CN114107961A - 一种莫来石氧化铝溶胶耐热复合涂层材料及其制备方法 - Google Patents

一种莫来石氧化铝溶胶耐热复合涂层材料及其制备方法 Download PDF

Info

Publication number
CN114107961A
CN114107961A CN202111265105.6A CN202111265105A CN114107961A CN 114107961 A CN114107961 A CN 114107961A CN 202111265105 A CN202111265105 A CN 202111265105A CN 114107961 A CN114107961 A CN 114107961A
Authority
CN
China
Prior art keywords
mullite
sol
heat
sepiolite
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111265105.6A
Other languages
English (en)
Inventor
金辉乐
尹德武
王舜
张伟明
高军昌
范志强
朱豪翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of New Materials and Industrial Technology of Wenzhou University
Original Assignee
Institute of New Materials and Industrial Technology of Wenzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of New Materials and Industrial Technology of Wenzhou University filed Critical Institute of New Materials and Industrial Technology of Wenzhou University
Priority to CN202111265105.6A priority Critical patent/CN114107961A/zh
Publication of CN114107961A publication Critical patent/CN114107961A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1212Zeolites, glasses
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

本发明涉及一种莫来石氧化铝溶胶耐热新型复合涂层材料及其制备方法,其制备方法具体包括:以AlCl3·6H2O前驱体、海泡石纤维、SiO2‑Al2O3溶胶和莫来石粉体为原料,采用特殊的溶胶‑凝胶工艺和超临界流体干燥技术,制备了耐热和机械加工性能优异的莫来石氧化铝溶胶耐热新型复合材料,通过在铝溶胶中加入海泡石以及在基体材料上中涂覆铝溶胶和莫来石料浆的混合料浆,在醋酸接枝聚乙烯醇为模板剂和分散剂的作用下,经过涂层烧结制备而成。本发明的有益效果在于工艺简单,材料耐高温效果明显,可同时提高基体材料的强度与韧性,在催化和高温绝缘领域具有良好的工业应用前景。

Description

一种莫来石氧化铝溶胶耐热复合涂层材料及其制备方法
技术领域
本发明涉及非金属材料领域,具体是指一种莫来石氧化铝溶胶耐热复合涂层材料及其制备方法。
背景技术
莫来石(mullite)为铝硅酸盐矿物,具有耐火度高、抗热震性好、抗化学侵蚀、抗蠕变、荷重软化温度高、体积稳定性好、电绝缘性强等性质,是理想高级耐火材料,被广泛用于冶金、玻璃、陶瓷、化学、电力、国防、燃气和水泥等工业上。随着高温结构陶瓷在各领域的广泛应用,国内外对陶瓷抗氧化涂层的研究正在逐步深入。莫来石(mullite)的然矿物在地壳中非常稀少,因1924年最早发现于苏格兰的马尔岛(islandofmul1)而得名。但人造莫来石却是常见且应用广泛的一种矿物。目前用于非氧化物陶瓷的高温抗氧化涂层主要为碳化硅、氧化硅、氧化铝、氧化锆、莫来石等体系。莫来石的化学成分并不稳定,常见的有3A12O3·2SiO2以及2A12O3·SiO2两种形式,莫来石晶须是由莫来石单晶在一定条件下定向生长形成的。由于其优异的耐温性能、低的热膨胀系数和优异的力学性能,是一种很有吸引力的材料,因此需要莫来石晶须来有效承担相变应力,阻碍裂纹的扩展,增加涂层的韧性,防止涂层裂开,从而提高涂层的抗热冲击性。莫来石与矽线石族矿物颇为相似,它的晶体结构可以看作是由矽线石结构演变而来,每个晶胞是由4个矽线石晶胞组成,每个矽线石晶胞是由4个A12O3·SiO2组成,因此,莫来石晶胞相当于由16个A12O3·SiO2所组成。
目前,以水合氧化铝盐(主要为AlCl3·6H2O和Al(NO3)3·9H2O)或铝醇盐(三仲丁醇铝)为前驱物的溶胶-凝胶法是制备氧化铝气凝胶的主要方法。当然,还存在一些阻碍其工业应用的挑战,如在溶胶-凝胶过程、干燥过程和热处理过程中收缩严重,机械强度低,缺乏成形性和可加工性等。
发明内容
本发明的目的是为了克服现有技术存在的缺点和不足,而提供一种莫来石氧化铝溶胶耐热复合涂层材料及其制备方法,该方法采用溶胶-凝胶工艺和超临界流体干燥技术,以AlCl3·6H2O前驱体、海泡石纤维、SiO2-Al2O3溶胶和莫来石粉体为原料,制备了耐热和机械加工性能优异的氧化铝气凝胶新型复合材料和莫来石晶须,提高了海泡石的纤维长度,使其分散均匀,和未掺杂的溶胶相比,莫来石氧化铝溶胶复合材料,在研磨、切片和穿孔方面表现出优异的韧性和机械加工性。在模板剂和分散剂的作用下,经过溶胶-凝胶工艺制备出莫来石氧化铝溶胶耐热新型复合涂层材料。
为实现上述目的,本发明的第一个方面是提供一种莫来石氧化铝溶胶耐热复合涂层材料的制备方法,其技术方案是该方法以AlCl3·6H2O前驱体、海泡石纤维、SiO2-Al2O3溶胶和莫来石粉体为原料,在醋酸接枝聚乙烯醇为模板剂和分散剂的作用下,经过溶胶-凝胶工艺制备出耐热氧化铝溶胶复合涂层材料。
进一步设置是所述的AlCl3·6H2O前驱体、海泡石纤维、SiO2-Al2O3溶胶和莫来石粉体的质量份数比为1:1:1.3:2.6。
进一步设置是包括以下步骤:
(1)合成接枝聚乙烯醇:将粘度为40-60mPa s的聚乙烯醇3g溶于220ml去离子水中,加入硫酸将溶液pH调至2,然后将溶液加热到95℃,搅拌2h,使聚乙烯醇完全溶解,随后加入6ml乙酰乙酸甲酯,在95℃水浴中氮气气氛中搅拌8h,最后,将得到的溶液,冷却到室温;
(2)海泡石的改性:将生海泡石18g加入到500ml的0.5mol/L硝酸溶液中,高速搅拌24h,过滤上悬浮液,70℃烘干,将5g十六烷基三甲基溴化铵溶于500ml的水/乙醇溶液中,体积比为1:1,得到十六烷基三甲基溴化铵改性海泡石,然后在溶液中加入15g以上的海泡石,在室温下连续搅拌24h,然后,对浆液进行过滤,用乙醇洗涤沉淀,去除多余的表面活性剂,然后收集改性后的海泡石,在70℃下烘干;改性去除了分布在海泡石纤维束之间的颗粒杂质,大纤维束被破碎成更短、更细的纤维,纤维变得更光滑、更柔软。
(3)SiO2-Al2O3溶胶:将正硅酸乙酯以硝酸为催化剂溶于乙醇-水溶液中预水解3h,再将AlCl3·6H2O溶于乙醇-水溶液中制备Al2O3溶胶,然后,在搅拌3h的条件下,将Al2O3加入到酸化的SiO2溶胶中,得到SiO2-Al2O3溶胶;
(4)涂覆涂层:将被涂覆的基体材料于真空中以符合莫来石化学计量比的正硅酸乙酯和铝盐为原料,采用预水解法制备,再涂覆莫来石料浆;涂覆后的材料在50~100℃干燥,
(5)将干燥后的涂覆材料在1200~1500℃烧结2~3小时,得到莫来石氧化铝溶胶耐热复合涂层材料。
另外,本发明还提供一种如所述的制备方法所制备的莫来石氧化铝溶胶耐热复合涂层材料。
本发明与现有技术相比,具有如下的显著效果:
其一、采用溶胶-凝胶工艺和超临界流体干燥技术,有利于制备出弹性和韧性都不错的涂层复合材料,得到厚度适中,无干裂纹的涂层;克服了单纯溶胶涂覆的涂层薄,干燥易开裂的问题。
由图2显示:本发明莫来石氧化铝溶胶耐热新型复合涂层材料厚度分布均匀,莫来石涂层中有一定长径比的莫来石晶须,晶须浓度较高,经50次抗热循环冲击(室温~1550℃)实验后,涂层无开裂现象。
由图3显示:其涂层厚度很不均匀,经50次抗热循环冲击(室温~1550℃)实验后,沿涂层的凹谷出现明显的裂纹。
其二、以高活性的SiO2-A l2O3溶胶为原料降低了莫来石氧化铝溶胶耐热新型复合涂层的烧结温度,有利于涂层烧结的致密化(见图2)。
其三、在醋酸接枝聚乙烯醇为模板剂和分散剂的作用下,使涂层具有优良的高温抗氧化性,抗热冲击性和耐酸碱腐蚀性能(见图4);改善了传统涂层在这些方面的不足。
上述的抗热循环冲击实验,其方法是:将样品置于恒温在1550℃的电炉中保温15分钟,用坩埚将样品取出在空气中冷却至室温,然后再置于1550℃的电炉中保温,如此为一个循环。重复以上操作50次。
其四、工艺简单,原料来源广泛、工艺简单,生产成本低。
其五、应用广泛:可广泛用于轻工、化工领域,特别适合用作非氧化物高温结构陶瓷抗氧化涂层和多孔材料的增强。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,根据这些附图获得其他的附图仍属于本发明的范畴。
图1莫来石的X射线衍射(XRD)谱图;
图2本发明制备的莫来石氧化铝溶胶耐热新型复合涂层经50次热循环冲击实验后的2000倍扫描电镜(SEM)图;
图3本发明制备的莫来石氧化铝溶胶耐热新型复合涂层经50次抗热循环冲击实验后的10000倍扫描电镜(SEM)图;
图4传统莫来石涂层经50次抗热循环冲击实验后的5000倍SEM图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。
一.莫来石氧化铝溶胶耐热新型复合涂层
莫来石氧化铝溶胶耐热新型复合涂层由特殊的溶胶-凝胶工艺和超临界流体干燥技术得到,即:通过在含37wt%AlCl3·6H2O的铝溶胶中加入海泡石以及在基体材料上中涂覆铝溶胶和莫来石料浆的混合料浆,以不同海泡石含量在醋酸接枝聚乙烯醇为模板剂和分散剂的作用下,制备出莫来石氧化铝溶胶耐热新型复合涂层材料。
二.莫来石氧化铝溶胶耐热新型复合涂层材料的制备方法
本方法是:以AlCl3·6H2O前驱体、海泡石纤维、SiO2-Al2O3溶胶和莫来石粉体为原料,采用特殊的溶胶-凝胶工艺和超临界流体干燥技术,制备了耐热和机械加工性能优异的氧化铝气凝胶新型复合材料和莫来石晶须,通过在含37wt%AlCl3·6H2O的铝溶胶中加入海泡石以及在基体材料上中涂覆铝溶胶和莫来石料浆的混合料浆,以不同海泡石含量来研究海泡石/氧化铝凝胶复合材料的形貌、相性质和孔隙率。在醋酸接枝聚乙烯醇为模板剂和分散剂的作用下,经过溶胶-凝胶工艺制备出耐热氧化铝溶胶新型复合涂层材料。
(一)本方法采用莫来石料浆的制备、涂覆涂层和涂层烧结三步,具体如下:
1.合成接枝聚乙烯醇:将粘度为40-60mPa s的PVA 3g溶于220ml去离子水中,加入硫酸将溶液pH调至2左右。然后将溶液加热到95℃,搅拌2h,使PVA完全溶解。随后加入6ml乙酰乙酸甲酯,在95℃水浴中氮气气氛中搅拌8h。最后,将得到的溶液,称为A,冷却到室温。
2.海泡石的改性:将生海泡石18g加入到500ml的0.5mol/L硝酸溶液中,高速搅拌24h,过滤上悬浮液,70℃烘干。将5g CTAB溶于500ml的水/乙醇溶液中,体积比为1:1,得到CTAB改性海泡石。然后在溶液中加入15g以上的海泡石,在室温下连续搅拌24h。然后,对浆液进行过滤,用乙醇洗涤沉淀,去除多余的表面活性剂。然后收集改性后的海泡石,在70℃下烘干。
3.SiO2-Al2O3溶胶:将正硅酸乙酯以硝酸为催化剂溶于乙醇-水溶液中预水解3h,再将AlCl3·6H2O溶于乙醇-水溶液中制备Al2O3溶胶。然后,在搅拌3h的条件下,将Al2O3加入到酸化的SiO2溶胶中,得到SiO2-Al2O3溶胶。
4.涂覆涂层:将被涂覆的基体材料于真空中以符合莫来石化学计量比的正硅酸乙酯和铝盐为原料,采用预水解法制备,再涂覆莫来石料浆;涂覆后的材料在50~100℃干燥,
5.将干燥后的涂覆材料在1200~1500℃烧结2~3小时,得到复合涂层。合成莫来石的XRD谱图见图1。
(二)具体实施例
实施例1:
(1)海泡石/氧化铝溶胶复合材料的制备:在5ml溶液A中加入5gAlCl3·6H2O,不断搅拌至溶液澄清。然后,1毫升乙醇和0.5毫升的二甲基乙酰胺和搅拌5分钟。然后,将环氧丙烷加入两次,每次2.5ml,搅拌5min,封入玻璃安瓿中,在水浴中40℃凝胶。凝胶20min。凝胶化后,先用5倍乙醇置换湿凝胶中的水24h,再用5倍异丙醇在40℃下置换48h。然后,将所有凝胶样品在加热到240℃、6.0MPa的高压釜中进行超临界异丙醇干燥处理,升温速率为1℃/min,保温1h,释放出异丙醇,减压速率约为0.5MPa/h。最后,将制备好的Al0.05气凝胶在1000℃下以5℃/min的升温速率在空气中热处理1.5h,得到热处理后的样品,记为Al0.05-1000。
(2)涂覆涂层:将再结晶碳化硅于真空(真空度为1~2x104Pa)涂覆SiO2溶胶(pH:6.5~8.0,SiO2含量:30±1%,将材料在80~100℃干燥;真空(真空度为1~2x104Pa)涂覆Al2O3溶胶,80~100℃缓慢干燥。真空涂覆莫来石的混合料浆(莫来石的相对质量含量为35±3%),80~100℃干燥。上述涂覆的两步过程反复4次,确保涂层的厚度。1200~1500℃空气中烧结2~3h致密化。
(3)涂覆封填层:将预先制备好的高石英硼硅酸盐玻璃按料:水:球比为1:1:0.5在行星球磨机球磨2~3h(入料粒径≤3mm)磨成玻璃料浆,取玻璃料浆(d50≤1.0μm),真空涂覆(真空度为1~2x104Pa)中制备的试样于80~100℃干燥。
(4)涂层烧结:将封填好涂层的陶瓷材料在1300~1500℃下常压空气中保温2小时,使玻璃层融化封填涂层,涂层致密化,制备莫来石氧化铝溶胶耐热新型复合涂层。
实施例2:
(1)海泡石/氧化铝溶胶复合材料的制备:在5ml溶液A中加入5gAlCl3·6H2O,不断搅拌至溶液澄清。然后,1毫升乙醇和0.5毫升的二甲基乙酰胺和搅拌5分钟。随后,加入改性海泡石0.1g,搅拌30分钟。然后,将环氧丙烷加入两次,每次2.5ml,搅拌5min,封入玻璃安瓿中,在水浴中40℃凝胶。凝胶20min。凝胶化后,先用5倍乙醇置换湿凝胶中的水24h,再用5倍异丙醇在40℃下置换48h。然后,将所有凝胶样品在加热到240℃、6.0MPa的高压釜中进行超临界异丙醇干燥处理,升温速率为1℃/min,保温1h,释放出异丙醇,减压速率约为0.5MPa/h。最后,将制备好的Al0.05-0.1气凝胶在1000℃下以5℃/min的升温速率在空气中热处理1.5h,得到热处理后的样品,记为Al 0.05-0.1-1000。
(2)涂覆涂层:将再结晶碳化硅真空涂覆SiO2溶胶(pH:6.5~8.0,SiO2含量:10±1%)和Al2O3溶胶(同实施例1),重复4次。真空涂覆莫来石料浆,80~100℃干燥。涂覆的两步过程可视具体情况反复操作4次,确保涂层的厚度。涂覆后的材料在1200~1500℃空气中烧结(同实施例1)。
实施例3:
(1)海泡石/氧化铝溶胶复合材料的制备:在5ml溶液A中加入5gAlCl3·6H2O,不断搅拌至溶液澄清。然后,1毫升乙醇和0.5毫升的二甲基乙酰胺和搅拌5分钟。随后,加入改性海泡石0.3克,搅拌30分钟。然后,将环氧丙烷加入两次,每次2.5ml,搅拌5min,封入玻璃安瓿中,在水浴中40℃凝胶。凝胶20min。凝胶化后,先用5倍乙醇置换湿凝胶中的水24h,再用5倍异丙醇在40℃下置换48h。然后,将所有凝胶样品在加热到240℃、6.0MPa的高压釜中进行超临界异丙醇干燥处理,升温速率为1℃/min,保温1h,释放出异丙醇,减压速率约为0.5MPa/h。最后,将制备好的Al0.05-0.3气凝胶在1000℃下以5℃/min的升温速率在空气中热处理1.5h,得到热处理后的样品,记为Al0.05-0.3-1000。
(2)涂覆涂层:将气孔率为11%的氮化硅结合碳化硅材料真空涂覆SiO2溶胶,干燥(同实施例2)。真空涂覆Al2O3溶胶,干燥(同实施例1)。真空涂覆莫来石料浆,干燥(同实施例2),确保涂层的致密性。1200~1500℃空气中烧结(同实施例1)。
本例中,其封填层的涂覆和涂层的致密化的步骤均同实施例1。
实施例4:
海泡石/氧化铝溶胶复合材料的制备:在5ml溶液A中加入5g AlCl3·6H2O,不断搅拌至溶液澄清。然后,1毫升乙醇和0.5毫升的二甲基乙酰胺和搅拌5分钟。随后,加入改性海泡石0.5g,搅拌30分钟。然后,将环氧丙烷加入两次,每次2.5ml,搅拌5min,封入玻璃安瓿中,在水浴中40℃凝胶。凝胶20min。凝胶化后,先用5倍乙醇置换湿凝胶中的水24h,再用5倍异丙醇在40℃下置换48h。然后,将所有凝胶样品在加热到240℃、6.0MPa的高压釜中进行超临界异丙醇干燥处理,升温速率为1℃/min,保温1h,释放出异丙醇,减压速率约为0.5MPa/h。最后,将制备好的Al0.05-0.5气凝胶在1000℃下以5℃/min的升温速率在空气中热处理1.5h,得到热处理后的样品,记为Al0.05-0.5-1000。然后,在1100~1500℃空气中烧结使其致密化,制备莫来石氧化铝溶胶耐热新型复合涂层。
本例中,其封填层的涂覆和涂层的致密化的步骤均同实施例1。
实施例5:
(1)海泡石/氧化铝溶胶复合材料的制备:在5ml溶液A中加入5gAlCl3·6H2O,不断搅拌至溶液澄清。然后,1毫升乙醇和0.5毫升的二甲基乙酰胺和搅拌5分钟。随后,加入改性海泡石0.7克,搅拌30分钟。然后,将环氧丙烷加入两次,每次2.5ml,搅拌5min,封入玻璃安瓿中,在水浴中40℃凝胶。凝胶20min。凝胶化后,先用5倍乙醇置换湿凝胶中的水24h,再用5倍异丙醇在40℃下置换48h。然后,将所有凝胶样品在加热到240℃、6.0MPa的高压釜中进行超临界异丙醇干燥处理,升温速率为1℃/min,保温1h,释放出异丙醇,减压速率约为0.5MPa/h。最后,将制备好的Al0.05-0.7气凝胶在1000℃下以5℃/min的升温速率在空气中热处理1.5h,得到热处理后的样品,记为Al0.05-0.7-1000。
(2)涂覆涂层:配制1.6mol/L的正硅酸乙酯的乙醇溶液,用稀硝酸调节至pH值为2~3,室温搅拌3~5小时后静置24小时,然后与0.8mol/L的硝酸铝水溶液混合,以醋酸做分散剂。缓慢加入氨水至pH值为3~7.5,使溶液发生沉淀,出现沉淀后,快速加入氨水至pH值达到9~9.5,制备共沉淀混合物。真空涂覆(真空度为1~2x104Pa)共沉淀混合物,烘干后真空(真空度为1~2x104Pa)涂覆5%过饱和BaF2溶液,80~100℃干燥,重复操作4次。真空涂覆混合均匀的莫来石和铝溶胶、二氧化硅溶胶混合料浆,1100~1500℃空气中烧结(同实施例1)。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (4)

1.一种莫来石氧化铝溶胶耐热复合涂层材料的制备方法,其特征在于该方法以AlCl3·6H2O前驱体、海泡石纤维、SiO2-Al2O3溶胶和莫来石粉体为原料,在醋酸接枝聚乙烯醇为模板剂和分散剂的作用下,经过溶胶-凝胶工艺制备出耐热氧化铝溶胶复合涂层材料。
2.根据权利要求1所述的一种莫来石氧化铝溶胶耐热复合涂层材料的制备方法,其特征在于所述的AlCl3·6H2O前驱体、海泡石纤维、SiO2-Al2O3溶胶和莫来石粉体的质量份数比为1:1:1.3:2.6。
3.根据权利要求1所述的莫来石氧化铝溶胶耐热复合涂层材料的制备方法,其特征在于包括以下步骤:
(1)合成接枝聚乙烯醇:将粘度为40-60mPa s的聚乙烯醇3g溶于220ml去离子水中,加入硫酸将溶液pH调至2,然后将溶液加热到95℃,搅拌2h,使聚乙烯醇完全溶解,随后加入6ml乙酰乙酸甲酯,在95℃水浴中氮气气氛中搅拌8h,最后,将得到的溶液,冷却到室温;
(2)海泡石的改性:将生海泡石18g加入到500ml的0.5mol/L硝酸溶液中,高速搅拌24h,过滤上悬浮液,70℃烘干,将5g十六烷基三甲基溴化铵溶于500ml的水/乙醇溶液中,体积比为1:1,得到十六烷基三甲基溴化铵改性海泡石,然后在溶液中加入15g以上的海泡石,在室温下连续搅拌24h,然后,对浆液进行过滤,用乙醇洗涤沉淀,去除多余的表面活性剂,然后收集改性后的海泡石,在70℃下烘干;
(3)SiO2-Al2O3溶胶:将正硅酸乙酯以硝酸为催化剂溶于乙醇-水溶液中预水解3h,再将AlCl3·6H2O溶于乙醇-水溶液中制备Al2O3溶胶,然后,在搅拌3h的条件下,将Al2O3加入到酸化的SiO2溶胶中,得到SiO2-Al2O3溶胶;
(4)涂覆涂层:将被涂覆的基体材料于真空中以符合莫来石化学计量比的正硅酸乙酯和铝盐为原料,采用预水解法制备,再涂覆莫来石料浆;涂覆后的材料在50~100℃干燥,
(5)将干燥后的涂覆材料在1200~1500℃烧结2~3小时,得到莫来石氧化铝溶胶耐热复合涂层材料。
4.一种如权利要求1-3之一所述的制备方法所制备的莫来石氧化铝溶胶耐热复合涂层材料。
CN202111265105.6A 2021-10-28 2021-10-28 一种莫来石氧化铝溶胶耐热复合涂层材料及其制备方法 Pending CN114107961A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111265105.6A CN114107961A (zh) 2021-10-28 2021-10-28 一种莫来石氧化铝溶胶耐热复合涂层材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111265105.6A CN114107961A (zh) 2021-10-28 2021-10-28 一种莫来石氧化铝溶胶耐热复合涂层材料及其制备方法

Publications (1)

Publication Number Publication Date
CN114107961A true CN114107961A (zh) 2022-03-01

Family

ID=80377221

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111265105.6A Pending CN114107961A (zh) 2021-10-28 2021-10-28 一种莫来石氧化铝溶胶耐热复合涂层材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114107961A (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1793017A (zh) * 2005-11-22 2006-06-28 武汉理工大学 莫来石晶须—莫来石复合涂层及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1793017A (zh) * 2005-11-22 2006-06-28 武汉理工大学 莫来石晶须—莫来石复合涂层及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张晓康: "高分子络合剂辅助制备氧化铝气凝胶及复合材料", 中国优秀硕士学位论文全文数据库(电子期刊)工程科技I辑, pages 015 - 499 *

Similar Documents

Publication Publication Date Title
CN100358832C (zh) 莫来石晶须-莫来石复合涂层及其制备方法
CN111620679B (zh) 一种以熔融二氧化硅为硅源制备高纯莫来石材料的方法
CN106747541A (zh) 一种原位合成莫来石晶须自增韧的莫来石陶瓷的方法
CN110563010A (zh) 一种低钠正六边形片状α-氧化铝微粉的制备方法
CN114516657B (zh) 一种高熵氧化物陶瓷纳米晶及其制备方法和应用
JP5036008B2 (ja) コージエライトの形成
CN108821750B (zh) 一种具有微-纳米复合孔结构的烧结镁砂及其制备方法
CN105859272B (zh) 低温烧结制备纳米负膨胀陶瓷LiAlSiO4的方法
CN114685149B (zh) 一种功能化氧化铝陶瓷纤维及制备方法
CN111943699B (zh) 一种丙烷脱氢装置用大长径比莫来石晶须结合红柱石耐火砖及其制备工艺
CN113307610A (zh) 高致密度石英-氧化锆复相陶瓷及其制备方法
CN112279640A (zh) 一种铸造用钛酸铝陶瓷及其制备方法
CN108484161B (zh) 一种钛酸铝复合材料及其制备方法
CN107473749A (zh) 一种莫来石基复相纤维及其制备方法
CN114107961A (zh) 一种莫来石氧化铝溶胶耐热复合涂层材料及其制备方法
CN108002864B (zh) 一种堇青石陶瓷材料的制备方法
CN115417669A (zh) 高硅氧玻璃纤维增强焦磷酸锆基复合材料及其制备方法
CN110697725B (zh) 一种二硅酸锂晶须的制备方法
WO1993006060A1 (fr) Ceramique composite a base d'oxydes mixtes et production de cette ceramique
CN113045295A (zh) 一种高强度陶瓷型材及其制备方法
CN117964364B (zh) 一种高熵稀土硅酸盐复相陶瓷及其制备方法
CN117466618B (zh) 稀土改性低变形率卫生陶瓷泥料及其制备方法和应用
CN116639958B (zh) 一种氧化铝粉体及其制备方法和应用
CN114057504B (zh) 一种低导热锆酸钙材料及其制备方法
CN111647938B (zh) 一种硼酸钙晶须及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220301