CN114054018B - 一种用于光催化降解诺氟沙星的异质结材料BiVO4@LDHs - Google Patents

一种用于光催化降解诺氟沙星的异质结材料BiVO4@LDHs Download PDF

Info

Publication number
CN114054018B
CN114054018B CN202111234593.4A CN202111234593A CN114054018B CN 114054018 B CN114054018 B CN 114054018B CN 202111234593 A CN202111234593 A CN 202111234593A CN 114054018 B CN114054018 B CN 114054018B
Authority
CN
China
Prior art keywords
bivo
ldhs
norfloxacin
equal
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111234593.4A
Other languages
English (en)
Other versions
CN114054018A (zh
Inventor
姚屹洋
青木工莊
沈辉
杨春芳
杨建明
邵玉祥
李金花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Huayuan Pigment Co ltd
Original Assignee
Zhejiang Huayuan Pigment Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Huayuan Pigment Co ltd filed Critical Zhejiang Huayuan Pigment Co ltd
Priority to CN202111234593.4A priority Critical patent/CN114054018B/zh
Publication of CN114054018A publication Critical patent/CN114054018A/zh
Application granted granted Critical
Publication of CN114054018B publication Critical patent/CN114054018B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/007Mixed salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/232Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种用于光催化降解诺氟沙星的BiVO4@LDHs异质结纳米材料、其制备方法和应用,所述BiVO4@LDHs异质结纳米材料是以BiVO4十面体为载体,在BiVO4十面体载体上生长锌铬水滑石形成的复合材料,复合材料中所述锌铬水滑石的化学通式为[Zn2+ 1‑xCr3+ x(OH)2](CO3 2‑)x/2·mH2O],其中Zn2+与[Cr3+]的摩尔比为(1‑x):x,0.2≤x≤0.33,m为结晶水数量,2≤m≤6。本发明的锌铬水滑石和BiVO4复合材料用于催化降解废水中诺氟沙星,反应条件温和,诺氟沙星去除率高,催化降解后的复合材料易回收利用。

Description

一种用于光催化降解诺氟沙星的异质结材料BiVO4@LDHs
技术领域
本发明涉及一种用于光催化降解诺氟沙星的BiVO4@LDHs异质结纳米材料、其制备方法和应用。
背景技术
抗生素类药物由于在医药卫生和生命科学等领域具有广泛的价值得到快速的开发和应用,但是抗生素的乱用、滥用也造成了严重的环境污染问题,尤其是对水生系统中动植物造成了严重的损害。在抗生素中,诺氟沙星是应用最广泛的喹诺酮类药物之一。过去的几十年中,诺氟沙星大量使用而由于其结构的稳定性,大量滞留于环境系统中,使其对人体健康和生态环境均造成了严重的危害。当前,降解诺氟沙星的方法主要有化学氧化法、光催化法、生物处理法和电解法。在这些方法中,综合成本、效率与可操作性等因素,光催化氧化法是一种可持续去除水中诺氟沙星污染的最有前景的技术之一。一些传统的半导体光催化剂,如TiO2和ZnO等,已经被用于光催化降解诺氟沙星的研究和应用。然而,由于材料的高成本及低稳定性、宽禁带宽度、低光能利用率、低的电荷分离能力等问题,限制了其广泛应用。因此,开发高效、稳定、具有可见光活性的新型光催化剂是十分必要的。
BiVO4作为一种n型金属氧化物半导体,由于具有规整的晶型、大的比表面积、窄的禁带宽度等特点,在光电化学应用中表现出很高的性能,已经应用于水分解、CO2还原、有机污染物降解等领域,是极具潜力的半导体材料。
层状双金属氢氧化物,简称水滑石(LDHs),由层板阳离子和层间阴离子共同构成其层状结构。LDHs的组分来源广泛易得,故合成成本低廉。LDHs具有大比表面积(50-100m2/g)和窄禁带宽度(2.0-3.0eV)的特点,使其在光催化降解领域得到了广泛的应用。另外,由于LDHs结构的可调变性,当层板引起合适的过渡金属元素,或层间引入相应的有机或无机阴离子,其禁带宽度可进一步缩小为1.5–2.0eV,其可见光催化性能可以进一步得到强化。
因此,本发明利用BiVO4和ZnCr–LDHs合成了Z–Scheme型异质结(BiVO4@LDHs)用于诺氟沙星的可见光降解。
发明内容
针对现有技术存在的上述技术问题,本发明的目的之一在于提供一种用于光催化降解诺氟沙星的BiVO4@LDHs异质结纳米材料,所述BiVO4@LDHs异质结纳米材料包括作为载体的BiVO4十面体结构以及在BiVO4十面体载体上生长的锌铬水滑石;
所述锌铬水滑石的化学通式为[Zn2+ 1-xCr3+ x(OH)2](CO3 2-)x/2·mH2O];其中,Zn2+与[Cr3+]的摩尔比为(1-x):x,0.2≤x≤0.33;m为结晶水数量,2≤m≤6。
本发明提供的材料为BiVO4和LDHs的复合物;在一些实施方式中,本发明对其获得的BiVO4@LDHs进行了XRD表征,结果发现中XRD峰中。BiVO4@LDHs曲线中不仅保留了110、001、121、040、211、240、202、161等代表BiVO4的特征衍射峰,同时出现了绝大部分代表水滑石的特征峰(如003,009,110等),表明合成的是BiVO4和LDHs的复合物;进一步地,我们发现BiVO4的特征峰尖而窄,表明该复合材料保持了BiVO4的良好晶型;而LDHs的特征峰弱于BiVO4,表明BiVO4在复合物中占主导地位有关。
在另一些实施例中,对获得的BiVO4@LDHs复合材料进行电镜(SEM、TEM)表征,结果表明,所合成的ZnCr@BiVO4核壳结构由规则的BiVO4十面体内核为主体,ZnCr-LDHs加载到BiVO4的骨架上,两种材料的晶格界面相接触,形成了核壳结构复合材料。
在一些实施方式中,所述的BiVO4与锌铬水滑石中的铬钒摩尔比为0.4:1-1:1。
本发明的另一个目的在于提供前述所述的BiVO4@LDHs异质结纳米材料的制备方法,该方法包括以下步骤:
将BiVO4、硝酸锌、硝酸铬和尿素溶于去离子水中,混合分散均匀,所得分散液加入到聚四氟乙烯反应釜中,然后将聚四氟乙烯反应釜置于烘箱中于100℃反应12h,随后将聚四氟乙烯反应釜取出并自然冷却至室温,将反应液离心,所得固体依次用去离子水和无水乙醇洗涤后,在65℃干燥12h,即得所述BiVO4@LDHs异质结纳米材料。
在一些实施方式中,所述BiVO4与尿素的投料摩尔比是1:8。
本发明的再一个目的在于将前述所述的BiVO4@LDHs异质结纳米材料应用于催化降解废水中诺氟沙星;在本发明一些具体实施方式中,所述应用包括如下步骤:将BiVO4@LDHs置于诺氟沙星废水中,在温度10~50℃、pH 4.0~10.0条件下,500W氙灯照射0.5~6.0h,搅拌,使诺氟沙星降解;废水中诺氟沙星的质量浓度为10-50mg·L-1,所述BiVO4@LDHs在诺氟沙星废水中的用量为10~50mg·L-1;在一些具体实施例中,随着反应时间增加,BiVO4@LDHs复合材料对诺氟沙星的降解率高达90.27%。
与现有技术相比,本发明具有如下有益效果:
本发明以BiVO4十面体为载体,锌铬水滑石为负载材料的异质结光催化材料BiVO4@LDHs,所述BiVO4@LDHs复合材料具备较强的热稳定性和光化学稳定性,将具备光催化性能的BiVO4结合在水滑石中,不仅解决传统BiVO4难以回收的缺点,又提高了光催化性能。
附图说明
图1是实施例1制得的ZnCr-LDHs材料、实施例2制得的BiVO4材料和实施例3制得的BiVO4@LDHs复合材料的XRD表征结果对比图;
图2是实施例1制得的ZnCr-LDHs材料、实施例2制得的BiVO4材料和实施例3制得的BiVO4@LDHs复合材料的UV-vis表征结果对比图;
图3是实施例1制得的ZnCr-LDHs材料、实施例2制得的BiVO4材料和实施例3制得的BiVO4@LDHs复合材料的电镜表征对比图;
图4是实施例3制备的BiVO4@LDHs复合材料的XPS图;
图5是分别以实施例1制得的ZnCr-LDHs材料、实施例2制得的BiVO4材料和实施例3制得的BiVO4@LDHs复合材料为催化剂,以及空白对照条件下时,诺氟沙星的降解后浓度随降解时间的变化关系对比结果图。
具体实施方式
下面结合具体实施例对本发明作进一步说明,但本发明的保护范围并不限于此。
实施例1 ZnCr-LDHs材料的合成
具体如下:氮气保护氛围下,将0.075mol(22.31g)Zn(NO3)2·6H2O和0.025mol(10.00g)Cr(NO3)3·9H2O溶于100ml去离子水中,配制得到溶液A。溶液B为1M氢氧化钠溶液。在一个装有50ml去离子水的三口烧瓶,室温下对三口烧瓶中的液体搅拌(转速为200r/min),溶液A与溶液B均向所述三口烧瓶中进行逐滴滴液,控制三口烧瓶内混合液的pH值在9.0-9.5,溶液A在30min内滴加完毕后,也停止滴加溶液B。所得混合液在65℃下结晶24h,离心并洗涤至中性,在85℃的真空中干燥12h,最终得到样品ZnCr-NO3-LDHs,记为ZnCr-LDHs材料。
实施例2 BiVO4的合成
具体如下:将10.0mmol Bi(NO3)3·5H2O和10mmol NH3VO3溶解于60ml 2M硝酸中,搅拌至完全溶解。而后逐滴向溶液中加入氨水,直至pH=1。在室温下搅拌2h后,将上述溶液转移至100ml反应釜中,在200℃下反应2h。最后,经过离心(5000rpm,5分钟)、三次去离子水洗涤后,在80℃真空干燥箱中干燥24h,得到BiVO4
实施例3 BiVO4@LDHs复合材料的合成
BiVO4@LDHs材料合成中采用过沸水以避免影响溶解的二氧化碳,具体如下:将0.001mol(323.9mg)钒酸铋(BiVO4),0.0024mol(714mg)Zn(NO3)2·6H2O,0.0008mol(320.1mg)Cr(NO3)3·9H2O,和0.008mol(480mg)尿素溶于30ml去离子水中,所得溶液经超声处理15min,再搅拌30min使反应体系分散均匀。将上述溶液转移到聚四氟乙烯反应釜中,密闭聚四氟乙烯反应釜,然后将聚四氟乙烯反应釜封闭后在100℃的烘箱中放置12h反应后取出,自然冷却至室温,将反应液离心,所得沉淀固体用去离子水、无水乙醇分别洗涤2次。在65℃真空干燥12h后,产物为BiVO4和ZnCr-LDHs的复合材料,记录为BiVO4@LDHs复合材料。实施例3制得的BiVO4@LDHs复合材料中,Cr与Zn的摩尔比是1:0.4。
实施例4 BiVO4@LDHs复合材料的XRD表征
采用Shimadzu XRD-6000型X射线粉末衍射仪,其中各表征参数设置如下:Cu靶,Kα射线,λ为0.1542nm,角度范围5°~80°,测定样品的晶体结构。对实施例1制得的ZnCr-LDHs材料、实施例2制得的BiVO4材料和实施例3制得的BiVO4@LDHs复合材料分别进行XRD表征,测试结果对比图如图1所示。
BiVO4、ZnCr–LDHs和BiVO4@LDHs的XRD表征如图1所示。BiVO4曲线与BiVO4的标准卡片(No.10–0603)完全相同,表明合成的是纯相的BiVO4。ZnCr–LDHs曲线显示了(003)、(006)、(009/012)、(110)和(113)代表LDH的特征峰,表明合成的材料是ZnCr–LDHs(No.51–0045),并且与文献报道的结果一致。ZnCr–LDHs的较宽的半带宽,应该是由于阳离子层压板中三价铬的Jahn–Teller效应所致。BiVO4@LDHs曲线中不仅保留了110、001、121、040、211、240、202、161等代表BiVO4的特征衍射峰,同时出现了绝大部分代表水滑石的特征峰(如003,009,110等),表明合成的是BiVO4和LDHs的复合物。此外,BiVO4@LDHs中BiVO4的特征峰尖而窄,表明复合材料保持了BiVO4的良好晶型。LDHs的特征峰弱于BiVO4,这与BiVO4在复合物中占主导地位有关。
实施例5 BiVO4@LDHs复合材料的UV-vis表征
对实施例1制得的ZnCr-LDHs材料、实施例2制得的BiVO4材料和实施例3制得的BiVO4@LDHs复合材料分别进行UV-vis表征,表征是采用以下操作步骤:取待测材料2000mg,在紫外可见分光光度计(2550型,岛津)中扫描200~800nm波长范围,测定材料的漫反射光谱,根据测得谱图的吸收边,得出吸收边波长,再依据公式Eg=1240/λg(Eg为带隙能,λg为吸收边波长)计算得到带隙能。
实施例1制得的ZnCr-LDHs材料、实施例2制得的BiVO4材料和实施例3制得的BiVO4@LDHs复合材料的UV-vis表征结果对比图如图2所示,从图2中可以看出,BiVO4@LDHs复合材料的禁带宽度为2.409eV。
实施例6 BiVO4@LDHs复合材料的XPS表征
取实施例3制备的BiVO4@LDHs复合材料,采用Thermo Fischer ESCALAB 250Xi仪器对催化剂进行XPS表征,分析材料的化学组成及其价态,激发源采用Alkα射线,工作电压12.5kV,灯丝电流16mA,以C1s=284.8eV结合能为能量标准进行荷电校正。BiVO4@LDHs复合材料的XPS全谱图如图4所示,从BiVO4@LDHs的XPS全谱图证实了样品中的主要元素为Zn、Cr、Bi、V和O,这与XRD的表征结果相一致,说明BiVO4@LDHs成功合成。
实施例7 BiVO4@LDHs复合材料的电镜(SEM、TEM)表征
对实施例1制得的ZnCr-LDHs材料、实施例2制得的BiVO4材料和实施例3制得的BiVO4@LDHs复合材料进行相应的电镜表征,结果汇总于图3中。图3中,(a)、(b)ZnCr-LDHs的透射电镜图;(c)、(d)BiVO4的透射电镜图;(e)、(f)BiVO4@LDHs的透射电镜图。
从图3可以看出,所合成的ZnCr@BiVO4核壳结构由规则的BiVO4十面体内核为主体,ZnCr-LDHs加载到BiVO4的骨架上,两种材料的晶格界面相接触,形成了核壳结构复合材料。
实施例8 BiVO4@LDHs复合材料的光催化性能研究
对实施例1制得的ZnCr-LDHs材料、实施例2制得的BiVO4材料和实施例3制得的BiVO4@LDHs复合材料,分别进行光催化性能研究,催化过程如下:取25mg催化材料加入至50ml浓度为20mg·L-1的诺氟沙星水溶液中,在温度30℃、pH=7.0,采用500W氙灯照射的条件下进行光催化降解实验。在光催化过程中,每隔每15min进行一次取样分析,每次取样分析过程为:从反应体系中取2mL诺氟沙星溶液,而后迅速经0.45μm过滤,并采用UV-Vis光谱仪(Shimadzu UV-2600)在诺氟沙星的最大吸收波长处(277nm)进行分析测试,通过最大吸收波长处(277nm)的吸光度确定诺氟沙星的含量,进而推算出反应体系中诺氟沙星的浓度。
采用以上催化降解过程,分别以实施例1制得的ZnCr-LDHs材料、实施例2制得的BiVO4材料和实施例3制得的BiVO4@LDHs复合材料为催化剂时,诺氟沙星的降解后浓度随降解时间的变化关系对比结果参见图5中。
另外参照上述催化降解过程设置空白对照实验,对于50ml浓度为20mg·L-1的诺氟沙星水溶液,直接在在温度30℃、pH=7.0,采用500W氙灯照射的条件下进行光催化降解实验。在光催化过程中,每隔每15min进行一次取样分析,空白对照实验中诺氟沙星的降解后浓度随降解时间的变化关系结果汇总于图5中。
从图5可以看出,随着反应时间增加,BiVO4@LDHs复合材料对诺氟沙星的降解率高达90.27%,并且BiVO4@LDHs复合材料的催化降解速度更快。
本说明书所述的内容仅仅是对发明构思实现形式的列举,本发明的保护范围不应当被视为仅限于实施例所陈述的具体形式。

Claims (6)

1.一种BiVO4@LDHs异质结纳米材料在光催化降解诺氟沙星中的应用,其中,所述BiVO4@LDHs异质结纳米材料包括作为载体的BiVO4十面体结构以及在BiVO4十面体载体上生长的锌铬水滑石;
所述锌铬水滑石的化学通式为[Zn2+ 1-x Cr3+ x (OH)2](CO3 2-)x/2·mH2O];其中,Zn2+与[Cr3 +]的摩尔比为(1-x): x,0.2≤ x ≤0.33;m为结晶水数量,2≤ m ≤6。
2.如权利要求1所述的应用,其特征在于,所述的BiVO4与锌铬水滑石中的铬钒摩尔比为0.4:1-1:1。
3.如权利要求1或2所述的应用,其特征在于,所述BiVO4@LDHs异质结纳米材料通过如下方法制备获得:
将BiVO4、硝酸锌、硝酸铬和尿素溶于去离子水中,混合分散均匀,所得分散液加入到聚四氟乙烯反应釜中,然后将聚四氟乙烯反应釜置于烘箱中于100℃反应12h,随后将聚四氟乙烯反应釜取出并自然冷却至室温,将反应液离心,所得固体依次用去离子水和无水乙醇洗涤后,在65℃干燥12h,即得所述BiVO4@LDHs异质结纳米材料。
4.如权利要求3所述的应用,其特征在于,所述BiVO4与尿素的投料摩尔比是1:8。
5.如权利要求1所述的应用,其特征在于,所述的应用为在催化降解废水中诺氟沙星中的应用。
6. 如权利要求5所述的应用,其特征在于,所述的应用包括如下步骤为:将BiVO4@LDHs置于诺氟沙星废水中,在温度10~50℃、pH 4.0~10.0条件下,500W氙灯照射0.5~ 6.0h,搅拌,使诺氟沙星降解;废水中诺氟沙星的质量浓度为10-50 mg·L-1,所述BiVO4@LDHs在诺氟沙星废水中的用量为10~50mg·L-1
CN202111234593.4A 2021-10-22 2021-10-22 一种用于光催化降解诺氟沙星的异质结材料BiVO4@LDHs Active CN114054018B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111234593.4A CN114054018B (zh) 2021-10-22 2021-10-22 一种用于光催化降解诺氟沙星的异质结材料BiVO4@LDHs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111234593.4A CN114054018B (zh) 2021-10-22 2021-10-22 一种用于光催化降解诺氟沙星的异质结材料BiVO4@LDHs

Publications (2)

Publication Number Publication Date
CN114054018A CN114054018A (zh) 2022-02-18
CN114054018B true CN114054018B (zh) 2024-03-08

Family

ID=80235272

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111234593.4A Active CN114054018B (zh) 2021-10-22 2021-10-22 一种用于光催化降解诺氟沙星的异质结材料BiVO4@LDHs

Country Status (1)

Country Link
CN (1) CN114054018B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116889875B (zh) * 2023-07-28 2024-08-20 中国科学院地理科学与资源研究所 一种BiVO4/CoAlLa-LDH复合光催化剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120083989A (ko) * 2011-01-19 2012-07-27 서강대학교산학협력단 망간-크롬 층상이중수산화물, 그의 제조 방법 및 그를 포함하는 광촉매
CN105040025A (zh) * 2015-05-12 2015-11-11 北京化工大学 双金属氢氧化物复合多孔钒酸铋光电极及其制备方法
CN108393083A (zh) * 2018-02-27 2018-08-14 成都新柯力化工科技有限公司 一种用于污水处理的钒酸铋光催化剂及制备方法
CN109078639A (zh) * 2018-07-25 2018-12-25 华南师范大学 一种BiVO4/NiCo LDHs多孔纤维及其制备方法和应用
CN113398944A (zh) * 2021-05-24 2021-09-17 苏州科技大学 钒酸铋表面修饰钴酸镍尖晶石的复合材料及其制备和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120083989A (ko) * 2011-01-19 2012-07-27 서강대학교산학협력단 망간-크롬 층상이중수산화물, 그의 제조 방법 및 그를 포함하는 광촉매
CN105040025A (zh) * 2015-05-12 2015-11-11 北京化工大学 双金属氢氧化物复合多孔钒酸铋光电极及其制备方法
CN108393083A (zh) * 2018-02-27 2018-08-14 成都新柯力化工科技有限公司 一种用于污水处理的钒酸铋光催化剂及制备方法
CN109078639A (zh) * 2018-07-25 2018-12-25 华南师范大学 一种BiVO4/NiCo LDHs多孔纤维及其制备方法和应用
CN113398944A (zh) * 2021-05-24 2021-09-17 苏州科技大学 钒酸铋表面修饰钴酸镍尖晶石的复合材料及其制备和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Facet-dependent topo-heterostructure formed by BiOCl and ZnCr-LDH and its enhanced visible-light photocatalytic activity";Yaowen Cui et al.;《Separation and Purification Technology》;第254卷;文献号117635(1-8) *
"LDH/BiVO4复合材料制备及其电容性能";杜磊磊等;《化学研究与应用》;第31卷;833-837 *

Also Published As

Publication number Publication date
CN114054018A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
Obregón et al. Cascade charge separation mechanism by ternary heterostructured BiPO4/TiO2/g-C3N4 photocatalyst
Chen et al. Structure and properties of zirconia-supported molybdenum oxide catalysts for oxidative dehydrogenation of propane
Takayama et al. The KCaSrTa 5 O 15 photocatalyst with tungsten bronze structure for water splitting and CO 2 reduction
Pongwan et al. Enhancement of visible-light photocatalytic activity of Cu-doped TiO 2 nanoparticles
Liu et al. Photocatalytic reduction of carbon dioxide using sol–gel derived titania-supported CoPc catalysts
JP5547936B2 (ja) アンモニア分解触媒およびその製造方法、ならびに、アンモニア処理方法
WO2015146830A1 (ja) 光触媒およびその製造方法
Zhang et al. Preparation of nanosized Bi3NbO7 and its visible-light photocatalytic property
Savereide et al. The effect of support morphology on CoOX/CeO2 catalysts for the reduction of NO by CO
Sun et al. Dye degradation activity and stability of perovskite-type LaCoO3− x (x= 0∼ 0.075)
KR20130062902A (ko) 암모니아 분해용 촉매 및 그 촉매의 제조방법, 및, 그 촉매를 사용한 수소 제조방법
Morawski et al. Influence of the calcination of TiO2-reduced graphite hybrid for the photocatalytic reduction of carbon dioxide
CN111482172B (zh) CuO/缺陷二氧化钛的复合纳米材料及其应用
Imran et al. Enhancement of visible light-driven hydrogen production over zinc cadmium sulfide nanoparticles anchored on BiVO4 nanorods
CN114054018B (zh) 一种用于光催化降解诺氟沙星的异质结材料BiVO4@LDHs
CN113578310A (zh) 用于光催化降解四环素的CdS@ZnCr-LDHs异质结纳米材料、其制备方法和应用
Hou et al. Effects of Ti modified CeCu mixed oxides on the catalytic performance and SO2 resistance towards benzene combustion
EP3384985A1 (en) Steam reforming catalyst for hydrocarbons
CN111450823A (zh) 一种降解NO的复合催化剂GQD/Bi2WO6及其制备方法
Wang et al. Synthesis of core–shell N-TiO 2@ CuO x with enhanced visible light photocatalytic performance
CN114849789B (zh) Mil-125负载1t相硫化钼复合光催化剂的制备方法及其应用
Dobrosz-Gómez et al. CO oxidation over Au/CeO 2-ZrO 2 catalists: The effect of the support composition of the au-support interaction
CN113198458B (zh) 一种铋铬复合氧化物半导体光催化剂及其制备方法和应用
Muñoz-Batista et al. Sunlight active g-C3N4-based Mn+ (MCu, Ni, Zn, Mn)–promoted catalysts: Sharing of nitrogen atoms as a door for optimizing photo-activity
Habibi et al. Sol–gel preparation, structural, thermal and spectroscopic analyses, and opto-electronic and photocatalytic activities of normal spinel nickel cobaltite nano-powder for photo-degradation of Reactive Red RB

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant