CN114085652A - 一种导热复合材料及其制备方法 - Google Patents

一种导热复合材料及其制备方法 Download PDF

Info

Publication number
CN114085652A
CN114085652A CN202111354868.8A CN202111354868A CN114085652A CN 114085652 A CN114085652 A CN 114085652A CN 202111354868 A CN202111354868 A CN 202111354868A CN 114085652 A CN114085652 A CN 114085652A
Authority
CN
China
Prior art keywords
heat
conducting
phase change
parts
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111354868.8A
Other languages
English (en)
Inventor
夏克强
张波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AAC Technologies Holdings Shenzhen Co Ltd
AAC Technologies Holdings Nanjing Co Ltd
Original Assignee
AAC Acoustic Technologies Shenzhen Co Ltd
AAC Technologies Holdings Nanjing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AAC Acoustic Technologies Shenzhen Co Ltd, AAC Technologies Holdings Nanjing Co Ltd filed Critical AAC Acoustic Technologies Shenzhen Co Ltd
Priority to CN202111354868.8A priority Critical patent/CN114085652A/zh
Priority to US17/565,329 priority patent/US20230151258A1/en
Publication of CN114085652A publication Critical patent/CN114085652A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/10Copolymers of styrene with conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/53Core-shell polymer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/16Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the structure of the carrier layer
    • C09J2301/162Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the structure of the carrier layer the carrier being a laminate constituted by plastic layers only
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/314Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive layer and/or the carrier being conductive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/41Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the carrier layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/412Additional features of adhesives in the form of films or foils characterized by the presence of essential components presence of microspheres
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/12Ceramic
    • C09J2400/123Ceramic in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/16Metal
    • C09J2400/163Metal in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2409/00Presence of diene rubber
    • C09J2409/006Presence of diene rubber in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2467/00Presence of polyester
    • C09J2467/006Presence of polyester in the substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本发明提供了一种导热复合材料及其制备方法。该导热复合材料包括导热基材和叠设于导热基材上的热相变层;其中,导热基材为导热薄膜材料,导热薄膜材料的厚度为10‑50μm,热相变层以质量百分比计,包括6-13份的粘接剂,6-13份的热相变材料和74-88份的包覆微胶囊;该方法包括,将热相变层涂覆附着于导热基材的一面上。本发明提供的导热复合材料利用热相变材料和包覆微胶囊提供足够的热焓值,使复合材料兼具材料储热和导热双重功能,能够解决电子元器件的过热缓冲以及散热问题。

Description

一种导热复合材料及其制备方法
【技术领域】
本发明涉及材料技术领域,具体涉及一种导热复合材料及其制备方法。
【背景技术】
随着集成技术和微电子封装技术的发展,电子元器件的总功率密度不断增长,而电子元器件和电子设备的物理尺寸却逐渐趋向于小型、微型化,所产生的热量迅速积累,集成器件周围的热流密度也在增加,所以,高温环境必将会影响到电子元器件和设备的性能,这就需要更加高效的热控制方案。因此,电子元器件的问题已演变成为当前电子元器件和电子设备制造的一大焦点。
一般散热途径依次为:CPU/GPU产生热量、导热硅脂、铜板或石墨片、热管或均热板、散热鳍片或中框或背板。散热路径过于繁琐,散热效率低,效果不佳。因此,有必要提供一种兼具材料储热与导热双重功能,可以解决电子元器件的过热缓冲以及散热问题的导热复合材料。
【发明内容】
本发明的目的在于提供一种导热复合材料及其制备方法,解决电子元器件的过热缓冲以及散热问题。
本发明的技术方案如下:
本发明第一方面提供一种导热复合材料,包括:导热基材和叠设于所述导热基材上的热相变层;
其中,所述导热基材为导热薄膜材料,所述导热薄膜材料的厚度为10-50μm,所述热相变层以质量百分比计,包括6-13份的粘接剂,6-13份的热相变材料和74-88份的包覆微胶囊。
进一步地,所述导热薄膜材料包括石墨片、石墨烯薄膜、碳纳米管薄膜、铜箔、导热PET薄膜、导热PI薄膜中的任意一种。
进一步地,所述粘接剂为弹性无规共聚物、弹性接枝共聚物或弹性嵌段共聚物。
进一步地,所述粘接剂为丁苯树脂、羟基改性丁苯树脂、丙烯酸树脂、水性聚氨酯、水性丙烯酸树脂乳液中的至少一种。
进一步地,所述热相变材料的热转变温度为25-65℃之间,所述热相变材料为链烷烃结构,分子式为CnH(n+2),其中,n的取值范围为10-44。
进一步地,所述包覆微胶囊为具有核-壳结构的有机相变微胶囊,所述有机相变微胶囊的粒径为50-500μm。
进一步地,所述有机相变微胶囊的核为囊芯,所述囊芯包括石蜡、正十八烷以及正十四烷中的一种或多种成分,所述有机相变微胶囊的壳为囊壁,所述囊壁包括二氧化硅,三聚氰胺中的一种或多种成分。
进一步地,所述导热复合材料还包括层叠设置于所述热相变层远离所述导热基材一侧的双面粘结层,所述双面粘结层包括PET/PI中间层,及设置于所述PET/PI中间层两侧的胶层。
本发明第二方面提供一种制备方法,用于制备如上所述的导热复合材料,所述制备方法包括:
将5-10份的粘接剂、5-10份的热相变材料和65-70份包覆微胶囊混合于8-20份的有机溶剂中,得到混合样品;
将所述混合样品涂覆于导热基材的表面,然后烘烤处理,除去所述有机溶剂,得到所述导热复合材料。
进一步地,所述有机溶剂为甲苯、二甲苯、丁酮、丙酮中的至少一种。
与现有技术相比,本发明的有益效果在于:本发明提供的导热复合材料包括导热基材和叠设于所述导热基材上的热相变层;其中热相变层包括粘接剂,热相变材料和包覆微胶囊,本发明利用热相变材料和包覆微胶囊提供足够的热焓值,使形成的复合材料兼具材料储热和导热双重功能,能够解决电子元器件的过热缓冲以及散热问题。
【附图说明】
图1为本发明制备的导热复合材料的结构示意图;
图2为本发明中导热复合材料的制备方法流程图;
图3为本发明中混合样品的制备方法流程图。
【具体实施方式】
下面结合附图和实施方式对本发明作进一步说明。
本发明第一方面提供一种导热复合材料,如图1所示的导热复合材料的结构示意图,导热复合材料包括导热基材10和叠设于导热基材10上的热相变层20,作为一种实施方式,导热复合材料还可以包括叠设于热相变层20远离导热基材一侧的双面粘结层30和离型膜40;其中:
导热基材10为导热薄膜材料,厚度为10-50μm,用户根据导热基材的厚度控制最终导热复合材料的厚度,以质量百分比计,热相变层包括6-13份的粘接剂,6-13份的热相变材料和74-88份的包覆微胶囊。
本发明将含有热相变材料和包覆微胶囊的复合涂层涂覆于导热基材上,使形成的复合材料兼具材料储热和导热双重功能,能够解决电子元器件的过热缓冲以及散热问题。
导热基材10具有隔绝空气以及水蒸气,同时具有高导热性的作用,如石墨片、石墨烯薄膜、碳纳米管薄膜、铜箔、导热PET薄膜、导热PI薄膜等薄膜材料。
作为本发明的其中一种实施方式,粘接剂可以是弹性无规共聚物、弹性接枝共聚物或弹性嵌段共聚物。具体可以是丁苯树脂,羟基改性丁苯树脂,丙烯酸树脂等嵌段共聚物,或者水性聚氨酯、水性丙烯酸树脂乳液中的至少一种。
热相变材料的热转变温度为25-65℃之间,可以是链烷烃,分子式为CnH(n+2),其中,n的范围可以是10-44,有机烷烃的熔点和熔化点与碳原子数n直接相关。在实施例中,热相变材料可以为具有15-40个碳原子,18-35个碳原子或18-28个碳原子的链烷烃,链烷烃可以是单一烷烃或者为烷烃的混合物,具体的可以是正十四烷烃,正十六烷烃,正十七烷烃,正十八烷烃,正二十烷烃等烷烃结构。
包覆微胶囊为有机相变微胶囊,具有核-壳结构,其中,核是囊芯,包括石蜡、正十八烷以及正十四烷中的一种或多种成分,根据不同烷烃的互混控制热转变温度为35℃,40℃,42℃,45℃;壳是囊壁,包括二氧化硅,三聚氰胺等。包覆微胶囊的粒径在50-1000μm之间,在实施例中该包覆微胶囊为上海儒商的GREENTECH-42。
本发明第二方面提供一种制备前述导热复合材料的制备方法,如图2所示的制备方法流程图,方法包括:
步骤S10、将粘接剂、热相变材料和包覆微胶囊混合于有机溶剂中,得到混合样品。作为本实施例的其中一种实施方式,混合样品的制作可分为三步进行,如图3所示的混合样品制备方法流程图,包括:
步骤S101、将粘结剂溶于有机溶剂中,待粘结剂溶解完全后,加入热相变材料继续搅拌均匀,得到第一样品;
步骤S102、将包覆微胶囊加入有机溶剂中进行分散处理,待包覆微胶囊均匀分散于有机溶液后,得到第二样品;
步骤S103、将第一样品和第二样品混合,搅拌均匀得到混合样品。
在本实施方式中,有机溶剂用于溶解有机化合物,有机溶剂为甲苯、二甲苯、丁酮、丙酮中的至少一种。通过分别制作第一样品和第二样品,最后将第一样品和第二样品混合的方式,有利于组成成分分散均匀,需要说明的是,能够将上述混合样品中的各成分均匀混合的方式均在本申请的保护范围内。
步骤S20、将混合样品涂覆于导热基材的表面,然后烘烤处理,除去有机溶剂,得到附着有热相变层的导热基材。
采用涂覆设备进行涂覆处理,优选地,涂覆设备的刮刀间隙为500um,即形成500微米厚度的涂覆层;其中,烘烤处理的方式为,将涂覆有混合样品的导热基材放置于烘箱中,基于有机溶剂易挥发的特性,在80℃-110℃的温度下能够有效去除有机溶剂,经过烘烤后的混合样品形成涂覆于导热基材上的热相变层。
进一步的,对于设置有双面粘接层和离型膜的导热复合材料,还包括步骤S30、在热相变层远离导热基材的一面涂覆双面粘结层,并在双面粘接层远离混合样品的一面粘合离型膜,得到导热复合材料。
作为本发明的其中一种实施方式,双面粘结层包括PET/PI中间层,及设置于PET/PI中间层两侧的胶层,其中,PET/PI中间层的厚度为10μm,两侧的胶层的厚度各为10μm。
通过以上制作方法制备的复合材料兼具材料储热和导热双重功能,能够解决电子元器件的过热缓冲以及散热问题。在获得上述复合材料后,可根据需要对复合材料裁剪出相应形状,以适配不同电子设备散热的要求。以下为制作导热复合材料的具体实施例:
实施例1
1,将5份的丁苯树脂D1118溶于10份的甲苯溶剂中,溶解完全后,加入5份的正二十烷烃继续搅拌均匀,得到第一样品;
2,将70份的热转变温度42℃的包覆微胶囊,加入10份的甲苯溶剂中,采用超声和乳化分散手段,使其均匀分散于溶液中,得到第二样品;
3,将第一样品和第二样品混合,搅拌30min,采用刮刀间隙为500um的涂敷设备,将样品涂敷于厚度为20um的石墨片薄膜上,然后放于110℃烘箱中,除去甲苯溶剂,得到附着有热相变层的导热基材,其中热相变层包括6份的丁苯树脂、6份的正二十烷烃和88份的包覆微胶囊;
4,采用涂敷设备,在导热基材附着有热相变层的一侧面上涂覆一层厚度30um的双面胶,并在双面粘接层远离导热基材的一面上粘合离型膜;
5,根据需求裁切出形状。
实施例2
1,将10份的丁苯树脂D1118溶于5份的甲苯溶剂中,溶解完全后,加入5份的正二十烷烃继续搅拌均匀,得到第一样品;
2,将65份的热转变温度42℃的包覆微胶囊,加入10份的甲苯溶剂中,采用超声和乳化分散手段,使其均匀分散于溶液中,得到第二样品;
3,将第一样品和第二样品混合,搅拌30min,采用刮刀间隙为500um的涂敷设备,将样品涂敷于厚度为20um的石墨片薄膜上,然后放于110℃烘箱中,除去甲苯溶剂,得到附着有热相变层的导热基材,其中热相变层包括12份的丁苯树脂、6份的正二十烷烃和82份的包覆微胶囊;
4,采用涂敷设备,在导热基材附着有热相变层的一侧面上涂覆一层厚度30um的双面胶,并在双面粘接层远离导热基材的一面上粘合离型膜;
5,根据需求裁切出形状。
实施例3
1,将7份的丁苯树脂D1118溶于8份的甲苯溶剂中,溶解完全后,加入8份的正二十烷烃继续搅拌均匀,得到第一样品;
2,将67份的热转变温度42℃的包覆微胶囊,加入10份的甲苯溶剂中,采用超声和乳化分散手段,使其均匀分散于溶液中,得到第二样品;
3,将第一样品和第二样品混合,搅拌30min,采用刮刀间隙为500um的涂敷设备,将样品涂敷于厚度为20um的石墨片薄膜上,然后放于80℃烘箱中,除去甲苯溶剂,得到附着有热相变层的导热基材,其中热相变层包括8份的丁苯树脂、10份的正二十烷烃和82份的包覆微胶囊;
4,采用涂敷设备,在导热基材附着有热相变层的一侧面上涂覆一层厚度30um的双面胶,并在双面粘接层远离导热基材的一面上粘合离型膜;
5,根据需求裁切出形状。
实施例4
1,将5份的丁苯树脂D1118溶于10份的甲苯溶剂中,溶解完全后,加入10份的正二十烷烃继续搅拌均匀,得到第一样品;
2,将65份的热转变温度35℃的包覆微胶囊,加入10份的甲苯溶剂中,采用超声和乳化分散手段,使其均匀分散于溶液中,得到第二样品;
3,将第一样品和第二样品混合,搅拌30min,采用刮刀间隙为500um的涂敷设备,将样品涂敷于厚度为20um的石墨片薄膜上,然后放于110℃烘箱中,除去甲苯溶剂,得到附着有热相变层的导热基材,其中热相变层包括6份的丁苯树脂、12份的正二十烷烃和82份的包覆微胶囊;
4,采用涂敷设备,在导热基材附着有热相变层的一侧面上涂覆一层厚度30um的双面胶,并在双面粘接层远离导热基材的一面上粘合离型膜;
5,根据需求裁切出形状。
实施例5
1,将5份的丁苯树脂D1118溶于10份的甲苯溶剂中,溶解完全后,加入5份的正二十烷烃继续搅拌均匀,得到第一样品;
2,将70份的热转变温度42℃的包覆微胶囊,加入10份的甲苯溶剂中,采用超声和乳化分散手段,使其均匀分散于溶液中,得到第二样品;
3,将第一样品和第二样品混合,搅拌30min,采用刮刀间隙为1000um的涂敷设备,将样品涂敷于厚度为20um的石墨片薄膜上,然后放于110℃烘箱中,除去甲苯溶剂,得到附着有热相变层的导热基材,其中热相变层包括6份的丁苯树脂、6份的正二十烷烃和88份的包覆微胶囊;
4,采用涂敷设备,在导热基材附着有热相变层的一侧面上涂覆一层厚度30um的双面胶,并在双面粘接层远离导热基材的一面上粘合离型膜;
5,根据需求裁切出形状。
实施例6
1,将5份的丁苯树脂D1118溶于10份的甲苯溶剂中,溶解完全后,加入5份的正二十烷烃继续搅拌均匀,得到第一样品;
2,将70份的热转变温度42℃的包覆微胶囊,加入10份的甲苯溶剂中,采用超声和乳化分散手段,使其均匀分散于溶液中,得到第二样品;
3,将第一样品和第二样品混合,搅拌30min,采用刮刀间隙为500um的涂敷设备,将样品涂敷于厚度为35um的铜箔上,然后放于80℃烘箱中,除去甲苯溶剂,得到附着有热相变层的导热基材,其中热相变层包括6份的丁苯树脂、6份的正二十烷烃和88份的包覆微胶囊;
4,采用涂敷设备,在导热基材附着有热相变层的一侧面上涂覆一层厚度30um的双面胶,并在双面粘接层远离导热基材的一面上粘合离型膜;
5,根据需求裁切出形状。
实施例7
1,将5份的丁苯树脂D1118溶于10份的甲苯溶剂中,溶解完全后,加入5份的正二十烷烃继续搅拌均匀,得到第一样品;
2,将70份的热转变温度42℃的包覆微胶囊,加入10份的甲苯溶剂中,采用超声和乳化分散手段,使其均匀分散于溶液中,得到第二样品;
3,将第一样品和第二样品混合,搅拌30min,采用刮刀间隙为500um的涂敷设备,将样品涂敷于厚度为15um的PET薄膜上,然后放于110℃烘箱中,除去甲苯溶剂,得到附着有热相变层的导热基材,其中热相变层包括6份的丁苯树脂、6份的正二十烷烃和88份的包覆微胶囊;
4,采用涂敷设备,在导热基材附着有热相变层的一侧面上涂覆一层厚度30um的双面胶,并在双面粘接层远离导热基材的一面上粘合离型膜;
5,根据需求裁切出形状。
需要说明的是,以下对于制备原材料的选择上,其中,粘接剂为丁苯树脂D1118,有机溶剂为甲苯溶液,热相变材料为正二十烷烃,可以理解的,粘接剂、有机溶剂和热相变材料还可选用其他原材料,但应满足上述对于原材料的要求。
上述各实施例中制备的导热复合材料的性能如表1所示。
表1-导热复合材料性能表
Figure BDA0003357047750000081
表1中,厚度:代表了导热复合材料本体空间厚度以及厚度均匀性,电子产品使用时,空间有限,对厚度以及均匀度有要求;热焓:代表复合材料吸放热的能力,热焓越高,吸热能力越强,热控制效果越好;热转变温度:复合材料开始吸放热时的温度;双85后热焓损失:是在高温高湿状态下300h后,热焓前后的损失比值;热导率:复合材料的导热能力。
通过对表格数据中实施例1,实施例2和实施例3的对比分析,粘结剂丁苯树脂增多,复合材料的关键性能热焓值会减小,所以粘结剂越多,复合材料关键值热焓减小,但粘结剂含量过少,复合材料粘结性能偏差,成膜性较差;实施例1与实施例4的对比分析,热相变材料正二十烷烃的含量越大,复合材料热焓越高,但包覆微胶囊的量减少,复合材料受热后的成型性较差;
实施例1与实施例5的对比分析,涂层厚度越厚,复合材料热焓越高,可根据热焓需求与使用空间制定复合材料厚度;实施例1-5与实施例6和7的对比分析,基材不同,复合材料的热导率,热焓,热转变温度等性能也会发生变化。
以上的仅是本发明的部分实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (10)

1.一种导热复合材料,其特征在于,包括:导热基材和叠设于所述导热基材上的热相变层;
其中,所述导热基材为导热薄膜材料,所述导热薄膜材料的厚度为10-50μm,所述热相变层以质量百分比计,包括6-13份的粘接剂,6-13份的热相变材料和74-88份的包覆微胶囊。
2.根据权利要求1所述的导热复合材料,其特征在于,所述导热薄膜材料包括石墨片、石墨烯薄膜、碳纳米管薄膜、铜箔、导热PET薄膜、导热PI薄膜中的任意一种。
3.根据权利要求1所述的导热复合材料,其特征在于,所述粘接剂为弹性无规共聚物、弹性接枝共聚物或弹性嵌段共聚物。
4.根据权利要求3所述的导热复合材料,其特征在于,所述粘接剂为丁苯树脂、羟基改性丁苯树脂、丙烯酸树脂、水性聚氨酯、水性丙烯酸树脂乳液中的至少一种。
5.根据权利要求1所述的导热复合材料,其特征在于,所述热相变材料的热转变温度为25-65℃之间,所述热相变材料为链烷烃结构,分子式为CnH(n+2),其中,n的取值范围为10-44。
6.根据权利要求1所述的导热复合材料,其特征在于,所述包覆微胶囊为具有核-壳结构的有机相变微胶囊,所述有机相变微胶囊的粒径为50-500μm。
7.根据权利要求6所述的导热复合材料,其特征在于,所述有机相变微胶囊的核为囊芯,所述囊芯包括石蜡、正十八烷以及正十四烷中的一种或多种成分,所述有机相变微胶囊的壳为囊壁,所述囊壁包括二氧化硅,三聚氰胺中的一种或多种成分。
8.根据权利要求1所述的导热复合材料,其特征在于,所述导热复合材料还包括层叠设置于所述热相变层远离所述导热基材一侧的双面粘结层,所述双面粘结层包括PET/PI中间层,及设置于所述PET/PI中间层两侧的胶层。
9.一种制备方法,其特征在于,用于制备如权利要求1-7任意一项所述的导热复合材料,所述制备方法包括:
将5-10份的粘接剂、5-10份的热相变材料和65-70份包覆微胶囊混合于8-20份的有机溶剂中,得到混合样品;
将所述混合样品涂覆于导热基材的表面,然后烘烤处理,除去所述有机溶剂,得到所述导热复合材料。
10.根据权利要求9所述的制备方法,其特征在于,所述有机溶剂为甲苯、二甲苯、丁酮、丙酮中的至少一种。
CN202111354868.8A 2021-11-16 2021-11-16 一种导热复合材料及其制备方法 Pending CN114085652A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111354868.8A CN114085652A (zh) 2021-11-16 2021-11-16 一种导热复合材料及其制备方法
US17/565,329 US20230151258A1 (en) 2021-11-16 2021-12-29 Thermally Conductive Composite and Method of Making the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111354868.8A CN114085652A (zh) 2021-11-16 2021-11-16 一种导热复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN114085652A true CN114085652A (zh) 2022-02-25

Family

ID=80300934

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111354868.8A Pending CN114085652A (zh) 2021-11-16 2021-11-16 一种导热复合材料及其制备方法

Country Status (2)

Country Link
US (1) US20230151258A1 (zh)
CN (1) CN114085652A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114771040A (zh) * 2022-03-17 2022-07-22 株洲时代华昇新材料技术有限公司 一种石墨叠层复合材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030041891A (ko) * 2003-03-21 2003-05-27 이효진 잠열저장물질을 함유한 고분자수지
CN107538842A (zh) * 2017-05-19 2018-01-05 上海叹止新材料科技有限公司 一种储能散热复合胶片及其制备方法
CN110330945A (zh) * 2019-08-14 2019-10-15 杭州英诺克新材料有限公司 水性相变微胶囊薄膜及其制备方法
CN110421924A (zh) * 2019-08-30 2019-11-08 江苏丰创新材料有限公司 一种石墨烯与陶瓷复合散热膜及其制备工艺
CN110880629A (zh) * 2019-11-19 2020-03-13 安徽省聚科石墨烯科技股份公司 一种石墨烯辅助相变材料散热的电池组装置
CN111432606A (zh) * 2020-04-21 2020-07-17 苏州天脉导热科技股份有限公司 一种复合散热片,其制备方法以及电子设备终端
CN111909661A (zh) * 2020-07-07 2020-11-10 贵州梅岭电源有限公司 一种热电池用高电导薄膜相变材料、制备方法及应用
CN111959072A (zh) * 2019-06-27 2020-11-20 襄阳三沃航天薄膜材料有限公司 一种储能相变薄膜复合材料及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6946190B2 (en) * 2002-02-06 2005-09-20 Parker-Hannifin Corporation Thermal management materials
KR101261064B1 (ko) * 2004-08-23 2013-05-06 제너럴 일렉트릭 캄파니 열 전도성 조성물 및 그의 제조 방법
US20160223269A1 (en) * 2015-02-04 2016-08-04 Outlast Technologies, LLC Thermal management films containing phase change materials
CN108003812B (zh) * 2017-12-14 2020-11-03 中国科学院深圳先进技术研究院 一种反应型导热绝缘双面胶带及其制备方法
KR102536265B1 (ko) * 2018-12-21 2023-05-25 삼성전자주식회사 폴더블 전자 장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030041891A (ko) * 2003-03-21 2003-05-27 이효진 잠열저장물질을 함유한 고분자수지
CN107538842A (zh) * 2017-05-19 2018-01-05 上海叹止新材料科技有限公司 一种储能散热复合胶片及其制备方法
CN111959072A (zh) * 2019-06-27 2020-11-20 襄阳三沃航天薄膜材料有限公司 一种储能相变薄膜复合材料及其制备方法和应用
CN110330945A (zh) * 2019-08-14 2019-10-15 杭州英诺克新材料有限公司 水性相变微胶囊薄膜及其制备方法
CN110421924A (zh) * 2019-08-30 2019-11-08 江苏丰创新材料有限公司 一种石墨烯与陶瓷复合散热膜及其制备工艺
CN110880629A (zh) * 2019-11-19 2020-03-13 安徽省聚科石墨烯科技股份公司 一种石墨烯辅助相变材料散热的电池组装置
CN111432606A (zh) * 2020-04-21 2020-07-17 苏州天脉导热科技股份有限公司 一种复合散热片,其制备方法以及电子设备终端
CN111909661A (zh) * 2020-07-07 2020-11-10 贵州梅岭电源有限公司 一种热电池用高电导薄膜相变材料、制备方法及应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114771040A (zh) * 2022-03-17 2022-07-22 株洲时代华昇新材料技术有限公司 一种石墨叠层复合材料及其制备方法

Also Published As

Publication number Publication date
US20230151258A1 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
Cheng et al. Constructing nickel chain/MXene networks in melamine foam towards phase change materials for thermal energy management and absorption-dominated electromagnetic interference shielding
Wu et al. Epoxy composites with high cross-plane thermal conductivity by constructing all-carbon multidimensional carbon fiber/graphite networks
Wang et al. Nanoporous boron nitride aerogel film and its smart composite with phase change materials
EP2836784B1 (en) Method of producing a latent heat storage device with phase change material and graphite matrix
Ng et al. Synthesis of novel phase change material microcapsule and its application
Wang et al. Thermal performance of galactitol/mannitol eutectic mixture/expanded graphite composite as phase change material for thermal energy harvesting
WO2016078432A1 (zh) 改性氧化铝复合材料、覆铜基板及其制备方法
Zhao et al. Graphene oxide aerogel beads filled with phase change material for latent heat storage and release
Tahan Latibari et al. Fabrication and performances of microencapsulated palmitic acid with enhanced thermal properties
JP7164874B2 (ja) 高熱伝導性材料及びその製造方法
TW201026836A (en) Heat conducting sheet, manufacturing method thereof, and heat radiator that utilizes same
US10041709B2 (en) Adsorption heat exchanger devices
KR20180105886A (ko) 복합 방열시트 및 이의 제조방법
CN110229361B (zh) 一种高填充柔性氮化硼复合薄膜材料、高填充柔性氮化硼覆铜板及其制备方法
CN114085652A (zh) 一种导热复合材料及其制备方法
Hu et al. Dual-encapsulated phase change composites with hierarchical MXene-graphene monoliths in graphene foam for high-efficiency thermal management and electromagnetic interference shielding
Gou et al. Polymer‐based nanocomposites with ultra‐high in‐plane thermal conductivity via highly oriented boron nitride nanosheets
CN110760189A (zh) 一种不同层型Ti3C2填充的高导热硅脂热界面材料及其制备方法
Jiang et al. Facile strategy for constructing highly thermally conductive epoxy composites based on a salt template-assisted 3D carbonization nanohybrid network
Wan et al. Enhanced in-plane thermal conductivity and mechanical strength of flexible films by aligning and interconnecting Si3N4 nanowires
Luo et al. Thermal conductivity and closed-loop recycling of bulk biphenyl epoxy composites with directional controllable thermal pathways
Li et al. Construction of compressible dual thermally conductive boron nitride network supported by Polyurethane@ Polydopamine skeleton for improved thermal management performance
Wu et al. Enhancing out-of-plane thermal conductivity of polyimide-based composites via the construction of inter-external dual heat conduction network by binary fillers
TWI503275B (zh) 形成奈米薄片石墨化相變材料方法及其奈米薄片石墨化熱管理介質
Tian et al. Molecular regulation of flexible composite solid–solid phase change materials with controllable isotropic thermal conductivity for thermal energy storage

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination