CN106803478B - 一种GaN纳米结构阵列生长方法 - Google Patents
一种GaN纳米结构阵列生长方法 Download PDFInfo
- Publication number
- CN106803478B CN106803478B CN201611113575.XA CN201611113575A CN106803478B CN 106803478 B CN106803478 B CN 106803478B CN 201611113575 A CN201611113575 A CN 201611113575A CN 106803478 B CN106803478 B CN 106803478B
- Authority
- CN
- China
- Prior art keywords
- gan
- temperature
- buffer layer
- layer
- growth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02441—Group 14 semiconducting materials
- H01L21/02444—Carbon, e.g. diamond-like carbon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/301—AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C23C16/303—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/02499—Monolayers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02603—Nanowires
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02658—Pretreatments
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
一种制备GaN纳米结构阵列的方法,利用CVD设备和石墨烯插入层及低温GaN缓冲层升华法生长GaN纳米结构阵列;衬底采用蓝宝石、硅或石英玻璃、GaN/蓝宝石(硅),衬底清洗后,先覆盖单层或多层石墨烯薄膜;将覆有石墨烯薄膜的衬底放入CVD管式炉生长系统中,开始GaN纳米结构生长;先在低温下生长GaN缓冲层,然后升温至高温开始生长GaN纳米阵列;缓冲层生长温度:500–1000℃,纳米线阵列生长温度1000‑1150℃;高纯N2作为载气,总N2载气流量0.5‑5slm。
Description
技术领域
本发明涉及一种用升华法生长GaN纳米结构阵列的方法。
背景技术
以GaN及InGaN、AlGaN合金材料为主的III-V族氮化物材料(又称GaN基材料)是近几年来国际上倍受重视的新型半导体材料。GaN基材料是直接带隙宽禁带半导体材料,具有1.9-6.2eV之间连续可变的直接带隙,优异的物理、化学稳定性,高饱和电子漂移速度,高击穿场强和高热导率等优越性能,在短波长半导体光电子器件和高频、高压、高温微电子器件制备等方面具有重要的应用,用于制造比如蓝、紫、紫外波段发光器件、探测器件,高温、高频、高场大功率器件,场发射器件,抗辐射器件,压电器件等。
一维体系的纳米材料是可以有效传输电子和光学激子的最小维度结构,也是纳米机械器件和纳米电子器件的最基本结构单元。III-V族氮化物材料作为重要半导体材料的优良特性使得一维氮化物纳米结构在微纳光电器件、光电探测器件、电子器件、环境和医学等领域具有更广泛的的潜在应用前景,因此,制备性能优异、高质量的一维氮化物纳米结构及特性研究就成为当前国际、国内研究的前沿课题。
III-V族氮化物材料的生长有很多种方法,如金属有机物气相外延(MOCVD)、高温高压合成体单晶、分子束外延(MBE)、升华法以及氢化物气相外延(HVPE)等。纳米结构的制备主要有各向异性可控生长法、VLS(Vapor–Liquid–Solid)和SLS(Solution–Liquid–Solid)机制生长法、模板辅助生长法、表面活性剂法、纳米粒子自组装及物理或化学方法剪切等。GaN纳米结构的生长可以采用多种方式如MOCVD、MBE等获得,但是此类设备价格成本高,源材料价格高昂。
由于石墨烯具有与纤锌矿GaN的c面相似的六角结构,且在超过1000℃的高温环境下,表面仍能保持杰出的物理和化学稳定性,为GaN材料的成核提供了条件,利于外延生长GaN纳米阵列。同时以石墨烯作插层,可以方便移植GaN纳米材料到各种柔性衬底上,实现可弯曲形变的三维柔性LED。
本发明给出了一种采用金属镓做原材料,石墨烯薄膜做插入层,用气相外延(CVD)设备升华法生长GaN纳米结构阵列的方法及工艺。
发明内容
本发明目的是:提出一种低成本的用金属镓做原材料,石墨烯薄膜做插入层,用升华法生长优异GaN纳米结构阵列的方法。
本发明的技术方案是,一种制备GaN纳米结构阵列的方法,其特征是利用CVD设备和石墨烯插入层及低温GaN缓冲层升华法生长GaN纳米结构阵列;衬底采用蓝宝石、硅或石英玻璃、GaN/蓝宝石(硅),衬底清洗后,先覆盖单层或多层石墨烯薄膜;将覆有石墨烯薄膜的衬底放入CVD管式炉生长系统中,开始GaN纳米结构生长;先在低温下生长GaN缓冲层,然后升温至高温开始生长GaN纳米阵列;缓冲层生长温度:500–1000℃,纳米线阵列生长温度1000-1150℃;高纯N2作为载气,总N2载气流量0.5-5slm。
GaN纳米结构生长温度尤其是:1000-1150℃,缓冲层生长温度尤其是700-900℃。金属镓熔点29.8℃,加热升华出镓蒸汽,Ga源采用常规的高纯金属镓加热升华镓蒸汽和高纯NH3反应生成GaN。高纯氨气作为氮源,NH3流量:100–2000sccm;缓冲层和纳米阵列生长时间分别为10-60秒及1-60分钟。
衬底(蓝宝石、石英玻璃、硅等)上覆盖单层或多层石墨烯薄膜;石墨烯覆盖到衬底上,在一定温度下烘干以使得石墨烯和衬底之间紧密接触。温度100-150℃,时间10-20分钟。
GaN缓冲层常压升华法生长,金属Ga作为镓源,镓升华蒸汽和NH3反应,GaN缓冲层生长温度500-1000℃。时间为10-60秒。
由于石墨烯具有与纤锌矿GaN的c面相似的六角结构,且在超过1000℃的高温环境下,表面仍能保持杰出的物理和化学稳定性,为GaN材料的成核提供了条件,利于外延生长GaN纳米阵列。同时以石墨烯作插层,可以方便移植GaN纳米材料到各种柔性衬底上,实现可弯曲形变的三维柔性LED。二维石墨烯表面与其上的外延膜之间是以范德瓦耳斯势键合,受失配位错及应力的影响较弱。所以直接生长纳米棒的取向杂乱无章。在范德瓦耳斯外延机制下,缓冲层对纳米棒的成核点和生长模式的影响是关键问题,它直接影响所获得的纳米棒的形貌、分布的有序程度以及质量,并最终影响后续器件工艺的成败。
在本发明中,在衬底上纳米线生长前的石墨烯插入层上先低温外延GaN缓冲层,可以实现GaN纳米线的有序排列。本发明的技术方案为:通过在衬底上覆盖单层或多层石墨烯薄膜并低温在其上外延GaN缓冲层的方法,升华法生长GaN纳米结构阵列。
本发明有益效果:本发明给出了一种工艺简单、成本低廉的GaN纳米结构阵列生长方法和工艺,比采用三甲基镓等原料便宜很多。GaN纳米线有序排列,直径数十到数百纳米,且长度可以达到几十微米。GaN纳米线呈扁平带状结构,直径约400-500nm;提供给器件制作以最坚实的基础。
附图说明
图1为本发明实施例的产物电子扫描显微镜形貌照片。图中分别为:a)700℃下石墨烯/蓝宝石上的GaN缓冲层,表面平整;b)700℃石墨烯/蓝宝石上先生长GaN缓冲层再外延GaN纳米线,GaN纳米线呈扁平带状结构,直径约400-500nm;c)d)优化后的石墨烯/GaN/蓝宝石上缓冲层上再外延GaN纳米线,部分区域可以看到出现c向GaN纳米结构。
具体实施方式
本发明方法和工艺包括几个部分:单层或多层石墨烯薄膜在衬底上的覆盖;石墨烯上GaN低温缓冲层升华法生长;GaN纳米线阵列的升华法生长。
本发明技术实施方式之一,在蓝宝石衬底上升华法制备GaN纳米线阵列,包括下面几步:
蓝宝石衬底的清洗和处理。将样品依次在去离子水、乙醇和去离子水中进行超声清洗,除去表面残留的污染物,用氮气吹干。
将石墨烯薄膜转移覆盖至蓝宝石衬底表面,清洗,并去除转移过程中石墨烯/衬底上产生的气泡。本实施例选择单层和2-3层石墨烯薄膜。
将石墨烯/蓝宝石衬底在120℃空气气氛中烘干处理,时间15分钟。
将石墨烯/蓝宝石衬底放入CVD管式炉生长系统中,开始GaN缓冲层生长。缓冲层生长温度:700℃;高纯氨气作为氮源,NH3流量200sccm;生长时间1分钟。缓冲层形貌见图1a。金属镓熔点温度29.8℃,加热时可升华出镓蒸汽。
继续升温至1100℃,生长20分钟。完成后降温取出样品,即获得GaN纳米线。采用优化条件生长GaN纳米结构阵列见图1d。
缓冲层生长温度:600或800℃均可;高纯(一般5N-6N)N2作为载气,总N2载气流量0.5-5slm;Ga源采用常规的高纯金属镓和高纯NH3反应生成GaN;高纯氨气作为氮源,NH3流量:100–2000sccm;生长时间1-60分钟。
常压升华法,金属Ga作为镓源,镓升华蒸汽和NH3(一般5N-6N)反应,纳米线生长温度100-1150℃。
Claims (1)
1.一种制备GaN纳米线阵列的方法,其特征是,利用CVD设备和石墨烯插入层及低温GaN缓冲层升华法生长GaN纳米线阵列;衬底采用蓝宝石、硅、石英玻璃、或GaN/蓝宝石,衬底清洗后,先覆盖单层或多层石墨烯薄膜;以温度100-150℃烘干使得石墨烯和衬底之间紧密接触,时间10-20分钟;将覆有石墨烯薄膜的衬底放入CVD管式炉生长系统中,采用常压升华法生长GaN缓冲层和GaN纳米线阵列,其中常压升华法采用高纯金属Ga作为镓源,加热到镓熔点以上,镓升华蒸汽和NH3反应生成GaN,先在低温下生长GaN缓冲层,然后升温至高温开始生长GaN纳米线阵列;缓冲层生长温度:700-900℃,纳米线阵列生长温度1000-1150℃;高纯N2作为载气,总N2载气流量0.5-5slm;NH3流量:100–2000sccm;GaN缓冲层和GaN纳米线阵列生长时间分别为10-60秒及1-60分钟。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611113575.XA CN106803478B (zh) | 2016-12-05 | 2016-12-05 | 一种GaN纳米结构阵列生长方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611113575.XA CN106803478B (zh) | 2016-12-05 | 2016-12-05 | 一种GaN纳米结构阵列生长方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106803478A CN106803478A (zh) | 2017-06-06 |
CN106803478B true CN106803478B (zh) | 2019-12-06 |
Family
ID=58985716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611113575.XA Active CN106803478B (zh) | 2016-12-05 | 2016-12-05 | 一种GaN纳米结构阵列生长方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106803478B (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109003888A (zh) * | 2018-07-20 | 2018-12-14 | 华南理工大学 | 硅/石墨烯复合衬底上外延生长GaN纳米柱及制备方法 |
CN108735866A (zh) * | 2018-07-20 | 2018-11-02 | 华南理工大学 | 生长在Si/石墨烯复合衬底上InN纳米柱外延片及其制备方法 |
CN109830413B (zh) * | 2019-01-11 | 2021-04-06 | 西安理工大学 | GaN微米棒阵列/石墨烯场发射阴极复合材料制备方法 |
CN109980054A (zh) * | 2019-03-29 | 2019-07-05 | 北京石墨烯研究院 | 一种GaN纳米柱的制备方法以及一种LED器件 |
CN110284198B (zh) * | 2019-07-22 | 2020-11-10 | 南京大学 | 一种控制GaN纳米线结构与形貌的分子束外延生长方法 |
CN113451108B (zh) | 2020-03-24 | 2024-06-25 | 中国科学院苏州纳米技术与纳米仿生研究所 | 一种超柔性透明半导体薄膜及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101931035A (zh) * | 2009-06-23 | 2010-12-29 | 日本冲信息株式会社 | 氮化物半导体层分离方法、半导体器件和晶片及制造方法 |
CN103477418A (zh) * | 2010-12-13 | 2013-12-25 | 挪威科技大学 | 石墨基板上的纳米线外延 |
CN104409319A (zh) * | 2014-10-27 | 2015-03-11 | 苏州新纳晶光电有限公司 | 一种石墨烯基底上生长高质量GaN缓冲层的制备方法 |
-
2016
- 2016-12-05 CN CN201611113575.XA patent/CN106803478B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101931035A (zh) * | 2009-06-23 | 2010-12-29 | 日本冲信息株式会社 | 氮化物半导体层分离方法、半导体器件和晶片及制造方法 |
CN103477418A (zh) * | 2010-12-13 | 2013-12-25 | 挪威科技大学 | 石墨基板上的纳米线外延 |
CN104409319A (zh) * | 2014-10-27 | 2015-03-11 | 苏州新纳晶光电有限公司 | 一种石墨烯基底上生长高质量GaN缓冲层的制备方法 |
Non-Patent Citations (1)
Title |
---|
Growth of GaN Nanostructures On Graphene;Avinash Patsha等;《International Conference on Nanoscience, Engineering and Technology》;20111130;第553-555页 * |
Also Published As
Publication number | Publication date |
---|---|
CN106803478A (zh) | 2017-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106803478B (zh) | 一种GaN纳米结构阵列生长方法 | |
KR100644166B1 (ko) | 질화물 반도체의 이종접합 구조체, 이를 포함하는나노소자 또는 이의 어레이 | |
US11417522B2 (en) | Two-dimensional AIN material and its preparation method and application | |
JP5244487B2 (ja) | 窒化ガリウム成長用基板及び窒化ガリウム基板の製造方法 | |
WO2019137059A1 (zh) | 生长在铝箔衬底上的氮化铟纳米柱外延片及其制备方法 | |
US7819974B2 (en) | Growth of textured gallium nitride thin films and nanowires on polycrystalline substrates | |
US6648966B2 (en) | Wafer produced thereby, and associated methods and devices using the wafer | |
CN112680714A (zh) | 一种生长AlN薄膜的方法 | |
WO2022127093A1 (zh) | 基于h-BN的V型隧穿结LED外延结构及其制备方法 | |
EP2575161B1 (en) | Method of growing semiconductor crystal | |
TW201536669A (zh) | 外延結構 | |
TWI557065B (zh) | 外延結構的製備方法 | |
WO2014032465A1 (zh) | 一种GaN纳米线生长方法 | |
CN102820211A (zh) | 制备非极性A面GaN薄膜的方法 | |
TWI557066B (zh) | 外延結構的製備方法 | |
CN106757323B (zh) | 一种无应力InN纳米线生长方法 | |
JP5095051B2 (ja) | 電子デバイス作製用サファイア単結晶基板及び電子デバイス作製用窒化ガリウム化合物半導体膜の作製方法 | |
WO2012029216A1 (ja) | 化合物半導体の製造方法 | |
JP2004307253A (ja) | 半導体基板の製造方法 | |
Ling et al. | Low-temperature facile synthesis of ZnO rod arrays and their device applications | |
CN110670138A (zh) | 用于氮化铝单晶生长的复合籽晶及其制备方法 | |
Shekari et al. | Optical and structural characterizations of GaN nanostructures | |
Kissinger | Indium Nitride Nanostructures Prepared by Various Growth Techniques | |
Shekari et al. | Structural characterizations of GaN nanowires grown on Si (111) substrates by thermal evaporation | |
CN112853319A (zh) | 在ZnO纳米线表面低温外延生长高质量GaN薄膜的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |