN
分别称取TiN、Al和B三种粉体,将粉体倒入球磨罐中球磨机混料24h,料和球的质量比为1:3.13,称取50g无水乙醇和54g氧化锆球作为球磨介质,球磨转速为100r/min。混合后的料浆通过旋转蒸发60℃和真空干燥箱60℃干燥后得到烧结所用原料粉体。干燥后的粉体,经玛瑙研磨30min后倒入石墨模具中,模具套筒内壁和粉体之间用0.2mm厚度石墨纸隔开。室温至450℃,施加在样品上的压力为30MPa,样品以100℃/min升温速度升温至1850℃,在1850℃保持2min并将压力升至60MPa,在温度1800℃和压力60MPa条件下保持5min后将压力降低至3MPa并停止加热,整个过程在真空下进行,样品随炉冷却至室温。所获得的陶瓷的相对密度为96.1%,弯曲强度为382MPa,断裂韧性为3.7MPa·m1/2,维氏硬度8.8GPa,弯曲模量为270.05GPa,应变容限为1.414*10-3
实施例9
以TiN粉(平均粒径4~5μm)、Al粉(平均粒径~2μm)和B粉(平均粒径1μm)为原料,按照方程式(10)进行配料。
3TiN+Al+8B=3TiB2+AlN+2BN (10)
获得样品相组成(体积含量)为57%TiB2-16%AlN-27%BN
分别称取TiN、Al和B三种粉体,将粉体倒入球磨罐中球磨机混料24h,料和球的质量比为1:3.13,称取50g无水乙醇和54g氧化锆球作为球磨介质,球磨转速为100r/min。混合后的料浆通过旋转蒸发60℃和真空干燥箱60℃干燥后得到烧结所用原料粉体。干燥后的粉体,经玛瑙研磨30min后倒入石墨模具中,模具套筒内壁和粉体之间用0.2mm厚度石墨纸隔开。室温至450℃,施加在样品上的压力为30MPa,样品以100℃/min升温速度升温至1850℃,在1850℃保持2min并将压力升至60MPa,在温度1800℃和压力60MPa条件下保持5min后将压力降低至3MPa并停止加热,整个过程在真空下进行,样品随炉冷却至室温。所获得的陶瓷的相对密度为96.5%,弯曲强度为390MPa,断裂韧性为3.8MPa·m1/2,维氏硬度8.7GPa,弯曲模量为280.05GPa,应变容限为1.392*10-3
实施例10
以TiN粉(平均粒径4~5μm)、Al粉(平均粒径~2μm)和B粉(平均粒径1μm)为原料,按照方程式(11)且将烧结原料粉体中的B粉过量5%进行配料。
3TiN+2Al+7B=3TiB2+2AlN+BN (11)
获得样品相组成(体积含量)为56%TiB2-31%AlN-13%BN
分别称取TiN、Al和B三种粉体,将粉体倒入球磨罐中球磨机混料24h,料和球的质量比为1:3.13,称取50g无水乙醇和54g氧化锆球作为球磨介质,球磨转速为100r/min。混合后的料浆通过旋转蒸发60℃和真空干燥箱60℃干燥后得到烧结所用原料粉体。干燥后的粉体,经玛瑙研磨30min后倒入石墨模具中,模具套筒内壁和粉体之间用0.2mm厚度石墨纸隔开。室温至450℃,施加在样品上的压力为30MPa,样品以100℃/min升温速度升温至1800℃,在1800℃保持2min并将压力升至60MPa,在温度1800℃和压力60MPa条件下保持5min后将压力降低至3MPa并停止加热,整个过程在真空下进行,样品随炉冷却至室温。所获得的陶瓷的相对密度为98.5%,弯曲强度为313MPa,断裂韧性为4.32MPa·m1/2,维氏硬度13.8GPa,弯曲模量为400.23GPa,应变容限为0.782*10-3
实施例11
以TiN粉(平均粒径4~5μm)、Al粉(平均粒径~2μm)和B粉(平均粒径1μm)为原料,按照方程式(11)且将烧结原料粉体中的B粉过量5%进行配料。
3TiN+2Al+7B=3TiB2+2AlN+BN (11)
获得样品相组成(体积含量)为56%TiB2-31%AlN-13%BN
分别称取TiN、Al和B三种粉体,将粉体倒入球磨罐中球磨机混料24h,料和球的质量比为1:3.13,称取54g氧化锆球作为球磨介质,不加入无水乙醇,球磨转速为100r/min。混合后的粉末经玛瑙研磨30min后倒入石墨模具中,模具套筒内壁和粉体之间用0.2mm厚度石墨纸隔开。室温至450℃,施加在样品上的压力为30MPa,样品以100℃/min升温速度升温至1800℃,在1800℃保持2min并将压力升至60MPa,在温度1800℃和压力60MPa条件下保持5min后将压力降低至3MPa并停止加热,整个过程在真空下进行,样品随炉冷却至室温。所获得的陶瓷的相对密度为97.5%,弯曲强度为343MPa,断裂韧性为4.52MPa·m1/2,维氏硬度13.1GPa,弯曲模量为450.23GPa,应变容限为0.762*10-3
综上所述,利用TiN、Al和B为粉末原料,通过SPS的方法进行反应烧结来制备高致密度的复相陶瓷,实现含BN复相陶瓷的强韧化,其优越性在于烧结温度低,可以实现六方氮化硼晶粒非择优取向生长和大幅度提高材料的力学性能。
以上所述是本发明的优选实施方式而已,当然不能以此来限定本发明之权利范围,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和变动,这些改进和变动也视为本发明的保护范围。

Claims (9)

1.一种反应烧结制备组分可调的含BN复相陶瓷制备方法,其特征在于:采用市售的TiN、Al和B三种粉体为原料,根据下列化学反应方程式进行粉体的配比:
TiN+xAl+(3-x)B=TiB2+xAlN+(1-x)BN (1)
其中,0≤x≤1,将原料粉体混料、干燥、过筛后进行放电等离子体烧结,得到所述复相陶瓷。
2.如权利要求1所述的反应烧结制备组分可调的含BN复相陶瓷制备方法,其特征在于:所述复相陶瓷中BN≤43vol%,AlN≤45vol%。
3.如权利要求1所述的反应烧结制备组分可调的含BN复相陶瓷制备方法,其特征在于:所述TiN的粉体的平均粒径为0.5~5μm,纯度为99.9%。
4.如权利要求1所述的反应烧结制备组分可调的含BN复相陶瓷制备方法,其特征在于:所述Al的粉体的平均粒径为0.1~5μm,纯度为99.9%。
5.如权利要求1所述的反应烧结制备组分可调的含BN复相陶瓷制备方法,其特征在于:B为无定形B,其粉体的平均粒径为1-2μm,纯度为95%及以上。
6.如权利要求1所述的反应烧结制备组分可调的含BN复相陶瓷制备方法,其特征在于,包括如下步骤:
步骤1、陶瓷粉体制备:以TiN、Al和B三种粉体为原料,按方程式配比混合后进行球磨,将球磨得到的浆料干燥后得到烧结所用原料粉体;
步骤2、放电等离子体烧结:根据需要的样品厚度,计算所原料需粉体的重量,将过筛后的原料粉体进行放电等离子体烧结,得到所述复相陶瓷。
7.如权利要求6所述的反应烧结制备组分可调的含BN复相陶瓷制备方法,其特征在于:所述步骤1中,采用的B粉体的质量过量1%~10%。
8.如权利要求6所述的反应烧结制备组分可调的含BN复相陶瓷制备方法,其特征在于:所述步骤1中,球磨的料球质量比为1:3.4~5。
9.如权利要求6所述的反应烧结制备组分可调的含BN复相陶瓷制备方法,其特征在于:所述步骤2中,烧结温度为1550℃~1850℃;烧结升温速度为100-200℃/min;烧结压力为30~60MPa;烧结保温时间为5-20min。
CN202111398885.1A 2021-11-19 2021-11-19 一种反应烧结制备组分可调的含bn复相陶瓷制备方法 Active CN114133250B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111398885.1A CN114133250B (zh) 2021-11-19 2021-11-19 一种反应烧结制备组分可调的含bn复相陶瓷制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111398885.1A CN114133250B (zh) 2021-11-19 2021-11-19 一种反应烧结制备组分可调的含bn复相陶瓷制备方法

Publications (2)

Publication Number Publication Date
CN114133250A true CN114133250A (zh) 2022-03-04
CN114133250B CN114133250B (zh) 2022-09-02

Family

ID=80391076

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111398885.1A Active CN114133250B (zh) 2021-11-19 2021-11-19 一种反应烧结制备组分可调的含bn复相陶瓷制备方法

Country Status (1)

Country Link
CN (1) CN114133250B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4929417A (en) * 1989-04-21 1990-05-29 Agency Of Industrial Science And Technology Method of manufacture metal diboride ceramics
CN1817434A (zh) * 2006-01-11 2006-08-16 燕山大学 等离子放电烧结聚晶立方氮化硼烧结体的方法
JP2015151323A (ja) * 2014-02-18 2015-08-24 学校法人同志社 炭化ホウ素/ホウ化チタンコンポジットセラミックス及びその作製法
CN111484331A (zh) * 2020-04-02 2020-08-04 武汉理工大学 一种细晶粒富硼碳化硼基复合陶瓷材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4929417A (en) * 1989-04-21 1990-05-29 Agency Of Industrial Science And Technology Method of manufacture metal diboride ceramics
CN1817434A (zh) * 2006-01-11 2006-08-16 燕山大学 等离子放电烧结聚晶立方氮化硼烧结体的方法
JP2015151323A (ja) * 2014-02-18 2015-08-24 学校法人同志社 炭化ホウ素/ホウ化チタンコンポジットセラミックス及びその作製法
CN111484331A (zh) * 2020-04-02 2020-08-04 武汉理工大学 一种细晶粒富硼碳化硼基复合陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN114133250B (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
CN109678511B (zh) 一种致密HfC(Si)-HfB2复相陶瓷的制备方法
CN109678523B (zh) 一种具有高温强度和硬度的高熵陶瓷及其制备方法和应用
JPS5924751B2 (ja) 焼結成形体
KR20210110472A (ko) 탄화붕소 복합재료 및 그의 제조방법
Hu et al. Developments in hot pressing (HP) and hot isostatic pressing (HIP) of ceramic matrix composites
US20210317045A1 (en) Highly oriented nanometer max phase ceramic and preparation method for max phase in-situ autogenous oxide nanocomposite ceramic
Ewais et al. Investigation of the effect of ZrO2 and ZrO2/Al2O3 additions on the hot-pressing and properties of equimolecular mixtures of α-and β-Si3N4
CN111533560A (zh) 一种碳化硼基复合陶瓷材料及其制备方法
Li et al. Microstructure and mechanical properties of aluminum nitride co-doped with cerium oxide via hot-pressing sintering
CN103011827A (zh) 一种原位引入硼为添加剂的二硼化锆陶瓷的制备方法
CN112028635A (zh) 一种超高温陶瓷复合材料及制备方法
CN108794013B (zh) 一种b4c陶瓷块体及其快速制备方法
Huang et al. Effect of Excess SiO2 on the Reaction Sintering of Aluminium Titanate–25 vol% Mullite Composites
CN109354504B (zh) 一种碳化硼基复合陶瓷烧结助剂及烧结工艺
EP0170864A2 (en) ZrB2 Composite sintered material
Ye et al. Effect of addition of micron-sized TiC particles on mechanical properties of Si3N4 matrix composites
Li et al. Effect of magnesium titanate content on microstructures, mechanical performances and dielectric properties of Si3N4-based composite ceramics
CN109734452B (zh) 一种无压烧结制备高致密Ti2AlN陶瓷的方法
CN103113125A (zh) 层状化合物板状晶粒弥散增强的过渡金属碳化物复相材料及其超低温制备方法
CN114133250B (zh) 一种反应烧结制备组分可调的含bn复相陶瓷制备方法
EP0170889A2 (en) ZrB2 Composite sintered material
Chen et al. Low-temperature sintering behavior and mechanical properties of BN-ZrO2-SiC composites
CN104163628B (zh) 一种制备HfC-SiC复相陶瓷的方法
CN112830792A (zh) 一种高硬度的铪基三元固溶体硼化物陶瓷及其制备方法和应用
CN110642625A (zh) 一种新型三元复合粉体及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant