CN114057504B - 一种低导热锆酸钙材料及其制备方法 - Google Patents

一种低导热锆酸钙材料及其制备方法 Download PDF

Info

Publication number
CN114057504B
CN114057504B CN202111419756.6A CN202111419756A CN114057504B CN 114057504 B CN114057504 B CN 114057504B CN 202111419756 A CN202111419756 A CN 202111419756A CN 114057504 B CN114057504 B CN 114057504B
Authority
CN
China
Prior art keywords
calcium zirconate
low
heat
temperature
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111419756.6A
Other languages
English (en)
Other versions
CN114057504A (zh
Inventor
魏耀武
王方舟
李炳蓉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN202111419756.6A priority Critical patent/CN114057504B/zh
Publication of CN114057504A publication Critical patent/CN114057504A/zh
Application granted granted Critical
Publication of CN114057504B publication Critical patent/CN114057504B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • C04B38/0025Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors starting from inorganic materials only, e.g. metal foam; Lanxide type products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种低导热锆酸钙材料及其制备方法。其技术方案是:先按CaO∶ZrO2的摩尔比为1∶(1~1.05),将氢氧化钙和碱式碳酸锆混合,即得混合料;再以无水乙醇为介质,将所述混合料混合20~60分钟,在空气中放置20~28小时,压制成块,于180~200℃条件下保温2~12小时,得到预处理块料;然后所述预处理快料置于高温炉中,在1500~1700℃条件下保温2~5小时,冷却,制得低导热锆酸钙材料。本发明工艺简单、成本低和环境友好;所制制品的体积密度小、气孔率高和导热系数低,且组成均为高温物相,用作制备高温陶瓷和耐火材料的原料能显著降低冶金过程中能量的损耗。

Description

一种低导热锆酸钙材料及其制备方法
技术领域
本发明属于锆酸钙材料技术领域。尤其涉及一种低导热锆酸钙材料及其制备方法。
背景技术
钛合金具有密度小、重量轻、耐热性高、强度比高、抗疲劳和抗裂纹扩展能力好、高韧性和高抗蚀的特点,在航空、航天、军事、船舶、车辆工程和生物医学等领域有着极好的应用前景。但是,钛合金的广泛应用存在一些障碍,主要是在其成本构成之中,熔炼费用占30~40%。在高温熔融态下,钛的化学活性很高,在目前的熔炼条件下,几乎会和所有的耐火材料发生界面反应,因此,这些普通耐火材料,如:氧化铝、氧化镁和氧化硅等均不适合作为熔炼钛合金的坩埚材料。研究发现,氧化锆材料作为炉衬材料非常适合钛合金的冶炼,在CaO-ZrO2二元系化合物中,CaZrO3是一个熔点可达2300℃以上的化合物,其高温化学稳定性好,是一种很有潜力的熔炼钛合金的耐火材料。
合成CaZrO3常用的方法主要有固相反应法(烧结法)和熔融法。固相反应法是先在1450℃条件下将CaCO3和ZrO2的按摩尔比为1∶1配料,预烧24h,然后磨细至全部通过325目筛,再加压成型为块体,于1850℃条件下焙烧lh,虽得到稳定的99%级别的CaZrO3。但固相反应法在反应过程中需要较高的温度,且所需反应和工艺制备的时间较长,因而容易造成所得产物晶粒的异常长大(高配亮,锆酸钙的合成与应用研究。硕士学位论文,辽宁科技大学,2014年)。熔融法是将合成原料放入电炉中高温熔融,熔融温度最高可达3000℃,冷却后得到致密的电熔锆酸钙材料。
可见,以上两种合成方法的能耗均很高,得到的CaZrO3均比较致密,尤其是在耐火材料领域常用的电熔锆酸钙,体积密度在5.0g/cm3左右,机压或浇注成型制备耐火材料时,得到的耐火材料的体积密度为4.0g/cm3左右,气孔率小于20%(Stefan
Figure BDA0003376850620000011
TingQinb and Jens Fruhstorferb et al,Refractory castables for titanium metallurgybased on calcium zirconate.Materials and Design,148(2018)78–86.)。另一方面,研究表明:烧结法得到的锆酸钙1000℃的导热系数在2.0W/(m·K)以上(P.Srirama Murtiand M.V.Krishnaiah,Investigation of the thermal conductivity calciumzirconate.Materials Chemistry and Physics,31(1992)347-350),而电熔锆酸钙由于其气孔率比烧结锆酸钙更低,因而其导热系数也会更高(李楠,顾华志,赵惠忠编著,耐火材料学,冶金工业出版社,北京,2010.)。高体积密度和高温下呈现较高导热系数的耐火原料制备的耐火材料在高温冶炼过程中的导热系数相对较低体积密度和较高气孔率耐火原料制备的耐火材料的保温性能较差,热量散失较大,会导致冶炼能耗较高。
发明内容
本发明旨在克服现有技术的不足,目的是提供一种低导热锆酸钙材料的制备方法,用该方法制备的低导热锆酸钙材料的体积密度小、导热系数低;且组成均为高温物相,用作制备高温陶瓷和耐火材料的原料能降低冶金过程中热的损耗。
为实现上述目的,本发明所采用的技术方案是:
先按CaO∶ZrO2的摩尔比为1∶(1~1.05),将氢氧化钙和碱式碳酸锆混合,即得混合料;再以无水乙醇为介质,将所述混合料混合20~60分钟,在空气中放置20~28小时,压制成块,于180~200℃条件下保温2~12小时,得到预处理块料;然后所述预处理快料置于高温炉中,在1500~1700℃条件下保温2~5小时,冷却,制得低导热锆酸钙材料。
所述氢氧化钙的粒径为1~200μm;氢氧化钙的Ca(OH)2含量≥96wt%。
所述碱式碳酸锆的粒径为1~200μm;碱式碳酸锆的CH2O7Zr2含量≥96wt%。
由于采用上述技术方案,本发明具有如下积极效果:
本发明先按CaO∶ZrO2的摩尔比为1∶(1~1.05)将氢氧化钙和碱式碳酸锆混合,再以无水乙醇为介质混合,静置,压制成块,于180~200℃条件下保温2~12小时,得到预处理块料;然后于高温炉中在1500~1700℃条件下保温2~5小时,制得低导热锆酸钙材料。制备工艺简单、成本低和环境友好。
本发明利用氢氧化钙和碱式碳酸钙在特定温度下分解为氧化钙和氧化锆的同时形成孔隙,制得低导热锆酸钙材料。同时,为保证合成的锆酸钙中不含游离氧化钙(游离氧化钙会导致材料水化,并产生灾难性的体积膨胀),所以,在配料设计中加入过量的锆源(碱式碳酸锆)。理论上,合成化学计量的锆酸钙要求原料中的氧化钙和氧化锆的摩尔比为1∶1。为避免混合等因素造成组成的不均一性,同时达到所合成的低导热锆酸钙材料中不存在游离氧化钙的问题,本发明在配料时,所引入原料中氧化钙和氧化锆的摩尔比为1∶(1~1.05)。
本发明的关键核心技术之一是,对压制成型的块料在180~200℃条件下预处理,确保其中的碱式碳酸锆在高温烧成前完全分解,然后再置于高温下烧成,避免在高温烧成阶段由于传热及试样尺寸等原因导致氢氧化钙(分解温度高)和碱式碳酸锆(分解温度低)分解过程同时进行,使制备的低导热锆酸钙材料的显微结构不受破坏,有利于锆酸钙晶粒发育。
目前广泛使用的锆酸钙理论体积密度5.11g/cm3,导热系数大于2.0W/(m·K),采用该锆酸钙为原料制备的耐火材料的气孔率较低和体积密度较高,从而导致材料的保温隔热性能较差。本发明以氢氧化钙和碱式碳酸锆为原料,利用原位分解成孔技术制得的低导热锆酸钙材料不仅具备体积密度小、气孔率较高和导热系数低的特点,而且高温处理后,所制备的低导热锆酸钙材料中的组成均为高温物相,用作制备高温陶瓷和耐火材料的原料,有利于节能和降低冶金过程中能量的损耗。
本发明制备的低导热锆酸钙材料经检测:锆酸钙含量≥90wt%;体积密度≤3.0g/cm3;气孔率≥35%;1000℃的导热系数≤1.3W/(m·K)。
因此,本发明具有工艺简单、成本低和环境友好的特点。所制备的低导热锆酸钙材料的体积密度小、气孔率高和导热系数低,且组成均为高温物相,用作制备高温陶瓷和耐火材料的原料能显著降低冶金过程中能量的损耗。
附图说明
图1为本发明制备的一种低导热锆酸钙材料的X射线衍射分析结果;
图2为图1所示低导热锆酸钙材料的电镜图片;
图3为本发明制备的另一种低导热锆酸钙材料的X射线衍射分析结果;
图4为图3所示低导热锆酸钙材料的电镜图片;
图5为本发明制备的又一种低导热锆酸钙材料的X射线衍射分析结果;
图6为图5所示低导热锆酸钙材料的电镜图片。
具体实施方式
下面结合具体实施方式对本发明做进一步的描述,并非对其保护范围的限制。
本具体实施方式中:
所述氢氧化钙的粒径为1~200μm;氢氧化钙的Ca(OH)2含量≥96wt%;
所述碱式碳酸锆的粒径为1~200μm;碱式碳酸锆的CH2O7Zr2含量≥96wt%。
实施例中不再赘述。
实施例1
一种低导热锆酸钙材料及其制备方法。本实施例所述制备方法是:
先按CaO∶ZrO2的摩尔比为1∶(1~1.02),将氢氧化钙和碱式碳酸锆混合,即得混合料;再以无水乙醇为介质,将所述混合料混合20~30分钟,在空气中放置20~24小时,压制成块,于180~190℃条件下保温2~7小时,得到预处理块料;然后所述预处理快料置于高温炉中,在1500~1550℃条件下保温2~3小时,冷却,制得低导热锆酸钙材料。
本实施例制备的低导热锆酸钙材料经检测:锆酸钙含量94.1~95.5%,体积密度2.82~2.90g/cm3,气孔率35.1~36.3%,1000℃的导热系数1.16~1.20W/(m·K)。
图1为实施例1制备的一种低导热锆酸钙材料X射线衍射分析结果;图2为图1所示低导热锆酸钙材料的电镜照片;图2中1、2两点对应的能谱分析结果如表1所示。
表1图2中1、2两点对应的能谱分析结果
Figure BDA0003376850620000041
从图1、图2和表1可以看出:1)制品主要矿物为锆酸钙及其非化学计量化合物,主晶相锆酸钙的晶粒发育良好;2)制品中有较多孔隙,这是在反应过程中形成的,有利于保温隔热和降低材料的导热系数。
实施例2
一种低导热锆酸钙材料及其制备方法。本实施例所述制备方法是:
先按CaO∶ZrO2的摩尔比为1∶(1.02~1.03),将氢氧化钙和碱式碳酸锆混合,即得混合料;再以无水乙醇为介质,将所述混合料混合30~40分钟,在空气中放置22~26小时,压制成块,于190~195℃条件下保温7~10小时,得到预处理块料;然后所述预处理快料置于高温炉中,在1550~1600℃条件下保温3~5小时,冷却,制得低导热锆酸钙材料。
本实施例制备的低导热锆酸钙材料经检测:锆酸钙含量92.7~94.9%,体积密度2.87~2.96g/cm3,气孔率35.8~37.1%,1000℃的导热系数1.18~1.22W/(m·K)。
图3为实施例2制备的一种低导热锆酸钙材料X射线衍射分析结果;图4为图3所示低导热锆酸钙材料的电镜照片;图4中3、4两点对应的能谱分析结果如表2所示。
表2图4中3、4两点对应的能谱分析结果
Figure BDA0003376850620000042
从图3、图4和表2可以看出:1)试样主要矿物为锆酸钙及其非化学计量化合物,其中主晶相锆酸钙的晶粒发育良好,非化学计量化合物晶粒较小;2)试样中有较多和较大孔隙,有利于保温隔热和降低材料的导热系数。
实施例3
一种低导热锆酸钙材料及其制备方法。本实施例所述制备方法是:
先按CaO∶ZrO2的摩尔比为1∶(1.03~1.05),将氢氧化钙和碱式碳酸锆混合,即得混合料;再以无水乙醇为介质,将所述混合料混合40~60分钟,在空气中放置24~28小时,压制成块,于195~200℃条件下保温10~12小时,得到预处理块料;然后所述预处理快料置于高温炉中,在1600~1700℃条件下保温2~3小时,冷却,制得低导热锆酸钙材料。
本实施例制备的低导热锆酸钙材料经检测:锆酸钙含量90.1~93.8%,体积密度2.93~3.0g/cm3,气孔率35.4~36.5%,1000℃的导热系数1.20~1.26W/(m·K)。
图5为实施3制备的一种低导热锆酸钙材料X射线衍射分析结果;图6为图5所示低导热锆酸钙材料的电镜照片;图6中5、6两点对应的能谱分析结果如表3所示。
表3图6中5、6两点对应的能谱分析结果
Figure BDA0003376850620000051
从图5、图6和表3可以看出:1)试样主要矿物为锆酸钙及其非化学计量化合物,其中主晶相锆酸钙的晶粒发育良好;2)试样中有较多孔隙,有利于保温隔热和降低材料的导热系数。
本具体实施方式具有如下积极效果:
本具体实施方式先按CaO∶ZrO2的摩尔比为1∶(1~1.05)将氢氧化钙和碱式碳酸锆混合,再以无水乙醇为介质混合,静置,压制成块,于180~200℃条件下保温2~12小时,得到预处理块料;然后于高温炉中在1500~1700℃条件下保温2~5小时,制得低导热锆酸钙材料。相比现有二步煅烧或电熔法制备锆酸钙材料的方法,本具体实施方式的制备工艺简单、成本低和环境友好。
本具体实施方式利用氢氧化钙和碱式碳酸钙在特定温度下分解为氧化钙和氧化锆的同时形成孔隙,制得低导热锆酸钙材料。目前使用的锆酸钙材料理论体积密度为5.11g/cm3,导热系数大于2.0W/(m·K),本具体实施方式制备的低导热锆酸钙材料的导热系数≤1.3W/(m·K),因而,同等条件下,采用本具体实施方式制备的耐火材料的保温效果将限制优于现有锆酸钙材料制备的耐火材料。
因此,本具体实施方式制备的低导热锆酸钙材料不仅具备体积密度小(相对于常用锆酸钙材料5.0g/cm3的体积密度,本具体实施方式制备的低导热锆酸钙材料体积密度≤3.0g/cm3)和导热系数低的特点(现有的锆酸钙材料的导热系数大于2.0W/(m·K)),而且高温处理后,材料中的组成均为高温物相(锆酸钙熔点为2250℃,非化学计量化合物熔点为2200℃),用作制备高温陶瓷和耐火材料的原料,有利于节能和降低冶金过程中能量的损耗。
本具体实施方式制备的低导热锆酸钙材料经检测:锆酸钙含量≥90wt%;体积密度≤3.0g/cm3;气孔率≥35%;1000℃的导热系数≤1.3W/(m·K)。
因此,本具体实施方式具有工艺简单、成本低和环境友好的特点。所制备的低导热锆酸钙材料的体积密度小、气孔率高和导热系数低,且组成均为高温物相,用作制备高温陶瓷和耐火材料的原料能显著降低冶金过程中能量的损耗。

Claims (4)

1.一种低导热锆酸钙材料的制备方法,其特征在于所述制备方法是:先按CaO∶ZrO2的摩尔比为1∶(1~1.05),将氢氧化钙和碱式碳酸锆混合,即得混合料;再以无水乙醇为介质,将所述混合料混合20~60分钟,在空气中放置20~28小时,压制成块,于180~200℃条件下保温2~12小时,得到预处理块料;然后所述预处理块 料置于高温炉中,在1500~1700℃条件下保温2~5小时,冷却,制得低导热锆酸钙材料。
2.根据权利要求1所述低导热锆酸钙材料的制备方法,其特征在于所述氢氧化钙的粒径为1~200μm;氢氧化钙的Ca(OH)2含量≥96wt%。
3.根据权利要求1所述低导热锆酸钙材料的制备方法,其特征在于所述碱式碳酸锆的粒径为1~200μm;碱式碳酸锆的CH2O7Zr2含量≥96wt%。
4.一种低导热锆酸钙材料,其特征在于所述低导热锆酸钙材料是根据权利要求1~3项中任一项所述的低导热锆酸钙材料制备方法所制备的低导热锆酸钙材料。
CN202111419756.6A 2021-11-26 2021-11-26 一种低导热锆酸钙材料及其制备方法 Active CN114057504B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111419756.6A CN114057504B (zh) 2021-11-26 2021-11-26 一种低导热锆酸钙材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111419756.6A CN114057504B (zh) 2021-11-26 2021-11-26 一种低导热锆酸钙材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114057504A CN114057504A (zh) 2022-02-18
CN114057504B true CN114057504B (zh) 2022-10-14

Family

ID=80276547

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111419756.6A Active CN114057504B (zh) 2021-11-26 2021-11-26 一种低导热锆酸钙材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114057504B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT345716B (de) * 1974-11-29 1978-10-10 Veitscher Magnesitwerke Ag Feuerfeste trockenstampfmasse zum auskleiden von induktionstiegeloefen
DE2854200C2 (de) * 1978-12-15 1981-02-05 Th. Goldschmidt Ag, 4300 Essen Verfahren zur Herstellung von Zirkonoxid aus technischem Calciumzirkonat
CN101200375A (zh) * 2007-11-16 2008-06-18 北京矿冶研究总院 纳米含锆系列热障涂层材料制备方法
CN101497530B (zh) * 2009-02-27 2012-07-04 武汉科技大学 一种高强度镁橄榄石质保温材料及其制备方法
CN102001705A (zh) * 2010-11-29 2011-04-06 江西晶安高科技股份有限公司 液相混合固相煅烧法合成锆酸钙工艺
CN109053202A (zh) * 2018-10-09 2018-12-21 武汉科技大学 一种锆酸钙坩埚及其制备方法

Also Published As

Publication number Publication date
CN114057504A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
CN102502539B (zh) 一种钇掺杂纳米氮化铝粉体的制备方法
CN112159237B (zh) 一种高导热氮化硅陶瓷材料及其制备方法
CN111620679A (zh) 一种以熔融二氧化硅为硅源制备高纯莫来石材料的方法
Qiao et al. Properties of barium zirconate sintered from different barium and zirconium sources
CN111825452B (zh) 一种低热导高熵铝酸盐陶瓷及其制备方法
CN112125686A (zh) 一种熔盐隔离制备碳化硅包覆石墨的方法
Tong et al. Microstructure control and optimization of low temperature pressureless sintered silicon nitride− barium aluminosilicate composites
Zan et al. Preparation and performance optimization of MgAl2O4 spinel materials by single-step reaction sintering
CN115010491B (zh) 一种高熵稀土钽酸盐陶瓷材料及其制备方法
Qiao et al. Structure, mechanical properties, and thermal conductivity of BaZrO3 doped at the AB site
CN115321971A (zh) 一种利用粉煤灰制备堇青石陶瓷的方法
Wang et al. The effect of SnO2 additive on the densification, microstructure and mechanical properties of MgAl2O4–CaAl12O19 composites
CN113173787B (zh) 一种锆酸钆/钽酸钆复合陶瓷及其制备方法
Yu et al. Enhanced mechanical properties of R–SiC honeycomb ceramics with in situ AlN–SiC solid solution
Luo et al. Low-temperature densification by plasma activated sintering of Mg2Si-added Si3N4
CN114057504B (zh) 一种低导热锆酸钙材料及其制备方法
Wang et al. Effects of YH2 addition on pressureless sintered AlN ceramics
Henniche et al. Microstructure and mechanical properties of ceramics obtained from chemically co-precipitated Al2O3-GdAlO3 nano-powders with eutectic composition
CN111807834A (zh) 一种铸造用钛酸铝陶瓷及其制备方法
CN116178019B (zh) 一种无压包裹煅烧制备多孔max相陶瓷材料的方法
CN111196730A (zh) 一种高热导率氮化硅陶瓷材料及其制备方法
Mishra et al. Microstructure evolution during sintering of self-propagating high-temperature synthesis produced ZrB2 powder
CN1730427A (zh) 一种硼酸铝复合多孔陶瓷及其制备方法
CN101643357B (zh) 一种超细立方相钛酸钡粉体的四方相转变工艺
Li et al. Preparation and infrared transmittance of NaLaS2 ceramics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant