CN114069632B - 基于多参数规划的电动汽车充电站容量评估方法 - Google Patents
基于多参数规划的电动汽车充电站容量评估方法 Download PDFInfo
- Publication number
- CN114069632B CN114069632B CN202110824922.4A CN202110824922A CN114069632B CN 114069632 B CN114069632 B CN 114069632B CN 202110824922 A CN202110824922 A CN 202110824922A CN 114069632 B CN114069632 B CN 114069632B
- Authority
- CN
- China
- Prior art keywords
- charging station
- distribution network
- parameter
- model based
- power distribution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000011156 evaluation Methods 0.000 claims abstract description 36
- 230000006872 improvement Effects 0.000 claims abstract description 23
- 238000013210 evaluation model Methods 0.000 claims abstract description 22
- 239000011159 matrix material Substances 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims description 5
- 238000005457 optimization Methods 0.000 claims description 5
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- 101001028761 Arabidopsis thaliana Mitochondrial phosphate carrier protein 3, mitochondrial Proteins 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 description 8
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000004075 alteration Effects 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/04—Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
- H02J3/06—Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/12—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
- H02J3/14—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
- H02J3/144—Demand-response operation of the power transmission or distribution network
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
- H02J3/466—Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/10—Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/20—Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/40—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/30—Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
- Y02B70/3225—Demand response systems, e.g. load shedding, peak shaving
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/70—Smart grids as climate change mitigation technology in the energy generation sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
- Y02T90/167—Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S20/00—Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
- Y04S20/20—End-user application control systems
- Y04S20/222—Demand response systems, e.g. load shedding, peak shaving
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S30/00—Systems supporting specific end-user applications in the sector of transportation
- Y04S30/10—Systems supporting the interoperability of electric or hybrid vehicles
- Y04S30/12—Remote or cooperative charging
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Business, Economics & Management (AREA)
- Health & Medical Sciences (AREA)
- Economics (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- General Health & Medical Sciences (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
本发明公开基于多参数规划的电动汽车充电站容量评估方法,包括以下步骤:1)获取接入电动汽车充电站的配电网系统基础数据;2)建立基于配电网线性化最优潮流模型的充电站容量评估模型;3)建立基于多参数规划的容量评估改进模型;4)求解基于多参数规划的容量评估改进模型,得到充电站可用容量的可行域。本发明构建的基于配电网线性化最优潮流的充电站容量评估模型更加准确的评估了运行中的充电站的可用容量。
Description
技术领域
本发明涉及电力系统领域,具体是基于多参数规划的电动汽车充电站容量评估方法。
背景技术
大规模电动汽车的无序充电行为产生的充电负荷功率给配电网的供需平衡带来了极大的挑战,包括增大负荷曲线峰值、影响配电网的稳定、降低配电网电能质量、加重继电保护的负担和增加网络损耗等。电动汽车充电站作为连接电动汽车与配电网之间的媒介,对充电站可用容量可行域的准确评估有助于指导电动汽车充电,为充电调度决策提供有力的支持,保证配电网的安全、经济、稳定运行。现有的研究主要是对配电网接纳电动汽车的能力评估,以配电网所能接纳的电动汽车数量为评估标准,但是由于电动汽车的类别多种多样,充电负荷参差不齐,这给评估结果带来了很大的影响,而且结果无法体现充电站之间的联系。
发明内容
本发明的目的是提供基于多参数规划的电动汽车充电站容量评估方法,包括以下步骤:
1)获取接入电动汽车充电站的配电网系统基础数据;
所述配电网系统基础数据包括电动汽车充电站、发电机数量、发电机额定容量、配电网系统的拓扑结构、节点电压范围、传输功率范围和日负荷曲线。
2)建立基于配电网线性化最优潮流模型的充电站容量评估模型;
所述基于配电网线性化最优潮流的充电站容量评估模型的目标函数如下所示:
maxΣPEi(t) (1)
式中,PEi(t)表示在t时段充电站i的可用容量。
所述基于配电网线性化最优潮流的充电站容量评估模型的约束条件包括等值等式约束方程、等值不等式约束方程。
所述基于配电网线性化最优潮流的充电站容量评估模型的等值等式约束方程分别如下所示:
ΣPGi(t)=Ploss(t)+PL(t) (2)
式中,PGi(t)为发电机i在t时段的有功出力;Ploss(t)为t时段系统网损功率;PL(t)为t时段配电网的总负荷;Pi、Qi、Ui和δi分别表示节点i的有功注入、无功注入、电压幅值和相角,Gij和Bij分别为导纳矩阵中的电导和电纳;n为节点总数。
所述基于配电网线性化最优潮流的充电站容量评估模型的等值不等式约束方程分别如下所示:
Ui,min≤Ui(t)≤Ui,max (6)
PEmin≤PEi(t)≤PEmax (7)
式中,PGi、QGi为发电机i的有功、无功出力,max PG、min PG为发电机有功上下限约束;max QG、min QG为发电机无功上下限约束;Ui(t) 为第i个节点t时段的电压幅值;Ui,max和Ui,min分别为第i个节点电压的上限和下限;PEmin、PEmax为充电站容量允许的最小、最大值;PL、QL分别为线路有功和无功功率,SLmax为线路最大视在功率;
其中,系数和系数/>分别如下所示:
式中,E为偶常数;参数
3)建立基于多参数规划的容量评估改进模型;
建立基于多参数规划的充电站容量评估改进模型的方法为:以电动汽车充电站容量为规划参数w,更新基于配电网线性化最优潮流的充电站容量评估模型,得到基于多参数规划的充电站容量评估改进模型。
所述基于多参数规划的充电站容量评估改进模型的目标函数 max z(PE)如下所示:
max z(PE)=PEi (11)
所述基于多参数规划的充电站容量评估改进模型的约束条件如下所示:
G(P,w)=AP-Bw-C≤0 (12)
式中,P表示优化变量;PGi∈P;w是规划参数;PEi∈w;G(P,w) 是统一约束条件;A、B、C均表示统一约束的常数系数矩阵。
4)求解基于多参数规划的容量评估改进模型,得到充电站可用容量的可行域。
求解基于多参数规划的充电站容量评估改进模型的工具包括 CPLEX工具。
值得说明的是,本发明在配电网最优潮流模型的基础上,以电动汽车充电站可用容量最大为目标函数,增添充电站容量约束,构建了电动汽车充电站容量的评估模型,利用多参数规划对模型进行改进并求解出充电站容量的可行域,从而实现考虑配电网安全运行约束下的充电站容量可行域的评估。
本发明的技术效果是毋庸置疑的,本发明构建的基于配电网线性化最优潮流的充电站容量评估模型更加准确的评估了运行中的充电站的可用容量。本发明利用多参数规划对模型进行改进,求解的结果既可以很好的将评估结果可视化,又能体现出充电站之间的耦合关系,更好的为充电站负荷优化调度提供决策支持。
附图说明
图1为调整后的IEEE33节点测试系统图,图中数字1-33表示配电网节点;
图2为典型日负荷曲线;
图3为M0的计算结果;
图4为M1的计算结果I;
图5为M1的计算结果II;
图6为M1的计算结果III;
图7为M1的计算结果IV;
图8为M1的计算结果V。
具体实施方式
下面结合实施例对本发明作进一步说明,但不应该理解为本发明上述主题范围仅限于下述实施例。在不脱离本发明上述技术思想的情况下,根据本领域普通技术知识和惯用手段,做出各种替换和变更,均应包括在本发明的保护范围内。
实施例1:
基于多参数规划的电动汽车充电站容量评估方法,包括以下步骤:
1)获取接入电动汽车充电站的配电网系统基础数据;
所述配电网系统基础数据包括电动汽车充电站、发电机数量、发电机额定容量、配电网系统的拓扑结构、节点电压范围、传输功率范围和日负荷曲线。
2)建立基于配电网线性化最优潮流模型的充电站容量评估模型;
所述基于配电网线性化最优潮流的充电站容量评估模型的目标函数如下所示:
maxΣPEi(t) (1)
式中,PEi(t)表示在t时段充电站i的可用容量。
所述基于配电网线性化最优潮流的充电站容量评估模型的约束条件包括等值等式约束方程、等值不等式约束方程。
所述基于配电网线性化最优潮流的充电站容量评估模型的等值等式约束方程分别如下所示:
ΣPGi(t)=Ploss(t)+PL(t) (2)
式中,PGi(t)为发电机i在t时段的有功出力;Ploss(t)为t时段系统网损功率;PL(t)为t时段配电网的总负荷;Pi、Qi、Ui和δi分别表示节点i的有功注入、无功注入、电压幅值和相角,Gij和Bij分别为导纳矩阵中的电导和电纳;n为节点总数。
所述基于配电网线性化最优潮流的充电站容量评估模型的等值不等式约束方程分别如下所示:
Ui,min≤Ui(t)≤Ui,max (6)
PEmin≤PEi(t)≤PEmax (7)
式中,PGi、QGi为发电机i的有功、无功出力,max PG、min PG为发电机有功上下限约束;max QG、min QG为发电机无功上下限约束;Ui(t) 为第i个节点t时段的电压幅值;Ui,max和Ui,min分别为第i个节点电压的上限和下限;PEmin、PEmax为充电站容量允许的最小、最大值;PL、QL分别为线路有功和无功功率,SLmax为线路最大视在功率;
其中,系数和系数/>分别如下所示:
式中,E为偶常数;参数
3)建立基于多参数规划的容量评估改进模型;
建立基于多参数规划的充电站容量评估改进模型的方法为:以电动汽车充电站容量为规划参数w,更新基于配电网线性化最优潮流的充电站容量评估模型,得到基于多参数规划的充电站容量评估改进模型。
所述基于多参数规划的充电站容量评估改进模型的目标函数 max z(PE)如下所示:
max z(PE)=PEi (11)
所述基于多参数规划的充电站容量评估改进模型的约束条件如下所示:
G(P,w)=AP-Bw-C≤0 (12)
式中,P表示优化变量;PGi∈P;w是规划参数;PEi∈w;G(P,w) 是统一约束条件;A、B、C均表示统一约束的常数系数矩阵。
4)求解基于多参数规划的容量评估改进模型,得到充电站可用容量的可行域,求解工具包括CPLEX工具。
实施例2:
基于多参数规划的电动汽车充电站容量评估方法,包括以下步骤:
1)获取接入电动汽车充电站的配电网系统基础数据。配电网系统基础数据包括电动汽车充电站、发电机的数量及额定容量,配电网系统的拓扑结构、节点电压范围、传输功率范围和日负荷曲线。
2)建立基于配电网线性化最优潮流模型的电动汽车充电站容量评估模型。
所述基于配电网线性化最优潮流模型的充电站容量评估模型的目标函数如下所示:
max∑PEi(t) (1)
式中PEi(t)表示在t时段充电站i的可用容量。
所述基于配电网线性化最优潮流模型的充电站容量评估模型的约束条件包括等值等式约束方程和等值不等式约束方程。
所述基于配电网线性化最优潮流模型的充电站容量评估模型的等值等式约束方程分别如下所示:
∑PGi(t)=Ploss(t)+PL(t) (2)
式中PGi(t)为发电机i在t时段的有功出力,中Ploss(t)为t时段系统网损功率;PL(t)为t时段配电网的总负荷;式中Pi、Qi、Ui和δij分别表示节点i的有功注入、无功注入、电压幅值和相角,Gij和Bij分别为导纳矩阵中的电导和电纳。
所述基于配电网线性化最优潮流模型的充电站容量评估模型的等值不等式约束方程分别如下所示:
Ui,min≤Ui(t)≤Ui,max (6)
PEmin≤PEi(t)≤PEmax (7)
式中PGi、QGi为发电机i的有功、无功出力, min PG、max PG、min QG、max QG为发电机有功和无功的上下限约束;Ui(t) 为第i个节点t时段的电压幅值;Ui,min和Ui,max分别为第i个节点电压的上限和下限。本模型中,根节点电压基准值为1,其余节点的电压在基准值上允许偏差±5%;PEmin、PEmax为充电站容量允许的最小、最大值;PL、QL分别为线路有功和无功功率,SLmax为线路最大视在功率。系数和/>的表达式如下:
式中E取12。
3)建立基于多参数规划的容量评估改进模型。将电动汽车充电站容量作为规划参数(w)。通过建立配电网的最优潮流和约束条件,采用多参数规划法得到充电站容量区域。按照多参数规划法可以将上述容量评估模型的目标函数和约束条件用式(11)~(12)表示。模型的目标函数表述为(11),模型的约束条件可以表述为(12)。
max z(PE)=PEi (11)
G(P,w)=AP-Bw-C≤0 (12)
上式中,P表示一般模型的优化变量,PGi∈P。w是参数向量, PEi∈w。G(P,w)是一个统一的约束条件,A,B,C表示统一约束的常数系数矩阵。
4)求解上述两种模型。在MATLAB编程环境中利用CPLEX 求解工具对基于配电网线性化最优潮流模型的充电站容量评估模型进行求解,利用MPT3工具包对基于多参数规划的容量评估改进模型进行求解,最后对比分析两种容量评估结果。
实施例3:
基于多参数规划的电动汽车充电站容量评估方法的验证试验,包括以下步骤:
1)基础数据准备:采用改进的IEEE-33节点配电网测试系统进行仿真计算,保持原有系统线路结构参数不变,如图1所示。该算例系统的基础负荷为3775kW+2300kvar,基准功率为100MW。电动汽车充电站位于节点10、22、28,基本参数如表1所示。三台发电机组分别位于节点1、18、33,基本参数如表2所示,表3为IEEE-33 节点系统线路参数。如图2所示为典型日负荷曲线。电压范围为 0.9-1.1p.u.。线路传输最大功率为3MW。
表1 充电站容量参数
表2 发电机组参数
表3 IEEE-33支路参数
2)求解基于配电网线性化最优潮流模型的电动汽车充电站容量评估模型和基于多参数规划的容量评估改进模型
为了体现所提出方法的准确性和有效性,在调整后的IEEE33 节点配电系统上实现了以下2种方法,其中M0参与了比较。
M0:利用CPLEX求解器求解基于配电网线性化最优潮流模型的容量评估模型。
M1:利用MPT3工具包求解基于多参数规划的容量评估改进模型。
容量评估结果:采用M0-M1的求解方法对调整后的IEEE33节点系统进行计算,M0的计算结果如图3所示,M1的部分计算结果如图4~图8所示,M0为利用求解器简单的对评估模型进行求解,求解结果能很好的展示出不同时段各个充电站的最大可用容量,但结果只能显示出各个充电站自身容量的最大值,无法得出各个容量之间的变化关系。M1则是利用多参数规划算法对模型进行改进并求解,求解结果为充电站容量的可行域,由此评估出的充电站可用容量可行域更加准确。
将CPLEX求解器求解的结果与多参数规划方法求解的结果进行对比分析,可以得到CPLEX求解的结果在多参数规划求解的结果中只显示为一个点,而多参数规划方法求解出来的结果为每一个时段3个充电站容量的可行域,可行域中包含着无数个可行点,各个充电站的容量都可以按任何一个可行点进行分配。由此可见,可行域可以很好的展示出各个充电站之间的耦合关系,当其中1个(或2 个)充电站的充电负荷比较少时,两外2个(或1个)的可用容量将增大,但3个充电站容量之和不会大于总充电站容量之和。由此可见,多参数规划方法可以得到可视化的容量评估结果,更好地为充电调度提供决策支持。
综上所述,本发明提出了一种基于多参数规划的容量评估改进方法来计算电动汽车充电站可用容量的可行域。首先,在配电网最优潮流模型的基础上建立了充电站容量评估模型,以充电站最大可用容量为目标函数,考虑了节点电压约束、发电机出力上下限约束、功率平衡约束、充电站容量约束、网络潮流约束以及线路传输约束;其次,利用多参数规划对模型进行了改进,建立了基于多参数规划的充电站容量评估改进模型;最后,采用多参数规划几何算法对所建立的充电站容量评估改进模型进行求解,得到充电站可用容量的可行域。以改进的IEEE-33节点系统作为实例实现仿真分析。通过仿真结果可知,本发明所提出的基于多参数规划的充电站容量评估方法能够获得可视化的电动汽车充电站容量评估结果,求解的可行域还可以体现出充电站之间的耦合关系。
Claims (4)
1.基于多参数规划的电动汽车充电站容量评估方法,其特征在于,包括以下步骤:
1)获取接入电动汽车充电站的配电网系统基础数据;
2)建立基于配电网线性化最优潮流模型的充电站容量评估模型;
3)建立基于多参数规划的容量评估改进模型;
4)求解基于多参数规划的容量评估改进模型,得到充电站可用容量的可行域;
所述基于配电网线性化最优潮流的充电站容量评估模型的目标函数如下所示:
max∑PEi(t) (1)
式中,PEi(t)表示在t时段充电站i的可用容量;
所述基于配电网线性化最优潮流的充电站容量评估模型的约束条件包括等值等式约束方程、等值不等式约束方程;
所述基于配电网线性化最优潮流的充电站容量评估模型的等值等式约束方程分别如下所示:
∑PGi(t)=Ploss(t)+PL(t) (2)
式中,PGi(t)为发电机i在t时段的有功出力;Ploss(t)为t时段系统网损功率;PL(t)为t时段配电网的总负荷;Pi、Qi、Ui和δi分别表示节点i的有功注入、无功注入、电压幅值和相角,Gij和Bij分别为导纳矩阵中的电导和电纳;n为节点总数;
所述基于配电网线性化最优潮流的充电站容量评估模型的等值不等式约束方程分别如下所示:
Ui,min≤Ui(t)≤Ui,max (6)
PEmin≤PEi(t)≤PEmax (7)
式中,PGi、QGi为发电机i的有功、无功出力,maxPG、minPG为发电机有功上下限约束;maxQG、minQG为发电机无功上下限约束;Ui(t)为第i个节点t时段的电压幅值;Ui,max和Ui,min分别为第i个节点电压的上限和下限;PEmin、PEmax为充电站容量允许的最小、最大值;PL、QL分别为线路有功和无功功率,SLmax为线路最大视在功率;
其中,系数和系数/>分别如下所示:
式中,E为偶常数;参数
所述基于多参数规划的充电站容量评估改进模型的目标函数maxz(PE)如下所示:
max z(PE)=PEi (11)
所述基于多参数规划的充电站容量评估改进模型的约束条件如下所示:
G(P,w)=AP-Bw-C≤0 (12)
式中,P表示优化变量;PGi∈P;w是规划参数;PEi∈w;G(P,w)是统一约束条件;A、B、C均表示统一约束的常数系数矩阵。
2.根据权利要求1所述的基于多参数规划的电动汽车充电站容量评估方法,其特征在于:所述配电网系统基础数据包括电动汽车充电站、所述发电机数量、发电机额定容量、配电网系统的拓扑结构、节点电压范围、传输功率范围和日负荷曲线。
3.根据权利要求1所述的基于多参数规划的电动汽车充电站容量评估方法,其特征在于,建立基于多参数规划的充电站容量评估改进模型的方法为:以电动汽车充电站容量为规划参数w,更新基于配电网线性化最优潮流的充电站容量评估模型,得到基于多参数规划的充电站容量评估改进模型。
4.根据权利要求1所述的基于多参数规划的电动汽车充电站容量评估方法,其特征在于:求解基于多参数规划的充电站容量评估改进模型的工具包括MPT3工具。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110824922.4A CN114069632B (zh) | 2021-07-21 | 2021-07-21 | 基于多参数规划的电动汽车充电站容量评估方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110824922.4A CN114069632B (zh) | 2021-07-21 | 2021-07-21 | 基于多参数规划的电动汽车充电站容量评估方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114069632A CN114069632A (zh) | 2022-02-18 |
CN114069632B true CN114069632B (zh) | 2023-07-25 |
Family
ID=80233337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110824922.4A Active CN114069632B (zh) | 2021-07-21 | 2021-07-21 | 基于多参数规划的电动汽车充电站容量评估方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114069632B (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109245182A (zh) * | 2018-10-17 | 2019-01-18 | 广东电网有限责任公司电力调度控制中心 | 一种基于参数规划的分布式光伏最大容量评估方法 |
CN109583706A (zh) * | 2018-11-08 | 2019-04-05 | 国网浙江省电力有限公司经济技术研究院 | 配电系统接纳电动汽车能力的多元优化评估方法及系统 |
CN112651603A (zh) * | 2020-12-04 | 2021-04-13 | 苏州电力设计研究院有限公司 | 考虑电动汽车充电站耦合作用的容量评估方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11878602B2 (en) * | 2019-11-22 | 2024-01-23 | State Grid Fujian Electric Power Co., Ltd. | Method for establishing active distribution network planning model considering location and capacity determination of electric vehicle charging station |
-
2021
- 2021-07-21 CN CN202110824922.4A patent/CN114069632B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109245182A (zh) * | 2018-10-17 | 2019-01-18 | 广东电网有限责任公司电力调度控制中心 | 一种基于参数规划的分布式光伏最大容量评估方法 |
CN109583706A (zh) * | 2018-11-08 | 2019-04-05 | 国网浙江省电力有限公司经济技术研究院 | 配电系统接纳电动汽车能力的多元优化评估方法及系统 |
CN112651603A (zh) * | 2020-12-04 | 2021-04-13 | 苏州电力设计研究院有限公司 | 考虑电动汽车充电站耦合作用的容量评估方法 |
Non-Patent Citations (3)
Title |
---|
A state-independent linear power flow model with accurate estimation of voltage magnitude;YANG J W et al.;IEEE Transactions on Power Systems;第32卷(第5期);3607-3617 * |
Impact of Energy Storage on Economic Dispatch of Distribution Systems: A Multi-Parametric Linear Programming Approach and Its Implications;WEI WEI et al.;IEEE Open Access Journal of power and energy;第2020卷(第7期);243-253 * |
Security region of renewable energy integration: Characterization and flexibility;Wei Dai et al.;Energy;第2019卷(第187期);1-11 * |
Also Published As
Publication number | Publication date |
---|---|
CN114069632A (zh) | 2022-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Aien et al. | Probabilistic load flow in correlated uncertain environment using unscented transformation | |
CN103903073B (zh) | 一种含分布式电源及储能的微电网优化规划方法及系统 | |
CN106655227B (zh) | 一种基于智能软开关的有源配电网馈线负载平衡方法 | |
Zheng et al. | Multi-objective distributed wind generation planning in an unbalanced distribution system | |
CN104009484B (zh) | 一种基于潮流计算的电网降损评估方法 | |
Ali et al. | Optimization of photovoltaic and wind generation systems for autonomous microgrids with PEV-parking lots | |
CN105048468B (zh) | 基于分布式计算的输配电网一体化电压稳定评估方法 | |
CN103595040A (zh) | 含直流分布式电源的配电网及其综合负荷特性的分析方法 | |
CN106786608B (zh) | 一种适用于分布式电源接入的不确定谐波潮流计算方法 | |
CN105720578B (zh) | 含节点注入功率不确定性的有源配电网量测优化配置方法 | |
US11881713B1 (en) | Digital twin advanced distribution management systems (ADMS) and methods | |
Al-Humaid et al. | Two-stage stochastic optimization of sodium-sulfur energy storage technology in hybrid renewable power systems | |
Yan et al. | Statistical analysis and modeling of plug-in electric vehicle charging demand in distribution systems | |
CN109861231B (zh) | 一种基于凸多边形的电力系统区间潮流方法 | |
Long et al. | Statistical quantification of voltage violations in distribution networks penetrated by small wind turbines and battery electric vehicles | |
Srivastava et al. | A congestion forecast framework for distribution systems with high penetration of PVs and PEVs | |
CN114069632B (zh) | 基于多参数规划的电动汽车充电站容量评估方法 | |
Lou et al. | Static Volatge Stability Evaluation on the Urban Power System by Continuation Power Flow | |
Li et al. | Stochastic optimal power flow approach considering correlated probabilistic load and wind farm generation | |
CN107959287A (zh) | 一种两个电压等级电网生长演化模型的构建方法 | |
CN115618753A (zh) | 面向频率可调脉冲工况的混合储能系统联合优化方法 | |
CN114897318A (zh) | 考虑需求响应和时段耦合的配电网承载能力评估方法 | |
CN114498778A (zh) | 交直流联合送电极限确定方法及装置 | |
Maasmann et al. | Charging optimization due to a fuzzy feedback controlled charging algorithm | |
Souheyla et al. | Golden Jackal Algorithm for Optimal Size and Location of Distributed Generation in Unbalanced Distribution Networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |