CN114122424A - 一种亲水碳基Ni纳米ORR电催化剂的制备方法 - Google Patents

一种亲水碳基Ni纳米ORR电催化剂的制备方法 Download PDF

Info

Publication number
CN114122424A
CN114122424A CN202111249253.9A CN202111249253A CN114122424A CN 114122424 A CN114122424 A CN 114122424A CN 202111249253 A CN202111249253 A CN 202111249253A CN 114122424 A CN114122424 A CN 114122424A
Authority
CN
China
Prior art keywords
orr
nano
mof
reaction
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111249253.9A
Other languages
English (en)
Other versions
CN114122424B (zh
Inventor
刘凌云
徐志文
曹磊
安宁
潘丛元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Specreation Instrument Science & Technology Co ltd
Hefei Normal University
Original Assignee
Anhui Specreation Instrument Science & Technology Co ltd
Hefei Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Specreation Instrument Science & Technology Co ltd, Hefei Normal University filed Critical Anhui Specreation Instrument Science & Technology Co ltd
Priority to CN202111249253.9A priority Critical patent/CN114122424B/zh
Publication of CN114122424A publication Critical patent/CN114122424A/zh
Application granted granted Critical
Publication of CN114122424B publication Critical patent/CN114122424B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种亲水碳基Ni纳米ORR电催化剂的制备方法,涉及ORR电催化剂技术领域,包括以下步骤:将四水合醋酸镍、聚乙烯吡咯烷酮加入到无水乙醇中,超声,加热反应,离心,得Ni棱晶前体沉淀,干燥;将Ni棱晶前体分散到DMF中,超声,加入含2,3,6,7,10,11‑六羟基三亚苯有机配体的DMF溶液,加热反应,离心,得Ni‑pre@MOF沉淀;将Ni‑pre@MOF沉淀于保护气氛下先进行预热解,然后再升温进行热解,获得蚕蛹状的亲水富氧碳壳负载Ni纳米粒子的O‑C@Ni。本发明制得的O‑C@Ni产品可用作燃料电池阴极ORR过程的电催化剂,该材料具有的良好亲水性,有利于反应过程中氧气分子的吸附,且高比表面积的Ni纳米粒子能大大促进催化剂的氧相关动力学,从而使其在催化ORR的过程中表现出高的催化活性。

Description

一种亲水碳基Ni纳米ORR电催化剂的制备方法
技术领域
本发明涉及ORR电催化剂技术领域,尤其涉及一种亲水碳基Ni纳米ORR电催化剂的制备方法。
背景技术
燃料电池是一种将存在于燃料与氧化剂中的化学能直接转化为电能的发电装置,通常由形成离子导电体的电解质板和其两侧配置的燃料极(阳极)和空气极(阴极)、及两侧气体流路构成。燃料电池作为新一代绿色能源技术,因其成本低、容量高、环境友好而所受到广泛关注。然而,受限于商用铂基催化剂稳定性差、成本高和储量低等缺点,燃料电池以及相关绿色能源技术的应用缓慢,因此,研发高效绿色的替代性氧气还原反应(ORR)电催化剂,是电催化领域的研究热点。
纳米镍由于尺寸小,比表面积大,表面原子数较多和表面原子的配位不饱和性导致其表面活性位点增多,具有很高的催化活性。将镍基催化剂负载于如无机或有机载体上,能有效地提高催化剂的活性和稳定性。
目前,现有技术中公开的碳基负载Ni纳米ORR催化剂,其通过简单的热解处理过程,所制备出的Ni纳米颗粒呈现出不规则的形态,大部分Ni位点深包裹在碳基材内部,无法提供足够的暴露活性位点;并且材料亲水性欠佳,这些都极大地阻碍了电催化ORR效率的提升。
发明内容
基于背景技术存在的技术问题,本发明提出了一种亲水碳基Ni纳米ORR电催化剂的制备方法,制备的材料具有高度暴露的表面活性中心和优良的亲水能力,从而使其在催化ORR的过程中表现出高的催化活性。
本发明提出的一种亲水碳基Ni纳米ORR电催化剂的制备方法,包括以下步骤:
S1、Ni棱晶前体的制备:将四水合醋酸镍、聚乙烯吡咯烷酮加入到无水乙醇中,超声分散,加热反应,冷却,离心收集沉淀,即得Ni棱晶前体沉淀,洗涤,干燥;
S2、Ni-pre@MOF的制备:将Ni棱晶前体分散到N,N-二甲基甲酰胺中,超声,然后加入含2,3,6,7,10,11-六羟基三亚苯有机配体的N,N-二甲基甲酰胺溶液,加热反应,冷却,离心收集沉淀,获得核壳结构的Ni-pre@MOF棱晶沉淀,洗涤;
S3、O-C@Ni的制备:将Ni-pre@MOF棱晶沉淀于保护气氛下先在300-400℃下进行预热解,然后再升温至600℃-800℃进行热解,获得蚕蛹状的亲水富氧碳壳负载Ni纳米粒子的O-C@Ni。
优选地,S1中,聚乙烯吡咯烷酮为PVP-K30;采用油浴90℃下加热反应10h。
优选地,S2中,Ni棱晶前体和2,3,6,7,10,11-六羟基三亚苯有机配体的质量比为20:29-35。
优选地,S2中,采用油浴115-125℃下加热反应5-7h。
优选地,S3中,先在300-400℃进行预热解40-70min,然后再升温至600-800℃进行热解1.5-2.5h。
有益效果:本发明提出了一种亲水碳基Ni纳米ORR电催化剂的制备方法,是先通过在棱晶状的Ni前体上生长一层有机金属框架MOF,形成核壳结构的Ni-pre@MOF棱晶沉淀,然后再通过两步热解反应,形成最终的蚕蛹状富氧碳壳支撑的金属镍纳米颗粒,所制得的产品具有高度暴露的表面活性中心;此外,采用富含羟基的2,3,6,7,10,11-六羟基三亚苯作为有机配体来制备金属有机框架,所得表面富含大量氧元素的亲水性碳壳,从而赋予产品优良的亲水能力。所制得亲水富氧碳壳负载Ni纳米粒子的O-C@Ni产品可用作燃料电池阴极ORR过程的活性电化学催化剂,一方面该材料具有的良好亲水性,有利于反应过程中氧气分子的吸附,另一方面高比表面积的Ni纳米粒子能大大促进催化剂的氧相关动力学,从而使其在催化ORR的过程中表现出高的催化活性,实现高效的ORR催化过程,提高ORR效率。
附图说明
图1为本发明实施例1中制备的样品的SEM图;其中,a-c依次为Ni-pre、Ni-pre@MOF、O-C@Ni的FEI图,d-f依次为Ni-pre、Ni-pre@MOF、O-C@Ni的TEM图;
图2为本发明实施例1制备的Ni-pre、Ni-pre@MOF、O-C@Ni的XRD图;
图3为本发明实施例1制备的O-C@Ni、对比例1制备的Ni-pre(A)、对比例2制备的NiMOF(A)、石墨Graphite的接触角测试数据。
图4为本发明实施例1制备的O-C@Ni、对比例1制备的Ni-pre(A)、对比例2制备的NiMOF(A)的XPS谱图;
图5为本发明实施例1制备的O-C@Ni(d)、对比例1制备的Ni-pre(A)(b)、对比例2制备的Ni MOF(A)(c)、商业Pt/C催化剂(a)的LSV曲线。
具体实施方式
下面,通过具体实施例对本发明的技术方案进行详细说明。
实施例1
一种亲水碳基Ni纳米ORR电催化剂的制备方法,包括以下步骤:
S1、Ni棱晶前体的制备:将160mg四水合醋酸镍和375mg聚乙烯吡咯烷酮(PVP-K30)加入到25mL无水乙醇中,超声分散30min使其充分混合,然后将溶液转移到100mL三颈瓶中,在90℃下的油浴中保持10h,自然冷却至室温后,离心收集沉淀,即得Ni棱晶前体沉淀,用乙醇洗涤3-4次,烘干备用;
S2、Ni-pre@MOF的制备:将20mg Ni棱晶前体分散到32mL N,N-二甲基甲酰胺中,超声,然后加入8mL含有32mg的2,3,6,7,10,11-六羟基三亚苯有机配体配体的N,N-二甲基甲酰胺溶液中,搅拌10min后,在120℃下油浴中保持6h,然后通过搅拌使其冷却至室温,离心收集沉淀,获得核壳结构的Ni-pre@MOF棱晶沉淀,用乙醇洗涤3-4次;
S3、O-C@Ni的制备:采用两步热解法对Ni-pre@MOF进行热解处理,具体是先将Ni-pre@MOF棱晶沉淀转移至管式炉中,于N2气氛下先以2℃/min的速率升温至300℃,保持1h进行预热解,然后再以1℃/min的速率升温至600℃,保持2h进行热解,自然冷却至室温后获得蚕蛹状的亲水富氧碳壳负载Ni纳米粒子的O-C@Ni样品。
对比例1
与实施例1相比,区别在于:不含有S2步骤,是采用两步热解法直接对S1中的Ni棱晶前体进行热解处理;所得产品记作Ni-pre(A)。
对比例2
与实施例1相比,区别在于:不含有S1步骤,是将20mg四水合醋酸镍直接与32mg的2,3,6,7,10,11-六羟基三亚苯(HHTP)有机配体在DMF溶剂中混合,油浴反应,离心收集沉淀,洗涤,再采用两步热解法进行热解处理;所得产品记作Ni MOF(A)。
对本发明实施例1和对比例1-2中制备的材料进行表征和测试。
图1为SEM图,从图中可以看出,a、d中的Ni-pre为棱晶状的,在其上生长一层有机金属框架MOF,形成核壳结构的Ni-pre@MOF棱晶(b、e),再通过热解反应,得到蚕蛹状富氧碳壳支撑的金属镍纳米颗粒,其具有高度暴露的表面活性中心(c、f)。
图2为XRD图,从图中可以看出,O-C@Ni样品只有44.6°、51.9°、76.5°的衍射峰,分别对应于金属镍的(111)、(200)和(220)平面,说明O-C@Ni样品表面所形成的是金属Ni纳米颗粒。
图3为接触角测试数据,从图中可以看出,本发明中制备的O-C@Ni样品具有极强的亲水特性。
图4为XPS谱图,通过对比Ni MOF(A)和O-C@Ni样品的O1s谱峰,可发现O的含量在热解处理后仍较高,即在最终的O-C@Ni样品中存在稳固的C-O健,其表面富氧。
对本发明制备的材料进行电化学性能测试。图5为线性扫描电压LSV曲线,从图中可以看出,O-C@Ni催化剂表现出了优异的ORR性能,与可逆氢电极(vs.RHE)相比具有0.96V的较小的起始电位和0.83V较佳的半波电位,远优于0.70V的Ni-pre(A)和0.73V的Ni MOF(A),与商业Pt/C催化剂相当(0.86V vs.RHE)。此外,O-C@Ni催化剂实现了约5.0mA/cm2的相对较高的极限电流密度,接近商业Pt/C催化剂的极限电流密度(约5.2mA/cm2)。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (5)

1.一种亲水碳基Ni纳米ORR电催化剂的制备方法,其特征在于,包括以下步骤:
S1、Ni棱晶前体的制备:将四水合醋酸镍、聚乙烯吡咯烷酮加入到无水乙醇中,超声分散,加热反应,冷却,离心收集沉淀,即得Ni棱晶前体沉淀,洗涤,干燥;
S2、Ni-pre@MOF的制备:将Ni棱晶前体分散到N,N-二甲基甲酰胺中,超声,然后加入含2,3,6,7,10,11-六羟基三亚苯有机配体的N,N-二甲基甲酰胺溶液,加热反应,冷却,离心收集沉淀,获得核壳结构的Ni-pre@MOF棱晶沉淀,洗涤;
S3、O-C@Ni的制备:将Ni-pre@MOF棱晶沉淀于保护气氛下先在300-400℃下进行预热解,然后再升温至600℃-800℃进行热解,获得蚕蛹状的亲水富氧碳壳负载Ni纳米粒子的O-C@Ni。
2.根据权利要求1所述的亲水碳基Ni纳米ORR电催化剂的制备方法,其特征在于,S1中,聚乙烯吡咯烷酮为PVP-K30;采用油浴90℃下加热反应10h。
3.根据权利要求1所述的亲水碳基Ni纳米ORR电催化剂的制备方法,其特征在于,S2中,Ni棱晶前体和2,3,6,7,10,11-六羟基三亚苯有机配体的质量比为20:29-35。
4.根据权利要求1所述的亲水碳基Ni纳米ORR电催化剂的制备方法,其特征在于,S2中,采用油浴115-125℃下加热反应5-7h。
5.根据权利要求1所述的亲水碳基Ni纳米ORR电催化剂的制备方法,其特征在于,S3中,先在300-400℃进行预热解40-70min,然后再升温至600-800℃进行热解1.5-2.5h。
CN202111249253.9A 2021-10-26 2021-10-26 一种亲水碳基Ni纳米ORR电催化剂的制备方法 Active CN114122424B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111249253.9A CN114122424B (zh) 2021-10-26 2021-10-26 一种亲水碳基Ni纳米ORR电催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111249253.9A CN114122424B (zh) 2021-10-26 2021-10-26 一种亲水碳基Ni纳米ORR电催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN114122424A true CN114122424A (zh) 2022-03-01
CN114122424B CN114122424B (zh) 2023-11-10

Family

ID=80377045

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111249253.9A Active CN114122424B (zh) 2021-10-26 2021-10-26 一种亲水碳基Ni纳米ORR电催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN114122424B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62249360A (ja) * 1986-04-22 1987-10-30 Choichi Furuya ガス拡散電極の製造方法
CA2346915A1 (en) * 1999-02-22 2000-08-31 Alexandr Gorokhov Method for producing cellulose
CN1697219A (zh) * 2005-06-16 2005-11-16 哈尔滨工业大学 直接醇类燃料电池用Pt-Ru-Ni/C催化剂的制备方法
US20120046162A1 (en) * 2009-02-27 2012-02-23 Jacobus Hoekstra Process for the preparation of metal-carbon containing bodies
CN108295855A (zh) * 2018-01-31 2018-07-20 重庆大学 一种多级碳基铁镍氢氧化物的原位制备方法及其产品和应用
EP3575383A1 (en) * 2018-05-28 2019-12-04 Total Research & Technology Feluy Biphasic solvent catalytic process for the production of mono-oxygenated molecules from a bio-feedstock comprising carbohydrates

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62249360A (ja) * 1986-04-22 1987-10-30 Choichi Furuya ガス拡散電極の製造方法
CA2346915A1 (en) * 1999-02-22 2000-08-31 Alexandr Gorokhov Method for producing cellulose
CN1697219A (zh) * 2005-06-16 2005-11-16 哈尔滨工业大学 直接醇类燃料电池用Pt-Ru-Ni/C催化剂的制备方法
US20120046162A1 (en) * 2009-02-27 2012-02-23 Jacobus Hoekstra Process for the preparation of metal-carbon containing bodies
CN108295855A (zh) * 2018-01-31 2018-07-20 重庆大学 一种多级碳基铁镍氢氧化物的原位制备方法及其产品和应用
EP3575383A1 (en) * 2018-05-28 2019-12-04 Total Research & Technology Feluy Biphasic solvent catalytic process for the production of mono-oxygenated molecules from a bio-feedstock comprising carbohydrates

Also Published As

Publication number Publication date
CN114122424B (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
CN109216712B (zh) 基于金属有机框架的非贵金属/碳复合材料的制备方法、非贵金属/碳复合材料及其应用
Lv et al. In-situ embedding zeolitic imidazolate framework derived Co–N–C bifunctional catalysts in carbon nanotube networks for flexible Zn–air batteries
CN110911697B (zh) 一种过渡金属/氮掺杂多孔碳纳米球电催化剂及制备方法
CN111697239B (zh) 一种钴铁合金、氮共掺杂炭氧气还原催化剂及其制备方法和应用
US8409659B2 (en) Nanowire supported catalysts for fuel cell electrodes
CN108486605A (zh) 一种具有优异电解水性能的碳包覆硒化镍钴纳米材料及其制备方法
CN112968185B (zh) 植物多酚改性的超分子网络框架结构锰基纳米复合电催化剂的制备方法
CN112968184B (zh) 一种三明治结构的电催化剂及其制备方法和应用
Huang et al. Chelating agent assisted heat treatment of carbon supported cobalt oxide nanoparticle for use as cathode catalyst of polymer electrolyte membrane fuel cell (PEMFC)
CN113881965B (zh) 一种以生物质碳源为模板负载金属纳米颗粒催化剂及其制备方法和应用
Li et al. Porous biomass-derived carbon modified by Cu, N co-doping and Cu nanoparticles as high-efficient electrocatalyst for oxygen reduction reaction and zinc-air battery
CN110277565B (zh) 燃料电池用铂铟催化剂及其制备方法和应用
WO2022099793A1 (zh) 一种orr催化剂材料及其制备方法和用途
CN112138697B (zh) 一种锰氮共掺杂碳纳米片电催化剂的制备方法与应用
CN114784304B (zh) 双金属原子掺杂多孔碳材料催化剂及其制备方法和应用
CN116200773A (zh) 富含孪晶结构的过渡族金属电催化剂及其制备方法和应用
CN112701307B (zh) 用于质子膜燃料电池的双mof连接结构纳米复合电催化剂及其制备方法
CN114122424B (zh) 一种亲水碳基Ni纳米ORR电催化剂的制备方法
CN113013426B (zh) 一种铌单原子催化剂、其制备方法及其应用
CN112510217B (zh) 一种碳负载铂钇催化剂及其制备方法和应用
CN111468161B (zh) 一种三功能钴氮双掺杂碳基光子晶体催化剂及其制备方法和应用
CN111725525B (zh) 电沉积制备碳载单分散Pt-Ni纳米颗粒催化剂及其制备与应用
CN114068950B (zh) 基于多孔碳支撑的超细亚纳米金复合材料电催化剂及其制备方法和应用
CN113659151A (zh) 一种石墨烯复合硫化铜/硫化镍催化材料及其制备方法与应用
CN1788847A (zh) 一种碳绒球负载型催化剂及其制备方法和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant