CN114045555B - 一种超疏水氧终端多晶硼掺杂金刚石膜的制备方法 - Google Patents

一种超疏水氧终端多晶硼掺杂金刚石膜的制备方法 Download PDF

Info

Publication number
CN114045555B
CN114045555B CN202111330072.9A CN202111330072A CN114045555B CN 114045555 B CN114045555 B CN 114045555B CN 202111330072 A CN202111330072 A CN 202111330072A CN 114045555 B CN114045555 B CN 114045555B
Authority
CN
China
Prior art keywords
film
diamond film
boron doped
super
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111330072.9A
Other languages
English (en)
Other versions
CN114045555A (zh
Inventor
李红东
王鹏
刘钧松
成绍恒
高楠
崔政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202111330072.9A priority Critical patent/CN114045555B/zh
Publication of CN114045555A publication Critical patent/CN114045555A/zh
Application granted granted Critical
Publication of CN114045555B publication Critical patent/CN114045555B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/278Diamond only doping or introduction of a secondary phase in the diamond
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/279Diamond only control of diamond crystallography
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/12Production of homogeneous polycrystalline material with defined structure directly from the gas state
    • C30B28/14Production of homogeneous polycrystalline material with defined structure directly from the gas state by chemical reaction of reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明的一种超疏水氧终端多晶硼掺杂金刚石膜的制备方法属于多晶金刚石膜制备的技术领域,步骤包括沉积硼掺杂多晶金刚石薄膜、沉积Au和Cu薄膜、管式炉中高温刻蚀等。本发明首次实现氧终端金刚石膜具有超疏水性,且制备过程以一种简便、易操作、成本较低的方式,本研究将在开发坚硬的超疏水材料领域中具有重要意义。

Description

一种超疏水氧终端多晶硼掺杂金刚石膜的制备方法
技术领域
本发明属于多晶金刚石膜制备的技术领域,涉及一种新型氧终端多晶硼掺杂金刚石超疏水表面(O-PBDD)的制备方法及其超疏水性在压力、高温和摩擦等极端条件下的稳定性研究。
背景技术
超疏水表面由于其显著的非润湿性而引起了人们的广泛关注。广泛的研究表明了其潜在的应用,包括防雾,防腐蚀,防结冰,自清洁和水/油分离等。在自然界中,一些植物和动物已经进化出超疏水表面,以应对细菌感染和环境污染等生存威胁。例如,荷叶可以在液-固界面截留一个气垫,液体可以很容易地在表面移动,清除污染物;玫瑰花瓣具有超疏水表面,但液滴附着在表面,这有助于玫瑰保持新鲜,前者被称为莲花效应,后者被称为花瓣效应。两种效应一般分别用Cassie-Baxter模型和Wenzel模型进行分析。为了获得理想的应用性能,许多超疏水表面都是基于莲花效应,即Cassie-Baxter模型制作的。表面的微/纳米结构和化学组成是造成超疏水性的主要原因。然而,微纳米结构是脆弱的,外部机械载荷很容易对这些微纳米结构造成破坏,导致Cassie-Baxter状态失效,超疏水性降低。因此,开发坚固的超疏水表面是当前的一个重要课题。
众所周知,金刚石具有许多非凡的性能,包括高硬度、高导热性、耐腐蚀和完美的生物相容性。通过调节金刚石的润湿性,会使金刚石具有更优异的性能。然而,由于终端氧悬键的作用,氧(O)终端金刚石的疏水性低于氢(H)终端的金刚石。因此,现有的制备疏水金刚石表面的策略大多都是采用氢终端金刚石。这些策略包括表面H终端金刚石表面形貌改性,将疏水聚合物覆盖到金刚石表面,以及生长粗糙的H终端多晶金刚石。然而,超疏水材料普遍存在涂层膜与基体之间的粘附性较差的问题,用这些策略制备的和H终端金刚石表面与基体的粘附强度较差,化学和热稳定性较差容易被氧化变为O终端表面,这些缺点会导致金刚石表面超疏水性能的失效,降低金刚石表面的耐久性。因此,有必要开发新的制备坚固耐用的超疏水金刚石表面的策略。
发明内容
本发明的目的在于克服背景技术存在的不足,提供一种氧终端的多晶硼掺杂金刚石(O-PBDD)超疏水表面的制备方法,该表面具有微/纳米级多孔结构,并具有可调节的疏水性能。
本发明通利用Au和CuO颗粒在空气气氛下对金刚石的催化刻蚀作用功能,以多晶硼掺杂金刚石为基底构建的氧终端超疏水多晶掺硼金刚石膜(O-PBDD),该超疏水薄膜具有良好的抗压性、热稳定性和抗摩擦性。
本发明先通过微波等离子体化学气相沉积法(MPCVD),在硅片(Si)上生长氢终端多晶硼掺杂金刚石膜(H-PBDD)。再利用离子溅射方法在H-PBDD膜表面先后溅射一层Au膜和Cu膜,形成Cu-Au-(H-PBDD)复合膜。最后将其放入管式炉中,在空气气氛下800℃高温刻蚀。Au膜和Cu膜在高温条件下退浸润形成的Au颗粒和CuO颗粒,利用这两种颗粒对金刚石的催化刻蚀作用,形成坚硬的、具有微纳结构的多孔O-PBDD膜。这种特殊形貌使得其具有超疏水性质,并经过测试,具有非常好的力学稳定性和热稳定性。
本发明的具体技术方案如下:
一种超疏水氧终端多晶硼掺杂金刚石膜的制备方法,有以下步骤:
1)、采用微波等离子体化学气相沉积(MPCVD)在2.45GHz的频率下在预处理的Si衬底上沉积硼掺杂多晶金刚石薄膜(H-PBDD膜),反应室的气氛为H2: CH4:B=200:6:3sccm;
2)、利用离子溅射方法在硼掺杂多晶金刚石薄膜表面沉积Au和Cu薄膜;
3)、将所得的铜膜-金膜-硼掺杂多晶金刚石薄膜置于管式炉中,在空气气氛下升温至800℃,在高温管式炉中刻蚀80分钟,得到超疏水的、具有微纳复合结构的多孔硼掺杂氧终端金刚石膜。
步骤1)中所述的预处理具体是,首先将硅衬底清洗,去除表面污染物,再将衬底放入含有金刚石粉的酒精中超声处理30min,再依次经过丙酮、酒精、去离子水冲洗。
作为优选,步骤2)中的Au薄膜溅射平均厚度在40-50nm;Cu薄膜的溅射平均厚度在90-100nm。
步骤3)中所述的管式炉升温速率优选为10℃min-1
进一步,所述的携带硼酸三甲酯的氢气是在室温下将氢气通入硼酸三甲酯液体后再流入生长腔体。
有益效果:
本申请制备的具有微纳结构的氧终端多孔硼掺杂金刚石膜具有良好的超疏水性能,具有较高的水静态接触角(165±5°)和较低的滚动角,同时在高压(高达5.24MPa)、高温(200℃)和摩擦(66.5KPa,30循环)等极端条件下依然保持良好的超疏水性。此超疏水表面的稳定性高于多数以往的超疏水材料。
本发明解决的技术问题是获得氧终端的超疏水金刚石表面,超疏水表面的形成是在高温的空气气氛中,利用Au膜和Cu膜在高温退浸润作用下形成的Au 颗粒和CuO颗粒对金刚石催化刻蚀的作用,B能提高金刚石抗氧化性以及多晶金刚石膜中晶界更易于被刻蚀等特点,使多晶硼掺杂金刚石表面形貌发生重大变化而形成微纳复合多孔结构是本发明专利所涉及的主要内容和重要创新点。本发明中所描述的氧终端多孔硼掺杂金刚石膜,尚属首次实现氧终端金刚石膜具有超疏水性,且制备过程以一种简便、易操作、成本较低的方式。本研究将在开发坚硬的超疏水材料领域中具有重要意义。
附图说明
图1为经过实施例1、实例2后制得的铜膜-金膜-硼掺杂多晶金刚石薄膜高分辨扫描电子显微镜形貌图。
图2经过实施例3后获得的超疏水的、具有微纳复合结构的多孔硼掺杂氧终端金刚石膜的高分辨扫描电子显微镜形貌图。
图3是实施例3制备的超疏水多孔硼掺杂氧终端金刚石膜(O-PBDD)的 XPS图。
图4是实施例3制备的超疏水多孔硼掺杂氧终端金刚石膜(O-PBDD)在 O1s的XPS谱图。
图5是实施例3制备的超疏水多孔硼掺杂氧终端金刚石膜的超疏水实物图,其中插图为其静态接触角。
图6是实施例3制备的O-PBDD膜分别在1–4kg压力下6h后的静态接触角的折线图。
图7是实施例3制备的O-PBDD膜分别在50–200℃高温加热30min后静态接触角的折线图。
图8是实施例3制备的O-PBDD膜在砂纸摩擦后的静态接触角变化折线图,重物压力分别去20g、50g,摩擦循环分别为5圈、15圈和30圈。
具体实施方式
以下结合附图与实施例对本申请作进一步详细描述,需要指出的是,以下所述实施例旨在便于对本申请的理解,而对其不起任何限定作用。
实施例1:硅片衬底H-PBDD膜的制备
选取的硅片作为生长衬底,首先将硅片清洗,去除表面污染物。为了提高生长过程的成核密度,将其放入含有金刚石粉的酒精中超声处理30min,再依次经过丙酮、酒精、去离子水依次冲洗,后放入MPCVD的生长腔体内进行H-PBDD 膜的生长。生长的气氛为氢气、甲烷、携带硼酸三甲酯的氢气的混合气体,对应的气体流量比例为200:6:3,所述的携带硼酸三甲酯的氢气是在室温下将氢气通入硼酸三甲酯液体后再流入生长腔体,微波源的功率为350W,反应腔内气体压强为7.8KPa,生长时间10小时后薄膜沉积的厚度约为10μm。
实施例2:利用离子溅射方法在H-PBDD薄膜表面沉积Au和Cu薄膜
随后利用离子溅射方法在H-PBDD薄膜表面先后沉积一层金纳米薄膜和一层铜纳米薄膜,溅射沉积的时间分别为40s和80s,溅射过程是在氩气(Ar)保护下进行的,腔内压保持为5.0Pa。溅射后获得Cu-Au-(H-PBDD)复合膜(见图 1)。由图中可得,实例1所生长的H-PBDD薄膜中金刚石晶粒大小约为1–3μm,同时可以发现在其表面具有细小颗粒连续成膜形成的薄膜,这是在实例2过程中溅射上去的Au膜和Cu膜,这两种膜在接下来实例3中发挥着至关重要的作用。
实施例3:超疏水多孔硼掺杂氧终端金刚石膜的制备
将实例2中所得Cu-Au-(H-PBDD)复合膜放入管式炉中进行高温加热处理。管式炉中不通入任何保护气体,完全是在空气气氛中进行,同时管式炉的升温温度为10℃min-1。高温加热处理80min后,得到了多孔硼掺杂氧终端金刚石膜 (O-PBDD)。图2是其表面的高分辨扫描电子显微镜图。很明显在金刚石膜表面具有尺寸较大的微米孔和尺寸较小的纳米孔形成的复合多孔结构。整个高温刻蚀过程是在空气气氛进行,而氧气作为其中主要成分之一,同时对金刚石表面具有很强的刻蚀作用,同时Au膜和Cu膜在高温过程会退湿润形成小颗粒,Au颗粒由于具有溶碳性能会对金刚石表面具有催化刻蚀效果,Cu在空气中退湿润后又和其中氧反应形成CuO颗粒,同样具有催化金刚石碳石墨化的作用。因此在二者共同作用下,形成多孔表面。根据Cassie-Baxter方程理论,当固体表面的多孔结构能够截留空气,使得固体表面和水滴之间具有一层空气膜时,固体表面则具有超疏水性质。同时,微纳复合多孔结构更有利形成超疏水表面。在之前,为了揭示O-PBDD薄膜表面的化学成分,采用X射线光电子能谱(XPS)研究表面化学成分,结果如图3所示。XPS测量谱图显示,表面化学成分主要由C-1S峰、 O-1S峰、N-1S峰和Cu-2p峰组成。通过Cu-2p表明铜离子的存在。图4所示的在O1s的XPS谱图中,在530.1eV、531.9eV和533.4eV处的峰分别为O-Cu、 O-C和表面吸附的氧,O-C峰的存在为氧终端PBDD薄膜的形成提供了直接证据。此外,铜颗粒在蚀刻过程中由于高温氧化而转变为CuO。
图5是对O-PBDD薄膜的浸润性的测试。其中图5(a)是水滴在O-PBDD 表面浸润情况的实物图,水滴在O-PBDD表面成较好的球形分布。同时,其中插图为静态接触角的测试,静态接触角为165±5°。图5(b)–(g)是水滴在 O-PBDD薄膜表面滚动过程的连拍图片。制备的O-PBDD薄膜表面对水滴的附着力低,液滴也不能在多孔的O-PBDD表面扩散。滚动角度约为5.5°。图5中的快照显示,水滴从超疏水O-PBDD表面反弹滚动而不是滑动,液滴在166ms 后离开表面。这些现象表明,O-PBDD薄膜处于Cassie-Baxter状态,具有拒水和自清洁应用的潜力。
图6~8是对O-PBDD膜的在高压、高温和摩擦情况下浸润性的稳定性测试。为了验证制备的多孔O-PBDD表面的力学和热稳定性,申请人进行了应力测试 (图6)、高温测试(图7)和磨损测试(图8)。在应力测试中,对试样施加1kg(1.31 MPa)的载荷,发现WCA随时间变化不明显。然后将施加的负载分别增加到2、 3和4kg,保持6h,但超疏水性也没有显著变化。在热稳定性测试中,样品在 50–200℃下加热30min,加热温度为130℃时WCA下降幅度最大。但表面仍能保持超疏水性,WCA为158.91±0.62°。有趣的是,如果应用更高的温度(150 ℃和200℃),WCA有轻微的下降。总的来说,O-PBDD表面具有良好的热稳定性。在磨损试验中,将样品置于1000目规格的砂纸上,施加20g(26.2KPa)的载荷,在30次循环后保持WCA>160°。当载荷增加到50g(65.5KPa)时,30次循环后样品的WCA(159°)略有下降。因此,O-PBDD表面表现出良好的力学和高温稳定性。

Claims (4)

1.一种超疏水氧终端多晶硼掺杂金刚石膜的制备方法,有以下步骤:
1)、采用微波等离子体化学气相沉积在2.45GHz的频率下在预处理的Si衬底上沉积硼掺杂多晶金刚石薄膜,反应室的气氛为氢气、甲烷、携带硼酸三甲酯的氢气的混合气体,对应的气体流量比例为200:6:3;
2)、利用离子溅射方法在硼掺杂多晶金刚石薄膜表面沉积Au和Cu薄膜,其中的Au薄膜溅射平均厚度在40-50nm;Cu薄膜的溅射平均厚度在90-100nm;
3)、将所得的铜膜-金膜-硼掺杂多晶金刚石薄膜置于管式炉中,在空气气氛下升温至800℃,在高温管式炉中刻蚀80分钟,得到超疏水的、具有微纳复合结构的多孔硼掺杂氧终端金刚石膜。
2.根据权利要求1所述的一种超疏水氧终端多晶硼掺杂金刚石膜的制备方法,其特征在于,步骤1)中所述的预处理是,首先将硅衬底清洗,去除表面污染物,再将衬底放入含有金刚石粉的酒精中超声处理30min,再依次经过丙酮、酒精、去离子水冲洗。
3.根据权利要求1所述的一种超疏水氧终端多晶硼掺杂金刚石膜的制备方法,其特征在于,步骤3)中管式炉升温速率为10℃min-1
4.根据权利要求1所述的一种超疏水氧终端多晶硼掺杂金刚石膜的制备方法,其特征在于,所述的携带硼酸三甲酯的氢气是在室温下将氢气通入硼酸三甲酯液体后再流入生长腔体。
CN202111330072.9A 2021-11-11 2021-11-11 一种超疏水氧终端多晶硼掺杂金刚石膜的制备方法 Active CN114045555B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111330072.9A CN114045555B (zh) 2021-11-11 2021-11-11 一种超疏水氧终端多晶硼掺杂金刚石膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111330072.9A CN114045555B (zh) 2021-11-11 2021-11-11 一种超疏水氧终端多晶硼掺杂金刚石膜的制备方法

Publications (2)

Publication Number Publication Date
CN114045555A CN114045555A (zh) 2022-02-15
CN114045555B true CN114045555B (zh) 2023-10-20

Family

ID=80208206

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111330072.9A Active CN114045555B (zh) 2021-11-11 2021-11-11 一种超疏水氧终端多晶硼掺杂金刚石膜的制备方法

Country Status (1)

Country Link
CN (1) CN114045555B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106809795A (zh) * 2015-11-27 2017-06-09 中国科学院苏州纳米技术与纳米仿生研究所 一种超疏水微结构及其制备方法
CN107686982A (zh) * 2017-08-16 2018-02-13 中国科学院宁波材料技术与工程研究所 一种超疏水类金刚石薄膜的制备方法
CN109142313A (zh) * 2018-08-03 2019-01-04 吉林大学 半导体表面增强拉曼散射的金刚石基底及其制备方法
CN111254391A (zh) * 2018-11-30 2020-06-09 深圳先进技术研究院 超疏水类金刚石复合层及其制备方法
CN111334776A (zh) * 2018-12-18 2020-06-26 深圳先进技术研究院 疏水类金刚石复合涂层及其制备方法与疏水器件及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106809795A (zh) * 2015-11-27 2017-06-09 中国科学院苏州纳米技术与纳米仿生研究所 一种超疏水微结构及其制备方法
CN107686982A (zh) * 2017-08-16 2018-02-13 中国科学院宁波材料技术与工程研究所 一种超疏水类金刚石薄膜的制备方法
CN109142313A (zh) * 2018-08-03 2019-01-04 吉林大学 半导体表面增强拉曼散射的金刚石基底及其制备方法
CN111254391A (zh) * 2018-11-30 2020-06-09 深圳先进技术研究院 超疏水类金刚石复合层及其制备方法
CN111334776A (zh) * 2018-12-18 2020-06-26 深圳先进技术研究院 疏水类金刚石复合涂层及其制备方法与疏水器件及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Peng Wang,et al..A Nanometer-Sized Graphite/Boron-Doped Diamond Electrochemical Sensor for Sensitive Detection of Acetaminophen.《ACS Omega》.2021,第6卷第6326−6334页. *

Also Published As

Publication number Publication date
CN114045555A (zh) 2022-02-15

Similar Documents

Publication Publication Date Title
CN101487121B (zh) 一种金刚石/w-c梯度结构复合涂层及其制备方法
CN107032816B (zh) 一种碳化硅纳米线增强C/C-SiC-ZrB2陶瓷基复合材料的制备方法
Sumant et al. Toward the ultimate tribological interface: surface chemistry and nanotribology of ultrananocrystalline diamond
JP5275567B2 (ja) 炭化タンタル被覆炭素材料およびその製造方法
An et al. Silicoaluminum carbonitride with anomalously high resistance to oxidation and hot corrosion
CN108339412B (zh) 一种原位生长MoS2无机复合纳滤膜及其制备方法
FR2591529A1 (fr) Materiau composite a base de titane ou d'un alliage de titane et son procede de preparation
Kumar et al. Corrosion behavior of pulse laser deposited 2D nanostructured coating prepared by self-made h-BN target in salinity environment
JP3779314B1 (ja) 炭化タンタル被覆炭素材料およびその製造方法
CN111647925A (zh) 一种铝合金表面微弧氧化减摩复合涂层及其制备方法
CN106591799B (zh) 金刚石涂层的制备方法及金刚石涂层刀片
CN112851387A (zh) 一种在炭炭复合材料表面制备碳化硅涂层的方法
CN114045555B (zh) 一种超疏水氧终端多晶硼掺杂金刚石膜的制备方法
CN111455346A (zh) 一种无钴硬质合金材料表面金刚石涂层的制备方法
CN112624797A (zh) 一种石墨表面梯度碳化硅涂层及其制备方法
CN108218474B (zh) 一种Cf/SiC复合材料表面光学涂层及其制备方法
CN108396306A (zh) 一种低温沉积硬度可控的类金刚石复合薄膜的方法
CN111945120A (zh) 一种超疏水钛薄膜的原位制备方法及其应用
CN116179044B (zh) 多孔结构的耐磨超疏水/超双疏涂层及其制备方法与应用
Mukhopadhyay et al. Thin films for coating nanomaterials
CN111286707B (zh) 一种贵金属@洋葱碳杂化的TMC/a-C纳米复合涂层及其制备方法和应用
Prabhakaran et al. Synthesis and characterisation of nanocrystalline, microcrystalline and functionally graded diamond coatings on reaction bonded SiC
JP3203437B2 (ja) 耐摩耗性プラスチック成形物及びその製造方法
CN108892539A (zh) 一种具有SiC涂层的石墨材料及其制备方法
Mustafi et al. Deposition behavior and tribological properties of diamond-like carbon coatings on stainless steels via chemical vapor deposition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant