CN114094118A - 固态钠二氧化碳电池 - Google Patents

固态钠二氧化碳电池 Download PDF

Info

Publication number
CN114094118A
CN114094118A CN202110930100.4A CN202110930100A CN114094118A CN 114094118 A CN114094118 A CN 114094118A CN 202110930100 A CN202110930100 A CN 202110930100A CN 114094118 A CN114094118 A CN 114094118A
Authority
CN
China
Prior art keywords
sodium
carbon
carbon dioxide
solid state
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110930100.4A
Other languages
English (en)
Inventor
仝梓正
王恕柏
刘如熹
蔡昆达
蔡松佑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan China Glaze Co ltd
Original Assignee
Taiwan China Glaze Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan China Glaze Co ltd filed Critical Taiwan China Glaze Co ltd
Publication of CN114094118A publication Critical patent/CN114094118A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/38Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1399Processes of manufacture of electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种固态钠二氧化碳电池,其包括正极、负极、以及设置于正极与负极之间的无机固态电解质,其中该正极用于催化钠离子与二氧化碳的反应,该负极包括钠及非钠材料。

Description

固态钠二氧化碳电池
技术领域
本发明关于一种固态钠二氧化碳电池,尤其关于一种使用特定复合钠金属材料作为负极的固态钠二氧化碳电池。本发明的固态钠二氧化碳电池可实现室温充放电。
背景技术
金属空气电池乃近年来的新兴研究重点之一,其结合了传统干电池与燃料电池的特性并以反应性气体(例如,氧气)作为电池的反应物。相较于一般电池,金属空气电池具有重量轻且能量密度高的优势。一般而言,于金属空气电池中,金属为阳极(负极),阴极(正极)为空气扩散电极,且电解质为盐类溶液,通过氧化还原反应产生电位差而提供电能。
根据巴黎气候协议的要求,替代传统化石能源的清洁能源与温室气体利用技术已成为碳中和的重要技术手段。利用二氧化碳温室气体产生电能的金属空气电池综合了清洁能源生产与温室气体利用的优势而成为绿色能源的研究重点。此外,随着锂离子电池的广泛应用,碳酸锂价格逐年上涨。因此,目前也积极寻求可替代锂来制造金属空气电池的其他金属元素。
钠二氧化碳电池是利用温室气体二氧化碳产生电能,为近年来新兴研究热点之一。相比于钠离子电池,钠二氧化碳电池具高能量密度的优势。由于地球上钠资源分布均匀且储量大,钠二氧化碳电池的成本相比锂二氧化碳电池更加低廉。一般而言,于钠二氧化碳电池中,钠金属为阳极(负极),阴极(正极)为空气扩散电极,电解液为含有钠盐的溶液,通过氧化还原反应而提供电能。
然而,金属离子与液态电解质的副反应及所产生的金属枝晶(dendrite)可能导致电池的失效。此外,钠二氧化碳电池通常为开放式的电池体系,液态电解质的挥发也可能导致电池的失效。并且,金属枝晶所致的短路导致大量热能释放,若液态电解质挥发为有机气体,则有发生爆炸的风险。
上述问题可通过以无机固态电解质来取代液态电解质而得到改善,无机固态电解质不具有可燃性且其所具备的阻燃性可进一步提升钠二氧化碳电池的热稳定性。然而,钠金属阳极与固态电解质的界面接触不良,导致电池的循环稳定性下降。而现有技术中并无任何解决所述界面接触不良问题的策略。常用于修饰锂金属阳极的界面合金技术并不适用于钠金属阳极,因为钠离子半径比锂离子更大,且钠合金界面层中钠离子的迁移会导致其体积变化,改变其界面接触面积而导致电池的循环稳定性变差。
发明内容
鉴于前述问题,本发明提供一种基于无机固态电解质的钠二氧化碳电池,其中使用特定钠复合金属材料做为负极(阳极),可提升负极与无机固态电解质的界面的润湿性与界面接触表现,从而改善上述现有的金属空气电池所存在的循环稳定性差的问题。
因此,本发明的一目的在于提供一种固态钠二氧化碳电池,其包括正极、负极、以及设置于正极与负极之间的无机固态电解质,其中该正极用于催化钠离子与二氧化碳的反应,该负极包括钠及非钠材料。
于本发明的部分实施方案中,该非钠材料选自以下群组:铝、锡、金、银、硅、软质碳、硬质碳、石墨、碳奈米管、碳纤维、煤、沥青、氮化碳、氮化硼、二硫化钼、黑磷、MXene(二维过渡金属碳化物、氮化物或碳氮化物)、碳量子点、及其组合。较佳地,该非钠材料选自以下群组:软质碳、硬质碳、石墨、碳奈米管、碳纤维、煤、沥青、氮化碳、氮化硼、二硫化钼、黑磷、MXene、碳量子点、及其组合。
于本发明的部分实施方案中,该无机固态电解质选自以下群组:Na3Zr2SiPO12、Na11Sn2PS12、β-Al2O3、及其组合。
于本发明的部分实施方案中,该正极的材料选自以下群组:WS2、MoS2、ZnCo2O4、ZnMn2O4、ZnS、ZnO、NiO、CoP、Ru、Ag、Au、Ir、Pt、Rh、碳奈米管、石墨、石墨烯、软质碳、硬质碳、六方氮化硼、氮化碳、碳量子点、及其组合。
于本发明的部分实施方案中,固态钠二氧化碳电池还包括正极界面层及负极界面层的至少一个,其中该正极界面层设置于该正极与该无机固态电解质之间,且该负极界面层设置于该负极与该无机固态电解质之间。
于本发明的部分实施方案中,该正极界面层与该负极界面层的材料各自独立选自以下群组:丁二腈、聚氧化乙烯、聚丙烯腈、聚丙烯、聚碳酸伸丙酯、聚偏氟乙烯、六氟丙烯共聚物、过氯酸钠、六氟磷酸钠、双三氟甲烷磺酰亚胺钠、双氟磺酰亚胺钠、钠与Na3Zr2SiPO12共热所得的反应产物、及其组合。
于本发明的部分实施方案中,固态钠二氧化碳电池还包括一外壳,该外壳具有一封闭式容置空间,该正极、负极及无机固态电解质位于该封闭式容置空间中,该封闭式容置空间填充有二氧化碳。
为使本发明的上述目的、技术特征及优点能更明显易懂,下文以部分具体实施方案进行详细说明。
附图说明
图1为本发明的一实施方案的固态钠二氧化碳电池的结构示意图;
图2为实施例1的负极的扫描电子显微镜图;
图3为实施例1的负极的能量色散X射线谱;
图4为实施例1的负极与固态电解质的界面的扫描电子显微镜图;
图5为实施例1的固态钠二氧化碳电池的充放电曲线;
图6为比较例1的负极与固态电解质的界面的扫描电子显微镜图;以及
图7为比较例1的固态钠二氧化碳电池的充放电曲线图。
附图标记说明
10:正极
20:无机固态电解质
30:负极。
具体实施方式
以下将具体地描述根据本发明的部分具体实施方案;但是,本发明还可以多种不同形式的方案来实践,不应将本发明保护范围解释为限于说明书所陈述的具体实施方案。
在所附的附图中,相似的元件以相似的元件符号代表。为了清楚,可能夸大各层及区域的厚度。除非另有说明,当一层被描述为“位于”另一层或基板“上”时,该层可直接地位于该另一层或基板上,或者也可能有中介层(intervening layer(s))存在。
除非另有说明,在本说明书及申请专利范围中所使用的“一”、“该”及类似用语应理解为包括单数及复数形式。
除非另有说明,在本说明书及申请专利范围中,“正极”是指在电池放电状态下的阴极,“负极”是指在电池放电状态下的阳极。
除非另有说明,在本说明书及申请专利范围中,“非钠材料”是指不为钠且不为钠合金的材料,包括不包含钠的金属材料、合金材料、有机材料、及无机材料。
本发明对照现有技术的功效在于,在固态钠二氧化碳电池中使用特定的复合钠金属材料作为负极,以改善负极与无机固态电解质的界面接触,从而提升电池的循环稳定性。以下就本发明固态钠二氧化碳电池的组成提供详细说明。
1. 固态钠二氧化碳电池
本发明固态钠二氧化碳电池包括正极、负极、以及无机固态电解质,固态钠二氧化碳电池的正极用于催化钠离子与二氧化碳的反应,负极包括钠及非钠材料,且无机固态电解质包括钠离子。如图1所示意,本发明固态钠二氧化碳电池的无机固态电解质20设置于正极10与负极30之间,正极10与负极30分别位于无机固态电解质20的两侧。
本发明固态钠二氧化碳电池涉及二氧化碳与钠离子的反应,其反应如下方反应式(1)所示。在电池放电时,二氧化碳气体于正极被还原为碳并产生碳酸钠,钠离子由负极向正极迁移,电子则在外电路从负极传导至正极。在电池充电时,沉积于正极的碳与碳酸钠则反应产生二氧化碳并释放钠离子,钠离子由正极向负极迁移,电子在外电路从正极传导至负极。
[反应式(1)]
3CO2 + 4Na+ + 4e⇌ 2Na2CO3 + C
本发明固态钠二氧化碳电池的负极含有钠,以于电池放电过程中提供电子(e-)并生成钠离子。本发明固态钠二氧化碳电池的一技术特征在于,使用由钠及非钠材料所制得的复合钠金属材料作为负极。由于使用钠作为负极时,纯钠金属与无机固态电解质的界面接触不佳,导致钠离子迁移不易,电池的循环稳定性较差。为了改善负极与无机固态电解质的界面接触,本发明使用由钠与非钠材料所制得的复合钠金属材料作为负极,由于复合钠金属材料与无机固态电解质之间的界面润湿性较佳,可提升负极与无机固态电解质之间的界面接触表现,钠离子的迁移变得较为容易,从而可提升电池的循环稳定性。
具体言之,作为本发明电池的负极的复合钠金属材料除了钠之外,可包括选自以下群组的非钠材料:铝、锡、金、银、硅、软质碳、硬质碳、石墨、碳奈米管、碳纤维、煤、沥青、氮化碳、氮化硼、二硫化钼、黑磷、MXene、及碳量子点。前述各非钠材料可单独使用,也可任意组合使用。于本发明的较佳实施方案中,非钠材料选自以下群组:软质碳、硬质碳、石墨、碳奈米管、碳纤维、煤、沥青、氮化碳、氮化硼、二硫化钼、黑磷、MXene、及碳量子点。前述各非钠材料可单独使用,也可任意组合使用。在后附实施例中,复合钠金属材料由钠与软质碳所制得。
为使二氧化碳气体可于正极被还原为碳并产生碳酸钠,本发明固态钠二氧化碳电池的正极包括可催化钠离子与二氧化碳的反应的材料。在本发明的部分实施方案中,正极材料选自以下群组:WS2、MoS2、ZnCo2O4、ZnMn2O4、ZnS、ZnO、NiO、CoP、Ru、Ag、Au、Ir、Pt、Rh、碳奈米管、石墨、石墨烯、软质碳、硬质碳、六方氮化硼、氮化碳、及碳量子点。前述各正极材料可单独使用,也可任意组合使用。于后附实施例中,正极材料其上负载有钌奈米粒子的多壁碳奈米管。
本发明固态钠二氧化碳电池的另一技术特征在于使用无机固态电解质,借此可避免金属枝晶的产生及因金属枝晶所致的电池失效,其中无机固态电解质可包括钠离子。在本发明的部分实施方案中,无机固态电解质选自以下群组:Na3Zr2SiPO12、Na11Sn2PS12、及β-Al2O3。前述各无机固态电解质可单独使用,也可任意组合使用。于后附实施例中,无机固态电解质为Na3Zr2SiPO12
在本发明的部分实施方案中,固态钠二氧化碳电池进一步包括正极界面层或负极界面层,或进一步包括正极界面层与负极界面层,其中正极界面层设置于正极与无机固态电解质之间,且负极界面层设置于负极与无机固态电解质之间。通过界面层的设置,本发明固态钠二氧化碳电池可增进电池在大电流密度下的循环寿命。
在本发明固态钠二氧化碳电池中,正极界面层与负极界面层的材料可各自独立选自以下群组:丁二腈、聚氧化乙烯、聚丙烯腈、聚丙烯、聚碳酸伸丙酯、聚偏氟乙烯、六氟丙烯共聚物、过氯酸钠、六氟磷酸钠、双三氟甲烷磺酰亚胺钠、双氟磺酰亚胺钠、及钠与Na3Zr2SiPO12及Na11Sn2PS12的至少一者共热所得的反应产物。前述各界面层的材料可单独使用,也可任意组合使用。
本发明固态钠二氧化碳电池的一优势在于使用温室气体的一的二氧化碳作为反应气体,因此特别适用于混合动力汽车以及火星上的能源开发。尤其,世界各国火星探测计划正积极进行中,本发明固态钠二氧化碳电池特别适合于相关太空应用,因为火星的大气组成包括高达95.32%的二氧化碳、2.7%的氮气及1.6%的氩气,相当适合应用本发明固态钠二氧化碳电池。因此,本发明固态钠二氧化碳电池对于火星探测计划及未来可能的火星移民计划而言,是重要的电能来源之一。
此外,考量地球大气中的二氧化碳含量仅有约0.03体积%,直接利用地球大气所含二氧化碳可能无法有效运作本发明固态钠二氧化碳电池。因此,于本发明的部分实施方案中,固态钠二氧化碳电池可进一步含有一外壳,利用该外壳所提供的封闭式容置空间来容置正极、负极、无机固态电解质及视需要的正极界面层或负极界面层,且封闭式容置空间中可填充二氧化碳作为反应性气体。以封闭式容置空间中的气体总体积计,二氧化碳浓度较佳为90体积%以上,例如91体积%、92体积%、93体积%、94体积%、95体积%、96体积%、97体积%、98体积%、99体积%、或100体积%,或介于由上述任意两个数值所构成的范围,以获致较佳的电池效能。
2. 实施例
2.1. 正极片及负极片的制备
[合成例1:正极片的制备]
正极材料为其上负载有Ru奈米粒子的多壁碳奈米管(本文中也称为「Ru/CNT」)。首先,将作为前驱物的20毫克的多壁碳奈米管与50毫克的氯化钌水合物(碳奈米管对氯化钌化合物的重量比为5:8)加入100毫升的无水乙二醇中,于170℃以冷凝回流法进行反应3小时。待反应完成后,将产物静置于空气中冷却。接着,用乙醇与超纯水来清洗沉淀产物多次,将清洗后的沉淀产物置于80℃的真空烘箱中干燥12小时,得到作为正极材料的Ru/CNT。
称取85毫克(85重量%)的Ru/CNT与15毫克(15重量%)的聚偏二氯乙烯并溶解于1毫升的N-甲基吡咯啶酮中,将混合物在3000 rpm的转速下进行球磨2小时而得到正极浆料。取20微升(μL)的正极浆料并涂布于直径为1厘米的圆形碳纸上,将涂布有正极浆料的碳纸在80℃下干燥12小时,得到正极片。
[合成例2:负极片的制备]
将50毫克的软质碳与950毫克的钠置于不锈钢坩埚中,加热至300℃并维持30分钟。前述加热过程是在氩气保护的手套箱中进行。待加热完成后,可得到分散均匀的复合钠金属材料(本文中也称为『Na@C』)。待Na@C冷却至室温并凝固后,切成直径1厘米且厚度0.5毫米的圆形薄片作为负极片。
利用扫描电子显微镜观察Na@C及利用X射线来分析Na@C,所得到的扫描电子显微镜图像及能量色散X射线谱分别示于图2与图3。如图2与图3所示,软质碳均匀分布于钠中。
2.2.固态钠二氧化碳电池的制备及测试
[实施例1]
首先,将直径1.2厘米且厚度1毫米的Na3Zr2SiPO12固态电解质片(实 心圆柱状,购自韩国的421Energy Inc.Ltd.)抛光成镜面。接着,于 Na3Zr2SiPO12固态电解质片的一侧贴上合成例2中制备的负极片之后,将固态 电解质片与负极片加热至300℃并维持30分钟,使固态电解质片与负极片紧 密地贴合。利用扫描电子显微镜观察负极与固态电解质之间的界面,所得到 的扫描电子显微镜图像示于图4。如图4所示,固态电解质片与负极片之间 的界面处不存在清晰的空洞,表示界面接触良好。
于固态电解质片的相对的另一侧贴上合成例1中制备的正极片,组成固 态钠二氧化碳电池。将固态钠二氧化碳电池放入5公升的附盖玻璃瓶中,并 于玻璃瓶中填充二氧化碳气体至二氧化碳浓度达90%以上,而后盖紧玻璃瓶。 将玻璃瓶与电池静置8小时之后,在室温下进行充放电。如图5所示,在100 mA/g(毫安培/克)的电流密度及500mAh/g(毫安培小时/克)的截止电 容量的条件下,实施例1的固态钠二氧化碳电池可重复充放电达105次。此说明,本发明固态钠二氧化碳电池可实现在二氧化态气氛下的使用,尤其适 合作为火星探测应用的能源使用。
[比较例1]
首先,将直径1.2厘米且厚度1毫米的Na3Zr2SiPO12固态电解质片(实 心圆柱状,购自韩国的421Energy Inc.Ltd.)抛光成镜面。接着,于 Na3Zr2SiPO12固态电解质片的一侧贴上钠金属片作为负极之后,将固态电解质 片与钠金属片历时30分钟加热至300℃,使固态电解质片与钠金属片贴合。 利用扫描电子显微镜观察钠金属片与固态电解质之间的界面,所得到的扫描 电子显微镜图像示于图6。如图6所示,固态电解质片与钠金属片之间的界面处可见到清晰的空洞,表示界面接触不良。
于固态电解质片的相对的另一侧贴上合成例1中制备的正极片,组成固态钠二氧化碳电池。将固态钠二氧化碳电池放入5公升的附盖玻璃瓶中,并于玻璃瓶中填充二氧化碳气体至二氧化碳浓度达90%以上,而后盖紧玻璃瓶。将玻璃瓶与电池静置8小时之后,在室温下进行充放电。如图7所示,在100 mA/g(毫安培/克)的电流密度及500 mAh/g(毫安培小时/克)的截止电容量的条件下,比较例1的固态钠二氧化碳电池重复充放电50次,仅为实施例1的一半。由实施例1与比较例1的对照可看出,相比于利用纯钠金属作为负极,使用复合钠金属材料作为负极可显著提升电池的充放电次数,确实改善了电池的循环稳定性。
上述实施例仅为例示性说明本发明的原理及其功效,并阐述本发明的技术特征,而非用于限制本发明的保护范畴。任何本领域技术人员可轻易完成的改变或安排,均属本发明所主张的范围。因此,本发明的权利保护范围如权利要求书所列。

Claims (8)

1.一种固态钠二氧化碳电池,其特征在于,其包括正极、负极、以及设置于正极与负极之间的无机固态电解质,其中该正极用于催化钠离子与二氧化碳的反应,该负极包括钠及非钠材料。
2.如权利要求1所述的固态钠二氧化碳电池,其特征在于,该非钠材料选自以下群组:铝、锡、金、银、硅、软质碳、硬质碳、石墨、碳奈米管、碳纤维、煤、沥青、氮化碳、氮化硼、二硫化钼、黑磷、MXene、碳量子点、及其组合。
3.如权利要求2所述的固态钠二氧化碳电池,其特征在于,该非钠材料选自以下群组:软质碳、硬质碳、石墨、碳奈米管、碳纤维、煤、沥青、氮化碳、氮化硼、二硫化钼、黑磷、MXene、碳量子点、及其组合。
4.如权利要求1所述的固态钠二氧化碳电池,其特征在于,该无机固态电解质选自以下群组:Na3Zr2SiPO12、Na11Sn2PS12、β-Al2O3、及其组合。
5.如权利要求1所述的固态钠二氧化碳电池,其中该正极的材料选自以下群组:WS2、MoS2、ZnCo2O4、ZnMn2O4、ZnS、ZnO、NiO、CoP、Ru、Ag、Au、Ir、Pt、Rh、碳奈米管、石墨、石墨烯、软质碳、硬质碳、六方氮化硼、氮化碳、碳量子点、及其组合。
6.如权利要求1至5中任一项所述的固态钠二氧化碳电池,其特征在于,还包括正极界面层及负极界面层的至少一个,其中该正极界面层设置于该正极与该无机固态电解质之间,且该负极界面层设置于该负极与该无机固态电解质之间。
7.如权利要求6所述的固态钠二氧化碳电池,其特征在于,该正极界面层与该负极界面层的材料各自独立选自以下群组:丁二腈、聚氧化乙烯、聚丙烯腈、聚丙烯、聚碳酸伸丙酯、聚偏氟乙烯、六氟丙烯共聚物、过氯酸钠、六氟磷酸钠、双三氟甲烷磺酰亚胺钠、双氟磺酰亚胺钠、钠与Na3Zr2SiPO12及Na11Sn2PS12的至少一个共热所得的反应产物、及其组合。
8.如权利要求1至5中任一项所述的固态钠二氧化碳电池,其特征在于,其还包括一外壳,该外壳具有一封闭式容置空间,该正极、负极及无机固态电解质位于该封闭式容置空间中,该封闭式容置空间填充有二氧化碳。
CN202110930100.4A 2020-08-18 2021-08-13 固态钠二氧化碳电池 Pending CN114094118A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202063067198P 2020-08-18 2020-08-18
US63/067,198 2020-08-18
US202163153254P 2021-02-24 2021-02-24
US63/153,254 2021-02-24

Publications (1)

Publication Number Publication Date
CN114094118A true CN114094118A (zh) 2022-02-25

Family

ID=80296140

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110930100.4A Pending CN114094118A (zh) 2020-08-18 2021-08-13 固态钠二氧化碳电池

Country Status (3)

Country Link
US (1) US20220140406A1 (zh)
CN (1) CN114094118A (zh)
TW (1) TWI771153B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116960377A (zh) * 2023-09-20 2023-10-27 中石油深圳新能源研究院有限公司 一种钠-二氧化碳电池用工作电极及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120214075A1 (en) * 2011-02-21 2012-08-23 Excellatron Solid State Llc Electrochemical cell having air cathode partially infused with carbon dioxide
WO2016069749A1 (en) * 2014-10-28 2016-05-06 University Of Maryland, College Park Interfacial layers for solid-state batteries methods of making same
CN106415909A (zh) * 2014-09-16 2017-02-15 电子部品研究院 包括基于二氧化硫的离子性液体电解质的电解液和具有其的钠‑二氧化硫二次电池
CN106450514A (zh) * 2016-11-11 2017-02-22 南开大学 一种准固态Na‑CO2二次电池及其制备方法
US20190165365A1 (en) * 2017-11-30 2019-05-30 Nanotek Instruments, Inc. Anode Particulates or Cathode Particulates and Alkali Metal Batteries Containing Same
CN110534778A (zh) * 2019-08-30 2019-12-03 中南大学 用于钠二氧化碳电池上的有机正极及其制备方法和钠二氧化碳电池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116404237A (zh) * 2017-06-09 2023-07-07 日本电气硝子株式会社 全固体钠离子二次电池
US10566668B2 (en) * 2017-10-09 2020-02-18 Nanotek Instruments Group, Llc Sodium ion-based internal hybrid electrochemical energy storage cell
WO2019182284A1 (ko) * 2018-03-19 2019-09-26 울산과학기술원 이산화탄소 활용 시스템 및 이를 포함하는 복합 발전 시스템
CN109449543A (zh) * 2018-10-23 2019-03-08 清华大学深圳研究生院 一种气体负极电池及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120214075A1 (en) * 2011-02-21 2012-08-23 Excellatron Solid State Llc Electrochemical cell having air cathode partially infused with carbon dioxide
CN106415909A (zh) * 2014-09-16 2017-02-15 电子部品研究院 包括基于二氧化硫的离子性液体电解质的电解液和具有其的钠‑二氧化硫二次电池
WO2016069749A1 (en) * 2014-10-28 2016-05-06 University Of Maryland, College Park Interfacial layers for solid-state batteries methods of making same
CN106450514A (zh) * 2016-11-11 2017-02-22 南开大学 一种准固态Na‑CO2二次电池及其制备方法
US20190165365A1 (en) * 2017-11-30 2019-05-30 Nanotek Instruments, Inc. Anode Particulates or Cathode Particulates and Alkali Metal Batteries Containing Same
CN110534778A (zh) * 2019-08-30 2019-12-03 中南大学 用于钠二氧化碳电池上的有机正极及其制备方法和钠二氧化碳电池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIN AN SAM OH 等: "Composite NASICON (Na3Zr2Si2PO12) Solid-State Electrolyte with Enhanced Na+ Ionic Conductivity: Effect of Liquid Phase Sintering", ACS APPL. MATER. INTERFACES, vol. 11, pages 40125 - 40133 *
XIAOFEI HU 等: "Designing an All-Solid-State Sodium-Carbon Dioxide Battery Enabled by Nitrogen-Doped Nanocarbon", NANO LETT., vol. 20, pages 3620 - 3626 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116960377A (zh) * 2023-09-20 2023-10-27 中石油深圳新能源研究院有限公司 一种钠-二氧化碳电池用工作电极及其制备方法
CN116960377B (zh) * 2023-09-20 2024-01-05 中石油深圳新能源研究院有限公司 一种钠-二氧化碳电池用工作电极及其制备方法

Also Published As

Publication number Publication date
TW202209740A (zh) 2022-03-01
US20220140406A1 (en) 2022-05-05
TWI771153B (zh) 2022-07-11

Similar Documents

Publication Publication Date Title
EP2219253B1 (en) Electrode material
US10693178B2 (en) Wearable lithium-sulfur battery and methods of making the same
CN101601162B (zh) 用于锂离子电池的高性能阳极材料
Li et al. Enhanced performance of a MnO 2–graphene sheet cathode for lithium ion batteries using sodium alginate as a binder
CN109698326B (zh) 一种用于钠离子电池负极的有机磷化锡/氧化石墨复合材料
US11355749B2 (en) Method for producing silicon-based anodes for secondary batteries
KR101914513B1 (ko) 리튬 이차전지용 음극 활물질 및 그 제조방법
KR101197100B1 (ko) 알파상 이산화망간/탄소나노튜브 복합체를 이용한 공기전극의 제조방법 및 이에 따라 제조되는 공기전극
Shu et al. 3D Array of Bi2S3 Nanorods Supported on Ni Foam as a Highly Efficient Integrated Oxygen Electrode for the Lithium‐Oxygen Battery
CN110957487A (zh) 一种具有高循环稳定性的可充电电池系统
Zhang et al. Phosphorus-doped carbon as cathode material for high energy nonaqueous Li-O2 batteries
CN111292965A (zh) 一种核壳结构的锂离子混合电容器负极材料及制备和应用
Yang et al. A flexible free-standing cathode based on graphene-like MoSe 2 nanosheets anchored on N-doped carbon nanofibers for rechargeable aluminum-ion batteries
KR101985462B1 (ko) 마그네슘 이차전지용 양극소재 및 이를 포함하는 마그네슘 이차전지
Zeng et al. Nano Li 4 Ti 5 O 12 as sulfur host for high-performance Li-S battery
TWI771153B (zh) 固態鈉二氧化碳電池
Zhang et al. Sand‐Fixation Model for Interface Engineering of Layered Titania and N/O‐Doped Carbon Composites to Enhance Potassium/Sodium Storage
Qi et al. Freestanding Mo3N2 nanotubes for long‐term stabilized 2e− intermediate‐based high energy efficiency Li–CO2 batteries
Shanthappa et al. Multi-walled carbon nanotubes interlinked vanadium selenite nanocomposites as a positive electrode for high-performance aqueous zinc-ion batteries
Li et al. Recent Developments of Cathode Materials for Thermal Batteries
KR101481230B1 (ko) 리튬 공기 전지용 양극, 그 제조방법 및 이를 이용한 리튬 공기 전지
Cao et al. Core–shell MWCNTs@ ZnS composite prepared by atomic layer deposition for high-performance lithium-ion batteries anode
US20220093966A1 (en) Solid electrolyte material and solid-state battery made therewith
US9735444B2 (en) Hard carbon composite for alkali metal-ion batteries
Li et al. Sandwich-like structure C/SiO x@ graphene anode material with high electrochemical performance for lithium ion batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination