CN106757323B - 一种无应力InN纳米线生长方法 - Google Patents

一种无应力InN纳米线生长方法 Download PDF

Info

Publication number
CN106757323B
CN106757323B CN201611103463.6A CN201611103463A CN106757323B CN 106757323 B CN106757323 B CN 106757323B CN 201611103463 A CN201611103463 A CN 201611103463A CN 106757323 B CN106757323 B CN 106757323B
Authority
CN
China
Prior art keywords
inn
growth
substrate
indium
nano wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611103463.6A
Other languages
English (en)
Other versions
CN106757323A (zh
Inventor
修向前
陈丁丁
李悦文
陈琳
华雪梅
谢自力
韩平
陆海
顾书林
施毅
张�荣
郑有炓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201611103463.6A priority Critical patent/CN106757323B/zh
Publication of CN106757323A publication Critical patent/CN106757323A/zh
Application granted granted Critical
Publication of CN106757323B publication Critical patent/CN106757323B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种制备无应力InN纳米线的方法,利用CVD设备升华法生长InN纳米线;衬底采用蓝宝石、硅或石英玻璃、GaN/蓝宝石(硅),衬底清洗后,先覆盖单层或多层石墨烯薄膜;将覆有石墨烯薄膜的衬底表面沉积Au,放入CVD管式炉生长系统中,开始InN纳米线生长;常压,生长温度:500–800℃;高纯N2作为载气先吹扫管式炉去除空气等,然后持续通气保护InN纳米线外延,生长期间总N2载气流量0‑5slm;In源采用常规的高纯金属铟升华铟蒸汽和高纯氨气N H3反应生成InN。高纯氨气作为氮源,NH3流量:100–2000sccm;生长时间30‑150分钟。

Description

一种无应力InN纳米线生长方法
技术领域
本发明涉及一种用升华法生长InN纳米线的方法。
背景技术
以GaN及InGaN、AlGaN合金材料为主的III-V族氮化物材料(又称GaN基材料)是近几年来国际上倍受重视的新型半导体材料。GaN基材料是直接带隙宽禁带半导体材料,具有1.9—6.2eV之间连续可变的直接带隙,优异的物理、化学稳定性,高饱和电子漂移速度,高击穿场强和高热导率等优越性能,在短波长半导体光电子器件和高频、高压、高温微电子器件制备等方面具有重要的应用,用于制造比如蓝、紫、紫外波段发光器件、探测器件,高温、高频、高场大功率器件,场发射器件,抗辐射器件,压电器件等。
一维体系的纳米材料是可以有效传输电子和光学激子的最小维度结构,也是纳米机械器件和纳米电子器件的最基本结构单元。III-V族氮化物材料作为重要半导体材料的优良特性使得一维氮化物纳米结构在微纳光电器件、光电探测器件、电子器件、环境和医学等领域具有更广泛的的潜在应用前景,因此,制备性能优异、高质量的一维氮化物纳米结构及特性研究就成为当前国际、国内研究的前沿课题。
此外,由于石墨烯具有与纤锌矿氮化物的c面相似的六角结构,且在超过1000℃的高温环境下,表面仍能保持杰出的物理和化学稳定性,为氮化物材料的成核提供了条件,利于外延生长氮化物纳米线。同时以石墨烯作插层,可以方便移植氮化物纳米材料到各种柔性衬底上,实现可弯曲形变的三维柔性LED。
III-V族氮化物材料的生长有很多种方法,如金属有机物气相外延(MOCVD)、高温高压合成体单晶、分子束外延(MBE)、升华法以及氢化物气相外延(HVPE)等。纳米结构的制备主要有各向异性可控生长法、VLS(Vapor–Liquid–Solid)和SLS(Solution–Liquid–Solid)机制生长法、模板辅助生长法、表面活性剂法、纳米粒子自组装及物理或化学方法剪切等。InN纳米结构的生长可以采用多种方式如MOCVD、MBE等获得,但是此类设备价格成本高,MO源材料价格高昂。
本发明给出了一种采用金属铟做原材料,石墨烯薄膜做插入层,金属Au作为催化剂,用气相外延(CVD)升华法生长低应力InN纳米线的方法及工艺。
发明内容
本发明目的是:提出一种低成本的用金属铟做原材料,石墨烯薄膜做插入层,Au作为催化剂,用升华法生长优异性能的无应力InN纳米线。
本发明的技术方案是,一种制备无应力InN纳米线的方法,其特征是其特征是利用CVD设备升华法生长InN纳米线;衬底采用蓝宝石、硅或石英玻璃、GaN/蓝宝石(硅),衬底清洗后,先覆盖单层或多层石墨烯薄膜;将覆有石墨烯薄膜的衬底表面沉积Au,放入CVD管式炉生长系统中,开始InN纳米线生长;常压,生长温度:500–800℃;高纯N2作为载气先吹扫管式炉去除空气等,然后持续通气保护InN纳米线外延,生长期间总N2载气流量0-5slm;In源采用常规的高纯金属铟升华铟蒸汽和高纯氨气N H3反应生成InN。高纯氨气作为氮源,NH3流量:100–2000sccm;生长时间30-150分钟。生长温度尤其是:550-750℃。
采用常压升华法,金属铟作为In源,铟升华和NH3反应,铟熔点156.61℃,加热时超过熔点温度时升华,Au作为催化剂。
石墨烯转移到衬底上,在一定温度下烘干以使得石墨烯和衬底之间紧密接触。温度100-150℃,时间10-20分钟。
由于III-V族氮化物与衬底之间存在较大的晶格失配和热失配,生长的纳米线会有应力存在,严重影响纳米线器件的性能。在本发明中,在纳米线生长前衬底上增加石墨烯插入层,可以有效降低应力,实现低应力甚至无应力InN纳米线。本发明的技术方案为:通过在衬底上覆盖单层或多层石墨烯薄膜的方法,升华法生长无应力InN纳米线。
本发明有益效果是:本发明发现了无应力纳米线产品的生长,尤其是给出了一种工艺简单、成本低廉的无应力InN纳米线生长方法和工艺。比采用三甲基铟等原料便宜很多。InN纳米线直径达到数十到数百纳米,且长度可以达到几十微米。石墨烯存在降低了升华法生长样品中的应力,拉曼谱E2(high)模式与无应力InN单晶相比无频移。而只有Au催化剂时得到的InN纳米线,E2(high)模红移了4cm-1到486.1cm-1,说明样品中存在应力。高分辨率电子显微镜照片中,InN纳米线(0002)和(11-20)的晶格d间距分别为2.85和与InN体单晶相同,表明石墨烯插入层释放了应力,得到无应力InN纳米线。本发明提供给器件制作以最坚实的基础。
附图说明
图1为本发明实施例的产物电子扫描显微镜形貌照片。在其它参数不变的情况下,衬底样品为:(A)Graphene/GaN/蓝宝石(左),(B)Au-coated GaN/蓝宝石(中),(C)Au-coated Graphene/GaN/蓝宝石(右)。可以看出,无催化剂有石墨烯时未生长纳米线;在有催化剂、石墨烯插入层时纳米线形貌更好。
图2为本发明实施例的产物拉曼谱。升华法生长InN纳米线的拉曼谱,衬底样品分别为:(a)Graphene/GaN/蓝宝石(b)Au/GaN/蓝宝石(c)Au/Graphene/GaN/蓝宝石。分析表明,石墨烯存在降低了升华法生长样品中的应力,拉曼谱E2(high)模式与无应力InN单晶相比无频移。只有Au催化剂时得到的InN纳米线,E2(high)模红移了4cm-1到486.1cm-1,说明样品中存在应力。
图3为本发明实施例的产物高分辨率电子显微镜照片,(A)(B)分别表示不同的放大倍数。样品为Au/石墨烯/GaN/蓝宝石上的InN纳米线。InN纳米线(0002)和(11-20)的晶格d间距分别为2.85和与InN体单晶相同,表明石墨烯插入层释放了应力,得到无应力InN纳米线。
具体实施方式
本发明方法和工艺包括几个部分:单层或多层石墨烯薄膜在衬底上的覆盖;InN纳米线的升华法生长。
本发明技术实施方式之一,在GaN/蓝宝石衬底上升华法制备InN纳米线,包括下面几步:
1、GaN/蓝宝石衬底的清洗和处理。将样品依次在去离子水、乙醇和去离子水中进行超声清洗,除去表面残留的污染物,用氮气吹干。
2、将石墨烯薄膜转移覆盖至GaN/蓝宝石衬底表面,清洗,并去除转移过程中石墨烯/衬底上产生的气泡。本实施例选择单层和2-3层石墨烯薄膜。
3、将石墨烯/GaN/蓝宝石衬底在120℃空气气氛中烘干处理,时间15分钟。
4、采用物理气相沉积在烘干处理后的石墨烯/GaN/蓝宝石表面沉积金属Au作为催化剂。Au厚度3nm。
5、将石墨烯/GaN/蓝宝石衬底放入CVD管式炉生长系统中,开始生长InN纳米线。生长温度:750℃;高纯氨气作为氮源,NH3流量300sccm;生长时间90分钟。
6、生长完成后降温取出样品,即获得InN纳米线。

Claims (3)

1.一种制备无应力InN纳米线的方法,其特征是,利用CVD设备升华法生长InN纳米线;衬底采用蓝宝石、硅或石英玻璃、GaN/蓝宝石,衬底清洗后,先覆盖单层或多层石墨烯薄膜;将覆有石墨烯薄膜的衬底表面沉积Au,放入CVD管式炉生长系统中,开始InN纳米线生长;常压,生长温度:500–800℃;高纯N2作为载气先吹扫管式炉去除空气,然后持续通气保护InN纳米线外延,生长期间总N2载气流量0-5slm;In源采用常规的高纯金属铟升华铟蒸汽和高纯氨气NH3反应生成InN;高纯氨气作为氮源,NH3流量:100–2000sccm;生长时间30-150分钟;采用常压升华法,金属In作为铟源,铟升华和NH3反应,超过铟熔点温度时升华;Au作为催化剂。
2.根据权利要求1所述的InN纳米线制备方法,其特征是,石墨烯转移到衬底上,在100-150℃温度下烘干以使得石墨烯和衬底之间紧密接触,时间10-20分钟。
3.根据权利要求1所述的InN纳米线制备方法,其特征是,生长温度是:550- 750℃。
CN201611103463.6A 2016-12-05 2016-12-05 一种无应力InN纳米线生长方法 Active CN106757323B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611103463.6A CN106757323B (zh) 2016-12-05 2016-12-05 一种无应力InN纳米线生长方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611103463.6A CN106757323B (zh) 2016-12-05 2016-12-05 一种无应力InN纳米线生长方法

Publications (2)

Publication Number Publication Date
CN106757323A CN106757323A (zh) 2017-05-31
CN106757323B true CN106757323B (zh) 2019-06-04

Family

ID=58884652

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611103463.6A Active CN106757323B (zh) 2016-12-05 2016-12-05 一种无应力InN纳米线生长方法

Country Status (1)

Country Link
CN (1) CN106757323B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112062150A (zh) * 2020-09-15 2020-12-11 中山智隆新材料科技有限公司 一种制备高纯纳米氧化铟粉末的方法
CN115369379B (zh) * 2021-05-18 2024-05-03 中国科学院半导体研究所 GaN纳米线的制备方法和GaN纳米线

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103928501A (zh) * 2014-04-23 2014-07-16 西安电子科技大学 基于m面GaN上的极性InN纳米线材料及其制作方法
CN104685637A (zh) * 2012-06-21 2015-06-03 挪威科技大学(Ntnu) 太阳能电池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104685637A (zh) * 2012-06-21 2015-06-03 挪威科技大学(Ntnu) 太阳能电池
CN103928501A (zh) * 2014-04-23 2014-07-16 西安电子科技大学 基于m面GaN上的极性InN纳米线材料及其制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Selective-area growth of Indium nitride nanowires on gold-patterned Si(100) substrates;C.H.Liang et al.;《APPLIED PHYSICS LETTERS》;20020701;第81卷(第1期);第22-24页

Also Published As

Publication number Publication date
CN106757323A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
Kente et al. Gallium nitride nanostructures: Synthesis, characterization and applications
Choi et al. Growth and modulation of silicon carbide nanowires
KR100644166B1 (ko) 질화물 반도체의 이종접합 구조체, 이를 포함하는나노소자 또는 이의 어레이
CN106803478B (zh) 一种GaN纳米结构阵列生长方法
He et al. Growth and characterization of ternary AlGaN alloy nanocones across the entire composition range
US7819974B2 (en) Growth of textured gallium nitride thin films and nanowires on polycrystalline substrates
WO2018107713A1 (zh) 生长在Si衬底上的InN纳米柱外延片及其制备方法
CN112875742B (zh) 氧化镓纳米管及其制备方法和应用
JP5876408B2 (ja) ナノワイヤの作製方法
CN107574479A (zh) 一种多功能氢化物气相外延生长系统及应用
Tang et al. Controllable Synthesis of Vertically Aligned p‐Type GaN Nanorod Arrays on n‐Type Si Substrates for Heterojunction Diodes
CN106757323B (zh) 一种无应力InN纳米线生长方法
Xue et al. Review on nanomaterials synthesized by vapor transport method: growth and their related applications
CN104952984B (zh) 外延结构的制备方法
CN102828250A (zh) 一种GaN纳米线生长方法
Suo et al. Synthetic strategies and applications of GaN nanowires
TWI557066B (zh) 外延結構的製備方法
CN103757693B (zh) 一种GaN纳米线的生长方法
Li et al. Growth of InAs nanowires with the morphology and crystal structure controlled by carrier gas flow rate
Xu et al. Synthetics of ZnO nanowires on GaN micro-pyramids by gold catalyst
Qiu et al. Well-aligned ZnO nanocolumns grown by reactive electron beam evaporation
Kim et al. Epitaxial germanium nanowires on GaAs grown by chemical vapor deposition
Shekari et al. Optical and structural characterizations of GaN nanostructures
Li et al. Regular arrays of GaN nanorods
CN114717535B (zh) 一种在硅衬底上制备纤锌矿InGaN纳米棒的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant