CN114093955A - 一种碳纳米纤维掺杂氧化镍空穴传输层的砷化镓太阳电池及其制备 - Google Patents

一种碳纳米纤维掺杂氧化镍空穴传输层的砷化镓太阳电池及其制备 Download PDF

Info

Publication number
CN114093955A
CN114093955A CN202111207028.9A CN202111207028A CN114093955A CN 114093955 A CN114093955 A CN 114093955A CN 202111207028 A CN202111207028 A CN 202111207028A CN 114093955 A CN114093955 A CN 114093955A
Authority
CN
China
Prior art keywords
nickel oxide
carbon nanofiber
gallium arsenide
substrate
transport layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111207028.9A
Other languages
English (en)
Other versions
CN114093955B (zh
Inventor
李国强
莫由天
何小斌
林静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202111207028.9A priority Critical patent/CN114093955B/zh
Publication of CN114093955A publication Critical patent/CN114093955A/zh
Application granted granted Critical
Publication of CN114093955B publication Critical patent/CN114093955B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明属于太阳电池的技术领域,公开了一种碳纳米纤维掺杂氧化镍空穴传输层的砷化镓太阳电池及其制备。所述砷化镓太阳电池包括依次层叠的背面电极、砷化镓衬底、碳纳米纤维掺杂氧化镍空穴传输层、正面电极;碳纳米纤维掺杂氧化镍空穴传输层通过以下方法得到:将氧化镍前驱体溶液与碳纳米纤维混匀,旋涂于砷化镓衬底表面,干燥,退火。所述碳纳米纤维通过以下方法得到:将将基底清洗干净后,置于内焰中进行燃烧,在基底表面获得碳纳米纤维,去除基底。本发明还公开了太阳电池的制备方法。本发明采用碳纳米纤维掺杂氧化镍提升了空穴传输层的电导率,降低器件的层间电阻。本发明的太阳电池具有较好的光电性能。本发明的方法简单、成本低。

Description

一种碳纳米纤维掺杂氧化镍空穴传输层的砷化镓太阳电池及 其制备
技术领域
本发明属于太阳电池制备技术领域,具体涉及一种含有碳纳米纤维掺杂氧化镍空穴传输层的砷化镓太阳电池及其制备方法。
背景技术
近年来,太阳光伏材料及其器件的研究取得了不错的进展,特别是在砷化镓基太阳电池体系,凭借其直接带隙、宽带隙及优异的载流子迁移能力,一度刷新太阳电池的记录,有望进一步降低制备成本以在民用领域进行推广使用。
金属氧化物作为多功能的太阳电池材料,可作为薄插入层以抑制界面载流子复合,应用为减反射层以降低光反射和增强光吸收,可作为绝缘层以防止光吸收区与电极的直接接触,还可视为空穴传输层与n掺半导体结合制备异质结。氧化镍(NiOx)作为一种宽带隙(~3eV)材料,通常被视为高分子聚合物空穴传输层的替代物,但过去研究报导中,由于氧化镍导电率相对较差导致器件的层间电阻增加及其填充系数降低。
发明内容
为了克服现有技术的缺点和不足,本发明的目的在于提高一种便捷、低成本的高光电转换效率的含有碳纳米纤维掺杂氧化镍空穴传输层的砷化镓太阳电池及其制备方法。
本发明的目的通过以下技术方案实现:
一种含有碳纳米纤维掺杂氧化镍空穴传输层的砷化镓太阳电池,包括依次层叠的背面电极、砷化镓衬底、碳纳米纤维掺杂氧化镍空穴传输层、正面电极。
正面电极部分覆盖碳纳米纤维掺杂氧化镍空穴传输层,优选地,正面电极设置在碳纳米纤维掺杂氧化镍空穴传输层上表面的两端。
所述碳纳米纤维掺杂氧化镍空穴传输层通过以下方法制备得到:将氧化镍前驱体溶液与碳纳米纤维混匀,将碳纳米纤维/氧化镍前驱体溶液旋涂于砷化镓衬底表面,干燥,退火;碳纳米纤维/氧化镍前驱体溶液中的碳纳米纤维含量为1×10-4-5×10-3g/L,优选为(2~3)×10-3g/L,更优选为2.5×10-3g/L。所述氧化镍前驱体溶液为镍盐、乙二醇、乙二胺混合溶液。
所述的退火处理温度为200-700℃,优选为250~350℃,更优选为300℃。
所述含有碳纳米纤维掺杂氧化镍空穴传输层的砷化镓太阳电池的制备方法,包括以下步骤:
1)在砷化镓衬底的一表面制备背面电极,获得背面电极/砷化镓;
2)将基底清洗干净后,置于内焰中进行燃烧,在基底表面获得碳纳米纤维;
3)将表面获得碳纳米纤维的基底进行酸洗,水洗,然后去除基底,获得碳纳米纤维;
4)将碳纳米纤维与氧化镍前驱体溶液混匀,得到碳纳米纤维/氧化镍前驱体溶液;碳纳米纤维/氧化镍前驱体溶液旋涂于背面电极/砷化镓中砷化镓衬底另一表面,该表面与制备有背面电极的表面为对立面,干燥后进行退火处理,得到碳纳米纤维掺杂氧化镍/砷化镓/背面电极;
5)在碳纳米纤维掺杂氧化镍上蒸镀正面电极。
步骤1)中所述背面电极通过蒸镀和退火制备得到。
步骤2)中所述基底为不锈钢片;所述清洗是指采用有机溶剂和水依次进行超声清洗,清洗完后吹干。
步骤2)中所述有机溶剂为丙酮、乙醇、异丙醇中一种以上。
步骤2)所述内焰的温度为450~1000℃,优选为600~800℃,更优选为650~750℃。步骤2)所述燃烧的时间为1-10min,优选为2~4min,更优选3min。
步骤3)中酸洗的酸溶液为HCl、HNO3、H2SO4溶液,酸溶液的浓度为1M。步骤3)中所述去除基底是指采用刻蚀溶液去除基底,所述刻蚀溶液为FeCl3+HCl水溶液,三氯化铁的浓度为1M,盐酸的浓度为1M。
步骤4)所述氧化镍前驱体溶液为镍盐、乙二醇和乙二胺的混合溶液,所述镍盐在混合溶液中浓度为0.05~0.2M,乙二醇与乙二胺的体积比为(30~40):2;所述镍盐为硝酸镍、硫酸镍、氯化镍中一种以上。镍盐、乙二醇和乙二胺通过55~65℃下加热搅拌,得到氧化镍前驱体溶液。
步骤4)所述的碳纳米纤维/氧化镍前驱体溶液中的碳纳米纤维含量为1×10-4-5×10-3g/L,优选为(2~3)×10-3g/L,更优选为2.5×10-3g/L。
步骤4)中所述退火处理温度为200-700℃,优选为250~350℃,更优选为300℃。
步骤1)中所述背面电极可以为金、银、钛、铜、镍、铂、氧化锡锑和铝掺氧化锌单一电极或复合电极。
步骤5)所述正面电极可以为金、银、钛、铜、镍、铂、氧化锡锑和铝掺氧化锌单一电极或复合电极。
步骤1)中衬底在使用前采用有机溶剂和水分别进行超声清洗;步骤1)所述的有机溶剂为丙酮、乙醇、异丙醇中一种以上。
在制备背面电极后进行裂片,然后采用有机溶剂和水分别进行超声清洗。
本发明相对于现有技术,具有如下的优点及有益效果:
(1)相较于常见的氧化镍空穴传输层,碳纳米纤维掺杂氧化镍可进一步降低其电阻率,降低器件的层间电阻。选择微量高电导率的碳材料作为掺杂,在保证其活性层透光性的同时还可避免阴离子杂质的引入。
(2)碳纳米纤维的制备工艺简便,以不锈钢片作为基板并实现自催化碳纳米材料生长,在开放的火焰内焰环境中,可以快速获得大量碳纳米纤维,相对于市面碳纳米纤维及其同类碳纳米材料(碳纳米管、碳量子点)具有更高的经济效益,更易实现规模化生产。
附图说明
图1为碳纳米纤维掺杂氧化镍空穴传输层/砷化镓太阳电池的结构示意图;1-背面电极,2-砷化镓衬底,3-碳纳米纤维掺杂氧化镍空穴传输层,4-正面电极;
图2为火焰生长碳纳米纤维的SEM图(左)和TEM图(右);
图3为实施例1的太阳电池的电流密度-电压曲线;
图4为实施例2的太阳电池的电流密度-电压曲线;
图5为实施例3的太阳电池的电流密度-电压曲线;
图6为对比例1与实施例2的太阳电池的电流密度-电压曲线;氧化镍对应对比例1,碳纳米纤维/氧化镍对应实施例2。
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。实施例中所用试剂如无特殊说明均可从市场常规购得。
一种含有碳纳米纤维掺杂氧化镍空穴传输层的砷化镓太阳电池的结构示意图如图1所示,包括依次层叠的背面电极1、砷化镓衬底2、碳纳米纤维掺杂氧化镍空穴传输层3、正面电极4。
正面电极4部分覆盖碳纳米纤维掺杂氧化镍空穴传输层3,优选地,正面电极4设置在碳纳米纤维掺杂氧化镍空穴传输层3上表面的两端。
图2为本发明的火焰生长碳纳米纤维的SEM图和TEM图,左图为SEM图,右图为TEM图。
实施例1:
(1)采用丙酮、乙醇和去离子水依次对砷化镓衬底进行超声清洗各5min,用N2吹干;在其底部进行金背面电极的蒸镀(背面电极的厚度为120nm,退火温度330℃,升温速率1℃/s,保温时间为30s),随后裂为面积1×1cm2规格,再次采用丙酮、乙醇和去离子水依次对砷化镓衬底进行依次超声清洗各5min,N2吹干备用;
(2)采用丙酮、乙醇和去离子水依次对对不锈钢片进行超声清洗各5min后N2吹干,置于酒精火焰内焰中,温度约为700℃,燃烧时间为3min,在不锈钢表面即可获得碳纳米纤维;
(3)通过1M HCl浸洗制备有碳纳米纤维的不锈钢片,去除无定形碳和氧化铁后用去离子水洗涤,通过FeCl3+HCl水溶液(各物质的浓度为1M)刻蚀不锈钢片分离得到碳纳米纤维,去离子水浸泡洗涤;
(4)将硫酸镍、乙二醇与乙二胺在60℃下加热搅拌,得到氧化镍前驱体溶液(镍盐在溶液中浓度为0.1M,乙二醇和乙二胺分别为35mL、2mL);再加入1×10-4g/L碳纳米纤维后充分搅拌分散,获得碳纳米纤维/氧化镍前驱体溶液;
(5)将碳纳米纤维/氧化镍前驱体溶液旋涂于砷化镓表面(4000rpm的旋涂30s),加热干燥后在300℃下进行退火处理(退火处理的时间为1h),得到碳纳米纤维掺杂氧化镍/砷化镓;
(6)在碳纳米纤维掺杂氧化镍上进行Ag正面电极的制作。
本实施例制备的太阳电池性能测试结果为:Voc=0.51V,Jsc=10.06mA cm-2,FF=51.98%,PCE=2.65%;电流密度-电压曲线如图3所示。
实施例2
本实施例与实施例1的不同之处:在氧化镍前驱体溶液中加入2.5×10-3g/L碳纳米纤维后充分搅拌分散。旋涂在砷化镓表面进行热干燥后在300℃下进行退火处理,得到碳纳米纤维掺杂氧化镍/砷化镓太阳电池。其它条件与实施例1相同。
本实施例制备的太阳电池性能测试结果为:Voc=0.52V,Jsc=13.94mA cm-2,FF=56.89%,PCE=4.1%;电流密度-电压曲线如图4所示。
实施例3
本实施例与实施例1的不同之处:在氧化镍前驱体溶液中加入2.5×10-3g/L碳纳米纤维后充分搅拌分散,旋涂在砷化镓表面进行热干燥后在700℃下进行退火处理,得到碳纳米纤维掺杂氧化镍/砷化镓太阳电池。其它条件与实施例1相同。
本实施例制备的太阳电池性能测试结果为:Voc=0.51V,Jsc=13.59mA cm-2,FF=54.46%,PCE=3.75%;电流密度-电压曲线如图5所示。
对比例1
采用氧化镍代替实施例2中碳纳米纤维掺杂氧化镍,其他条件同实施例2。
对比例1与实施例2制备的太阳电池性能测试结果如图6所示。

Claims (10)

1.一种含有碳纳米纤维掺杂氧化镍空穴传输层的砷化镓太阳电池,其特征在于:包括依次层叠的背面电极、砷化镓衬底、碳纳米纤维掺杂氧化镍空穴传输层、正面电极。
2.根据权利要求1所述含有碳纳米纤维掺杂氧化镍空穴传输层的砷化镓太阳电池,其特征在于:所述碳纳米纤维掺杂氧化镍空穴传输层通过以下方法制备得到:将氧化镍前驱体溶液与碳纳米纤维混匀,将碳纳米纤维/氧化镍前驱体溶液旋涂于砷化镓衬底表面,干燥,退火;碳纳米纤维/氧化镍前驱体溶液中的碳纳米纤维含量为1×10-4-5×10-3g/L。
3.根据权利要求2所述含有碳纳米纤维掺杂氧化镍空穴传输层的砷化镓太阳电池,其特征在于:碳纳米纤维/氧化镍前驱体溶液中的碳纳米纤维含量为2×10-3-3×10-3g/L;
所述氧化镍前驱体溶液为镍盐、乙二醇、乙二胺混合溶液;
所述退火的温度为200-700℃,
所述碳纳米纤维通过以下方法得到:将将基底清洗干净后,置于内焰中进行燃烧,在基底表面获得碳纳米纤维,去除基底,获得碳纳米纤维。
4.根据权利要求3所述含有碳纳米纤维掺杂氧化镍空穴传输层的砷化镓太阳电池,其特征在于:所述退火的温度为250~350℃;
所述碳纳米纤维的制备中,所述内焰的温度为450-1000℃;所述燃烧的时间为1-10min;所述基底为不锈钢片。
5.根据权利要求1所述含有碳纳米纤维掺杂氧化镍空穴传输层的砷化镓太阳电池,其特征在于:正面电极部分覆盖碳纳米纤维掺杂氧化镍空穴传输层。
6.根据权利要求1~5任一项所述含有碳纳米纤维掺杂氧化镍空穴传输层的砷化镓太阳电池的制备方法,其特征在于:包括以下步骤:
1)在砷化镓衬底的一表面制备背面电极,获得背面电极/砷化镓;
2)将基底清洗干净后,置于内焰中进行燃烧,在基底表面获得碳纳米纤维;
3)将表面获得碳纳米纤维的基底进行酸洗,水洗,然后去除基底,获得碳纳米纤维;
4)将碳纳米纤维与氧化镍前驱体溶液混匀,得到碳纳米纤维/氧化镍前驱体溶液;碳纳米纤维/氧化镍前驱体溶液旋涂于背面电极/砷化镓中砷化镓衬底另一表面,该表面与制备有背面电极的表面为对立面,干燥后进行退火处理,得到碳纳米纤维掺杂氧化镍/砷化镓/背面电极;
5)在碳纳米纤维掺杂氧化镍上蒸镀正面电极。
7.根据权利要求6所述含有碳纳米纤维掺杂氧化镍空穴传输层的砷化镓太阳电池的制备方法,其特征在于:步骤1)中所述背面电极通过蒸镀和退火制备得到;
步骤2)中所述基底为不锈钢片;
步骤2)中所述内焰的温度为450-1000℃,步骤2)所述燃烧的时间为1-10min;
步骤4)中所述氧化镍前驱体溶液为镍盐、乙二醇和乙二胺的混合溶液,所述镍盐在混合溶液中浓度为0.05~0.2M,乙二醇与乙二胺的体积比为(30~40)∶2;
步骤4)中所述碳纳米纤维/氧化镍前驱体溶液中的碳纳米纤维含量为1×10-4-5×10- 3g/L;
步骤4)中所述退火处理温度为200~700℃。
8.根据权利要求7所述含有碳纳米纤维掺杂氧化镍空穴传输层的砷化镓太阳电池的制备方法,其特征在于:步骤2)中所述内焰的温度为600~800℃;步骤2)中所述燃烧的时间为2~4min;
步骤4)中所述镍盐为硝酸镍、硫酸镍、氯化镍中一种以上;
步骤4)中所述碳纳米纤维/氧化镍前驱体溶液中的碳纳米纤维含量为(2~3)×10-3g/L;
步骤4)中所述退火处理温度为250~350℃。
9.根据权利要求8所述含有碳纳米纤维掺杂氧化镍空穴传输层的砷化镓太阳电池的制备方法,其特征在于:步骤2)中所述内焰的温度为650~750℃;步骤2)中所述燃烧的时间为3min;
步骤4)中所述碳纳米纤维/氧化镍前驱体溶液中的碳纳米纤维含量为2.5×10-3g/L。
10.根据权利要求6所述含有碳纳米纤维掺杂氧化镍空穴传输层的砷化镓太阳电池的制备方法,其特征在于:步骤2)中所述清洗是指采用有机溶剂和水依次进行超声清洗,清洗完后吹干;步骤2)中所述有机溶剂为丙酮、乙醇、异丙醇中一种以上;
步骤3)中酸洗的酸溶液为HCl、HNO3、H2SO4溶液,酸溶液的浓度为1M;步骤3)中所述去除基底是指采用刻蚀溶液去除基底,所述刻蚀溶液为FeCl3和HCl水溶液的混合溶液;
步骤1)中所述背面电极为金、银、钛、铜、镍、铂、氧化锡锑和铝掺氧化锌单一电极或复合电极;
步骤5)所述正面电极为金、银、钛、铜、镍、铂、氧化锡锑和铝掺氧化锌单一电极或复合电极。
CN202111207028.9A 2021-10-15 2021-10-15 一种碳纳米纤维掺杂氧化镍空穴传输层的砷化镓太阳电池及其制备 Active CN114093955B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111207028.9A CN114093955B (zh) 2021-10-15 2021-10-15 一种碳纳米纤维掺杂氧化镍空穴传输层的砷化镓太阳电池及其制备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111207028.9A CN114093955B (zh) 2021-10-15 2021-10-15 一种碳纳米纤维掺杂氧化镍空穴传输层的砷化镓太阳电池及其制备

Publications (2)

Publication Number Publication Date
CN114093955A true CN114093955A (zh) 2022-02-25
CN114093955B CN114093955B (zh) 2024-03-08

Family

ID=80297102

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111207028.9A Active CN114093955B (zh) 2021-10-15 2021-10-15 一种碳纳米纤维掺杂氧化镍空穴传输层的砷化镓太阳电池及其制备

Country Status (1)

Country Link
CN (1) CN114093955B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023184966A1 (zh) * 2022-03-31 2023-10-05 华南理工大学 一种碳纳米管/银纳米线复合薄膜及其砷化镓基异质结太阳电池和制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103131211A (zh) * 2013-01-23 2013-06-05 苏州大学 一种碳纳米管-锂钛掺杂的氧化镍复合物及其制备方法
WO2014080418A2 (en) * 2012-11-26 2014-05-30 Rathore Pratibha Synthesis of carbon nanoparticles from vegetable oil by flame deposition
CN105355787A (zh) * 2015-10-29 2016-02-24 上海师范大学 一种新型太阳能电池器件及其制备方法
CN108365047A (zh) * 2018-01-31 2018-08-03 华南理工大学 一种石墨烯-GaAs肖特基结太阳能电池及其制备方法
CN109360739A (zh) * 2018-12-17 2019-02-19 中南林业科技大学 负载镍/氧化镍的碳纳米纤维电极材料的制备方法
US20190376209A1 (en) * 2018-06-08 2019-12-12 The Regents Of The University Of California Method and system for production of porous graphitic carbon materials embedded with active components
CN112746273A (zh) * 2020-12-30 2021-05-04 暨南大学 一种不锈钢表面原位生长纳米碳纤维及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080418A2 (en) * 2012-11-26 2014-05-30 Rathore Pratibha Synthesis of carbon nanoparticles from vegetable oil by flame deposition
CN103131211A (zh) * 2013-01-23 2013-06-05 苏州大学 一种碳纳米管-锂钛掺杂的氧化镍复合物及其制备方法
CN105355787A (zh) * 2015-10-29 2016-02-24 上海师范大学 一种新型太阳能电池器件及其制备方法
CN108365047A (zh) * 2018-01-31 2018-08-03 华南理工大学 一种石墨烯-GaAs肖特基结太阳能电池及其制备方法
US20190376209A1 (en) * 2018-06-08 2019-12-12 The Regents Of The University Of California Method and system for production of porous graphitic carbon materials embedded with active components
CN109360739A (zh) * 2018-12-17 2019-02-19 中南林业科技大学 负载镍/氧化镍的碳纳米纤维电极材料的制备方法
CN112746273A (zh) * 2020-12-30 2021-05-04 暨南大学 一种不锈钢表面原位生长纳米碳纤维及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAJID 等: ""Novel hole transport layer of nickel oxide composite with carbon for high-performance perovskite solar cells"", 《CHIN. PHYS. B》, vol. 27, no. 1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023184966A1 (zh) * 2022-03-31 2023-10-05 华南理工大学 一种碳纳米管/银纳米线复合薄膜及其砷化镓基异质结太阳电池和制备方法

Also Published As

Publication number Publication date
CN114093955B (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
CN105428438B (zh) 一种高效钙钛矿太阳能电池及其制备方法
Kim et al. Nanotextured cupric oxide nanofibers coated with atomic layer deposited ZnO-TiO2 as highly efficient photocathodes
CN108321239A (zh) 一种太阳能异质结电池及其制备方法
CN106816532B (zh) 基于有机-无机杂化钙钛矿取向结晶薄膜的太阳电池
CN113136602A (zh) 一种钒酸铋/Vo-FeNiOOH复合光阳极的制备及应用
CN109888108B (zh) 一种生物大分子修饰的钙钛矿太阳能电池及其制备方法
CN108511633A (zh) 一种无机钙钛矿发光二极管及其制备方法
CN106206949A (zh) 一种柔性钙钛矿太阳能电池及其制备方法
CN109065724B (zh) 一种Mo-二氧化钛-AgNWs柔性钙钛矿太阳能电池及其制备方法
Qiao et al. Molybdenum disulfide/silver/p-silicon nanowire heterostructure with enhanced photoelectrocatalytic activity for hydrogen evolution
CN109768167A (zh) 无电流迟滞的钙钛矿太阳电池及其制备方法
CN114093955B (zh) 一种碳纳米纤维掺杂氧化镍空穴传输层的砷化镓太阳电池及其制备
CN109075218A (zh) 一种太阳能异质结电池及其制备方法
CN109671846B (zh) 以三维结构石墨烯作为背电极的钙钛矿太阳能电池及其制备
CN111962090B (zh) 一种Ti3C2-MXene修饰的α-氧化铁光电极及其制备方法
CN102751105B (zh) 一种染料敏化太阳能电池光阳极的制备方法
WO2024045595A1 (zh) 太阳电池及其制备方法
CN108023018A (zh) 基于带隙连续可调控的倒置钙钛矿太阳电池的制备方法
CN114122155A (zh) 一种含有火焰合成镍金纳米球阵列的砷化镓太阳电池及其制备
CN114262911B (zh) 一种用于光解水的全空间梯度掺杂光电极及制备方法
CN115148911A (zh) 一种基于羟基苯硼酸修饰的钙钛矿光伏器件及制备工艺
CN110359058B (zh) 一种锆钛酸铅修饰的赤铁矿纳米棒阵列光阳极的制备方法
CN114093973A (zh) 一种火焰修饰碳纳米管/氧化镍/砷化镓太阳电池及其制备方法
CN106025089A (zh) 一种高效稳定有机聚合物太阳能电池的制备方法
CN107785459B (zh) 硫化镉量子点/硅纳米孔柱太阳能电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant