CN114059166B - 一种六方氮化硼模板的制备方法 - Google Patents

一种六方氮化硼模板的制备方法 Download PDF

Info

Publication number
CN114059166B
CN114059166B CN202111348902.0A CN202111348902A CN114059166B CN 114059166 B CN114059166 B CN 114059166B CN 202111348902 A CN202111348902 A CN 202111348902A CN 114059166 B CN114059166 B CN 114059166B
Authority
CN
China
Prior art keywords
reaction chamber
source
baln
introducing
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111348902.0A
Other languages
English (en)
Other versions
CN114059166A (zh
Inventor
张纪才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN202111348902.0A priority Critical patent/CN114059166B/zh
Publication of CN114059166A publication Critical patent/CN114059166A/zh
Application granted granted Critical
Publication of CN114059166B publication Critical patent/CN114059166B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/342Boron nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供了一种六方氮化硼模板的制备方法,包括:将异质衬底放入CVD或者HVPE反应腔室,向反应腔室内通入氮气和/或氢气,并将反应腔室的温度升温至1300‑1500℃,以达到生长BAlN的生长温度;在1300‑1500℃下,向反应腔室内通入氢气以清洗异质衬底,清洗时间为5‑10分钟;在1300‑1500℃条件下,同时向反应腔室内通入氮源、铝源和硼源,使氮源的通入流量为10‑5000sccm,铝源和硼源的通入流量分别为0.05‑10sccm;以及在BAlN层厚度达到50‑1000nm后,改变生长条件,将反应腔室内的生长温度提升1500‑1700℃,压力为10‑100Torr,使氮源的通入流量为10‑1000sccm,硼源的通入流量为0.05‑50sccm,在BAlN缓冲层上原位生长厚度为2‑10μm的六方氮化硼模板,其中,所述六方氮化硼模板的生长速率为0.1‑20μm/h。

Description

一种六方氮化硼模板的制备方法
技术领域
本发明涉及一种六方氮化硼模板的制备方法,特别是涉及薄膜厚度和对衬底的处理技术和防剥离技术。
背景技术
六方氮化硼(h-BN)在很多方面表现出极佳的物理化学性质,包括防腐蚀性,化学稳定性,高导热性等。作为一种宽带隙半导体材料,其禁带宽度为6eV左右,是一种优异的深紫外发光材料。相较氮化铝(AlN)材料,由于其p型掺杂更为容易实现,因此有望在深紫外发光器件得到广泛应用,克服深紫外发光中现存的一系列问题,替代现有的汞灯,实现环保节能的深紫外光源。在半导体固态中子探测器方面,BN也具有独特的优势。10B具有较大的中子捕获截面,因此h-BN是一种理想的固态中子探测器材料。
以蓝宝石为衬底,在h-BN在外延生长过程中,h-BN与蓝宝石之间是通过范德华力相结合。但是由于h-BN与蓝宝石之间较大的热失配和晶格失配,会导致外延生长结束后h-BN与蓝宝石之间通常会出现自剥离现象,研究发现,当h-BN厚度超过一定值时,h-BN与蓝宝石出现自剥离,从而难以形成h-BN/蓝宝石模板衬底。如图1所示,出现自剥离现象时的SEM截面图。
发明内容
为了解决上述问题,本发明提供了一种六方氮化硼模板的制备方法,包括:
1)将异质衬底(如蓝宝石或者SiC衬底等)放入CVD或者HVPE反应腔室,向反应腔室内通入氮气和/或氢气,并将反应腔室的温度升温至1300-1500℃,以达到生长BAlN的生长温度;
2)在1300-1500℃下,向反应腔室内通入氢气以清洗异质衬底,清洗时间为5-10分钟;
3)在1300-1500℃条件下,同时向反应腔室内通入氮源、铝源和硼源,使氮源的通入流量为10-5000sccm,铝源和硼源的通入流量分别为0.05-10sccm,并控制反应腔室的生长压力为10-100Torr,以生长成厚度为50-1000nm的BAlN层;
4)在BAlN层厚度达到50-1000nm后,改变生长条件,将反应腔室内的生长温度提升1500-1700℃,压力为10-100Torr,使氮源的通入流量为10-1000sccm,硼源的通入流量为0.05-50sccm,在BAlN缓冲层上原位生长厚度为2-10μm的六方氮化硼模板,其中,所述六方氮化硼模板的生长速率为0.1-20μm/h;最终得到蓝宝石/BAlN/h-BN模板。
本发明在异质外延制备BN时,先在异质衬底上在高温下先生长一层BAlN薄膜,厚度在50-1000纳米,然后原位更改生长条件,进一步外延生长h-BN材料。通过本方法,可以有效避免BN的剥离现象。
另外,首先沉积的BAlN过渡层,可以有效的消除BN与蓝宝石衬底之间因为晶格失配和热失配导致的分离现象,缓解应力,从而形成完整的BN/蓝宝石模板。
附图说明
图1为含有700纳米左右的BAlN过渡层,BN可以生长到8微米左右都不会出现与蓝宝石的分离现象;
图2为含有700纳米左右BAlN过渡层的BN/蓝宝石模板的XRD曲线;以及
图3为无BAlN过渡层时,BN在很小厚度即与蓝宝石出现分离现象。
具体实施方式
提供以下参考附图的描述是为了帮助全面了解由权利要求及其等同形式所限定的本公开的各种实施例。它包括各种具体的细节来帮助理解,但这些细节只能被视为示范。因此,本领域普通技术人员将认识到,在不脱离本公开的范围和精神的情况下,可以对本文所描述的各种实施例进行各种更改和修改。此外,为了清楚和简明,可能省略对公知功能和结构的描述。
以下描述和权利要求中所使用的术语和措辞并不限于书面含义,而是仅仅由发明人使用以使得能够清楚而一致地理解本公开。因此,本领域技术人员应当明白,以下对本公开的各种实施例的描述仅仅为了说明的目的,而不旨在限制由所附权利要求及其等同形式所限定的本公开。
应理解,除非上下文中另有明确指示,未指明数量的表述“一”、“一种”和“该”也包括多个所指对象。
实施例1
本发明提供了一种六方氮化硼模板的制备方法,具体包括如下步骤:
1)将异质衬底(如蓝宝石或者SiC衬底等)放入CVD或者HVPE反应腔室,向反应腔室内通入氮气和/或氢气,并将反应腔室的温度升温至1400℃,以达到生长BAlN的生长温度;
2)在1300-1500℃下,向反应腔室内通入氢气以清洗异质衬底,清洗时间为5-10分钟;
3)在1300-1500℃条件下,同时向反应腔室内通入氮源、铝源和硼源,使氮源的通入流量为50sccm,铝源和硼源的通入流量分别为1sccm,并控制反应腔室的生长压力为10Torr,以生长成厚度为700nm的BAlN层;
4)在BAlN层厚度达到50-1000nm后,改变生长条件,将反应腔室内的生长温度提升1600℃,压力为10Torr,使氮源的通入流量为10sccm,硼源的通入流量为1sccm,在BAlN层上原位生长厚度为5μm的六方氮化硼模板,其中,所述六方氮化硼模板的生长速率为10μm/h;最终得到蓝宝石/BAlN/h-BN模板。
该实施例1所获的蓝宝石/高温BN缓冲层/h-BN模板的截面SEM图如图1所示,对所获蓝宝石/高温BN缓冲层/h-BN模板进行测试,所获XRD衍射图如图2所示。
对比例1
1)将异质衬底(如蓝宝石或者SiC衬底等)放入CVD或者HVPE反应腔室,向反应腔室内通入氮气和/或氢气,并将反应腔室的温度升温至1600℃;
2)在1600℃条件下,向反应腔室内通入氢气以清洗异质衬底,清洗时间为5-10分钟;
3)在1600℃,压力为10Torr,使氮源的通入流量为10sccm,硼源的通入流量为1sccm,在BAlN层上原位生长厚度为4μm的六方氮化硼模板,其中,所述六方氮化硼模板的生长速率为10μm/h;最终得到蓝宝石/h-BN模板。
对比例1所获蓝宝石/h-BN模板的截面SEM图如图3所示,已经出现自剥离。
通过实施例和对比例所获h-BN模板的测试结果可以看出,高温BAlN层,可以有效避免BN和蓝宝石的自分离,从而可实现一定厚度的氮化硼/蓝宝石模板。

Claims (1)

1.一种六方氮化硼模板的制备方法,包括:
将异质衬底放入CVD或者HVPE反应腔室,向反应腔室内通入氮气和/或氢气,并将反应腔室的温度升温至1300-1500℃,以达到生长BAlN的生长温度,所述异质衬底为蓝宝石或SiC衬底;
在1300-1500℃下,向反应腔室内通入氢气以清洗异质衬底,清洗时间为5-10分钟;
在1300-1500℃条件下,同时向反应腔室内通入氮源、铝源和硼源,使氮源的通入流量为10-5000sccm,铝源和硼源的通入流量分别为0.05-10sccm,并控制反应腔室的生长压力为10-100Torr,以生长成厚度为50-1000nm的BAlN层;以及
在BAlN层厚度达到50-1000nm后,改变生长条件,将反应腔室内的生长温度提升1500-1700℃,压力为10-100Torr,使氮源的通入流量为10-1000sccm,硼源的通入流量为0.05-50sccm,在BAlN缓冲层上原位生长厚度为2-10μm的六方氮化硼模板,其中,所述六方氮化硼模板的生长速率为0.1-20μm/h。
CN202111348902.0A 2021-11-15 2021-11-15 一种六方氮化硼模板的制备方法 Active CN114059166B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111348902.0A CN114059166B (zh) 2021-11-15 2021-11-15 一种六方氮化硼模板的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111348902.0A CN114059166B (zh) 2021-11-15 2021-11-15 一种六方氮化硼模板的制备方法

Publications (2)

Publication Number Publication Date
CN114059166A CN114059166A (zh) 2022-02-18
CN114059166B true CN114059166B (zh) 2022-06-21

Family

ID=80272261

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111348902.0A Active CN114059166B (zh) 2021-11-15 2021-11-15 一种六方氮化硼模板的制备方法

Country Status (1)

Country Link
CN (1) CN114059166B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201314948A (zh) * 2011-07-29 2013-04-01 Bridgelux Inc 用於成長矽上氮化鎵之含硼緩衝層
CN110791805A (zh) * 2019-10-31 2020-02-14 中国电子科技集团公司第十三研究所 一种衬底、外延片及其生长方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201314948A (zh) * 2011-07-29 2013-04-01 Bridgelux Inc 用於成長矽上氮化鎵之含硼緩衝層
CN110791805A (zh) * 2019-10-31 2020-02-14 中国电子科技集团公司第十三研究所 一种衬底、外延片及其生长方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Effects of sapphire nitridation and growth temperature on the epitaxial growth of hexagonal;Kawser Ahmed et al.;《Mater. Res. Express》;20170124(第4期);第015007页 *

Also Published As

Publication number Publication date
CN114059166A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
CN104037287B (zh) 生长在Si衬底上的LED外延片及其制备方法
JP5135501B2 (ja) 窒化物単結晶基板の製造方法及びこれを利用した窒化物半導体発光素子の製造方法
KR100644166B1 (ko) 질화물 반도체의 이종접합 구조체, 이를 포함하는나노소자 또는 이의 어레이
CN105914139B (zh) 一种石墨烯上自组织成核外延GaN材料的方法
CN105489723A (zh) 氮化物底层及其制作方法
JP2004524250A (ja) 窒化ガリウム材料および方法
JP2010030896A5 (ja) 高品質化合物半導体材料を製造するためのナノ構造適応層を使用する成長法、及び化合物半導体材料
JP2007294518A (ja) 窒化物系半導体基板及びその製造方法並びに窒化物系半導体発光デバイス用エピタキシャル基板
US8697564B2 (en) Method of manufacturing GaN-based film
JP4727169B2 (ja) エピタキシャル基板、当該エピタキシャル基板の製造方法、当該エピタキシャル基板の反り抑制方法、および当該エピタキシャル基板を用いた半導体積層構造
TWI531081B (zh) 半導體裝置的製造方法
CN106803478B (zh) 一种GaN纳米结构阵列生长方法
WO2016165558A1 (zh) 一种氮化物发光二极管结构及其制备方法
CN113782651A (zh) 一种图形化深紫外led外延结构及其制备方法
CN105914272B (zh) 一种发光二极管外延片及其制备方法
CN114574959A (zh) 一种氮化物外延层制备方法及其半导体外延片
CN112382709B (zh) 一种防裂纹的AlN外延层制造方法
CN104538509B (zh) 一种发光二极管三维结构层的生长方法
CN114059166B (zh) 一种六方氮化硼模板的制备方法
CN105097451A (zh) 低位错密度AlxGa1-xN外延薄膜的制备方法
KR20100104997A (ko) 전위 차단층을 구비하는 질화물 반도체 기판 및 그 제조 방법
CN113089091A (zh) 氮化硼模板及其制备方法
CN109560172B (zh) 一种半极性镓氮外延片及其制备方法
US8026517B2 (en) Semiconductor structures
CN205680699U (zh) 一种发光二极管外延片

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant