CN114039867B - 一种隐蔽式攻击下网络化控制系统状态与故障的联合区间估计方法 - Google Patents

一种隐蔽式攻击下网络化控制系统状态与故障的联合区间估计方法 Download PDF

Info

Publication number
CN114039867B
CN114039867B CN202111313140.0A CN202111313140A CN114039867B CN 114039867 B CN114039867 B CN 114039867B CN 202111313140 A CN202111313140 A CN 202111313140A CN 114039867 B CN114039867 B CN 114039867B
Authority
CN
China
Prior art keywords
state
interval
observer
fault
attack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111313140.0A
Other languages
English (en)
Other versions
CN114039867A (zh
Inventor
姜顺
李进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN202111313140.0A priority Critical patent/CN114039867B/zh
Publication of CN114039867A publication Critical patent/CN114039867A/zh
Application granted granted Critical
Publication of CN114039867B publication Critical patent/CN114039867B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/145Network analysis or design involving simulating, designing, planning or modelling of a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0677Localisation of faults
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/142Network analysis or design using statistical or mathematical methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/147Network analysis or design for predicting network behaviour
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Computer And Data Communications (AREA)

Abstract

本发明公开一种隐蔽式攻击下网络化控制系统状态与故障的联合区间估计方法。首先,根据隐蔽式攻击的特点,为隐蔽式攻击信号设计区间观测器得到攻击信号的上下界信息,然后,通过将执行器故障视为增广状态从而得到与原系统等效的增广系统,基于所得到的广义系统,利用L性能指标抑制干扰与攻击的影响,设计鲁棒增广状态区间观测器,并给出鲁棒增广状态区间观测器存在的充分条件,最后,利用Matlab LMI工具箱求解优化问题,得到观测器参数L=P‑1Y,从而得到系统状态与故障的区间估计信息。本发明考虑了网络化控制系统可能遭受隐蔽式攻击,并在此环境下估计系统状态与故障的区间上下界。

Description

一种隐蔽式攻击下网络化控制系统状态与故障的联合区间估 计方法
技术领域
本发明涉及网络化控制系统领域,特别是涉及一种隐蔽式攻击下网络化控制系统状态与故障的联合区间估计方法。
背景技术
随着科技的快速发展,近几年关于网络化控制系统的状态与故障区间估计问题吸引了大量学者的注意。网络化控制系统具有适用范围广、安装维护方便等众多优点,但是在网络化控制系统中不可避免的会出现一些降低系统稳定性的因素,如测量延迟、数据包丢失、网络攻击等问题,这些不利因素将会使系统性能恶化,甚至会影响系统的稳定性,严重时将导致系统发生故障。在实际工程中,为系统设计容错控制器可以提高系统的可靠性和安全性,设计容错控制器需要故障幅值及变化规律,因此如何得到精确的故障估计信息成为近年来的研究热点。
目前关于故障估计的研究通常着重于设计观测器或滤波器实现对状态和故障值的点估计,这种方法需要具备一些对未知输入干扰和测量噪声的先验知识,但是这在实际中很难获取,本发明中的区间观测器在系统遭受未知但有界的隐蔽式攻击时,通过攻击信号的边界信息实现了对系统状态和故障的联合区间估计。
发明内容
针对上述现有技术中存在的问题,本发明提供了一种隐蔽式攻击下网络化控制系统状态与故障的联合区间估计方法。考虑网络化控制系统存在执行器故障和遭受隐蔽式攻击,通过将执行器故障视为增广状态,从而将含有执行器故障与原始状态的系统变换为一个增广系统,基于所得到的增广系统,设计增广状态区间观测器,使得网络化控制系统在上述情况下仍能保持渐近稳定并且满足预设的L性能指标,从而实现了对系统状态与执行器故障的联合区间估计。
本发明所采用的技术方案是:一种隐蔽式攻击下网络化控制系统的状态与执行器故障的联合区间估计方法,包括以下步骤:
1)建立执行器发生故障的网络化控制系统的被控对象模型:
Figure GDA0003727728280000011
式中,
Figure GDA0003727728280000012
u(k)∈Rm
Figure GDA0003727728280000013
w(k)∈Rd和f(k)∈Rs分别为系统状态向量,输入向量,输出向量,输入干扰和执行器故障向量,
Figure GDA0003727728280000014
Figure GDA0003727728280000015
记号Rn表示n维欧几里得空间,本发明中出现类似记号的,依此类推即可;Rn×m表示n×m维实数矩阵的集合,本发明中出现类似记号的,依此类推即可;
攻击者通过网络向传感器测量通道注入隐蔽式攻击信号后,增广状态观测器的输入为:
Figure GDA0003727728280000021
其中,a(k)∈Rp为攻击者注入的隐蔽式攻击信号;
为了实现对执行器故障f(k)和系统状态的联合区间估计,可将遭受攻击的网络化系统重写为:
Figure GDA0003727728280000022
将执行器故障视为增广状态:
Figure GDA0003727728280000023
则得到如下的增广系统:
Figure GDA0003727728280000024
其中:
Figure GDA0003727728280000025
Figure GDA0003727728280000026
In表示n×n的单位矩阵
需要说明的是,增广系统(4)与系统(3)完全等价,故能通过设计增广状态区间观测器估计出增广状态,也就实现了隐蔽式攻击下系统状态与执行器故障的联合区间估计,为了得到更加精确的估计,对隐蔽式攻击信号的上下界进行估计是必要的;
2)设计区间观测器估计攻击信号上下界:
Figure GDA0003727728280000027
其中:
Figure GDA0003727728280000028
a(k)∈Rp分别是隐蔽式攻击信号a(k)的上界和下界估计值,
Figure GDA0003727728280000029
和w(k)分别为w(k)已知的上下界,S∈Rn×n是自由选择使得
Figure GDA00037277282800000210
是Schur且非负的矩阵,
Figure GDA00037277282800000211
且S+=max(S,0),S-=S+-S;
3)设计增广状态区间观测器
Figure GDA00037277282800000212
其中,
Figure GDA0003727728280000031
ξ(k)∈Rn+s是中间状态变量,
Figure GDA0003727728280000032
Figure GDA0003727728280000033
分别是增广状态x(k)的上界和下界估计值,T∈R(n+s)×(n+s),N∈R(n+s)×p和L∈R(n+s)×p为待设计的参数矩阵,
Figure GDA0003727728280000034
Δ(k)∈Rn+s的表达式如下:
Figure GDA0003727728280000035
其中,L+=max(L,0),L-=L+-L,N+=max(N,0),N-=N+-N,
Figure GDA0003727728280000036
此外,待设计的参数矩阵T和N满足:
TE+NC=In+s
区间观测器(6)中矩阵T和N的通解为:
Figure GDA0003727728280000037
其中,
Figure GDA0003727728280000038
表示矩阵M的伪逆矩,
Figure GDA0003727728280000039
H∈R(n+s)×(n+s+p)为任意矩阵;
4)区间观测器(6)为区间观测器的充分条件:
Figure GDA00037277282800000310
5)鲁棒增广状态区间观测器存在的充分条件
PTA-YC≥0 (9)
P>γI (10)
Figure GDA00037277282800000311
其中:
Figure GDA00037277282800000312
Figure GDA00037277282800000313
其中,Y∈R(n+s)×p,P∈R(n+s)×(n+s)为通过上述不等式求解的矩阵,0<λ<1,γ>0为给定的标量参数;
利用MATLAB中的LMI工具箱进行求解式子(9)-(11),若可解,则区间观测器(6)是增广系统(4)的一个鲁棒区间观测器,估计误差
Figure GDA00037277282800000314
e(k)满足L性能指标:
Figure GDA00037277282800000315
Figure GDA00037277282800000316
其中,
Figure GDA00037277282800000317
V(0)=e T(0)Pe(0),若式子(9)-(11)可解,可得待设计的参数矩阵T,N和L的表达式如下:
Figure GDA0003727728280000041
Figure GDA0003727728280000042
L=P-1Y
其中,
Figure GDA0003727728280000043
表示矩阵M的伪逆矩,
Figure GDA0003727728280000044
H∈R(n+s)×(n+s+p)为任意矩阵。
与现有技术相比,本发明的有益效果:考虑网络化控制系统在遭受隐蔽式攻击、外界扰动以及存在执行器故障的情况下,发明了对系统状态和执行器故障进行联合区间估计的方法,相比于传统的点估计方法,本方法对噪声和干扰未知有界的系统的状态与故障的区间估计具有较好的估计精确度。
附图说明
附图1是隐蔽式攻击下网络化控制系统状态与故障联合区间估计方法的流程图。
附图2是隐蔽式攻击下系统执行器故障的区间估计图。
附图3是隐蔽式攻击下系统状态1的区间估计图。
附图4是隐蔽式攻击下系统状态2的区间估计图。
附图5是隐蔽式攻击下系统状态3的区间估计图。
具体实施方式
下面结合附图对本发明的具体实施方式做进一步说明。
参照附图1,一种隐蔽式攻击下网络化控制系统状态与故障的联合区间估计方法,包括以下步骤:
步骤1:建立存在执行器故障的网络化控制系统的被控对象模型
Figure GDA0003727728280000045
式中,
Figure GDA0003727728280000046
u(k)∈Rm
Figure GDA0003727728280000047
w(k)∈Rd和f(k)∈Rs分别为系统状态向量,输入向量,输出向量,输入干扰和执行器故障向量,
Figure GDA0003727728280000048
Figure GDA0003727728280000049
记号Rn表示n维欧几里得空间,本发明中出现类似记号的,依此类推即可;Rn×m表示n×m维实数矩阵的集合,本发明中出现类似记号的,依此类推即可;
攻击者通过网络向传感器测量通道注入隐蔽式攻击信号后,增广状态观测器的输入为:
Figure GDA00037277282800000410
其中,a(k)∈Rp为攻击者注入的隐蔽式攻击信号;
为了实现对系统状态和执行器故障f(k)的联合区间估计,根据式(12)和式(13),可将遭受攻击的网络化控制系统重写为:
Figure GDA0003727728280000051
将执行器故障视为增广状态:
Figure GDA0003727728280000052
则得到如下的增广系统:
Figure GDA0003727728280000053
其中:
Figure GDA0003727728280000054
Figure GDA0003727728280000055
In表示单位矩阵
需要说明的是,增广系统(15)与系统(14)完全等价,故可通过设计增广状态区间观测器估计出增广状态,也就实现了隐蔽式攻击下系统状态与执行器故障的联合区间估计,为了得到更加精确的估计,对隐蔽式攻击的上下界进行估计是必要的;
步骤2:设计区间观测器估计攻击信号上下界
Figure GDA0003727728280000056
其中:
Figure GDA0003727728280000057
a(k)∈Rp分别是隐蔽式攻击信号a(k)的上界和下界估计值,
Figure GDA0003727728280000058
和w(k)分别为w(k)已知的上下界,S∈Rn×n是自由选择使得
Figure GDA0003727728280000059
是Schur且非负的矩阵,
Figure GDA00037277282800000510
且S+=max(S,0),S-=S+-S;
步骤3:设计增广状态区间观测器
Figure GDA00037277282800000511
其中,
Figure GDA00037277282800000512
ξ(k)∈Rn+s是中间状态变量,
Figure GDA00037277282800000513
Figure GDA00037277282800000514
分别是增广状态x(k)的上界和下界估计值,T∈R(n+s)×(n+s),N∈R(n+s)×p和L∈R(n+s)×p为待设计的参数矩阵,
Figure GDA00037277282800000515
Δ(k)∈Rn+s的表达式如下:
Figure GDA00037277282800000516
其中,L+=max(L,0),L-=L+-L,N+=max(N,0),N-=N+-N,
Figure GDA0003727728280000061
此外,待设计的参数矩阵T和N满足:
TE+NC=In+s
区间观测器(17)中矩阵T和N的通解为:
Figure GDA0003727728280000062
其中,
Figure GDA0003727728280000063
表示矩阵M的伪逆矩阵,
Figure GDA0003727728280000064
H∈R(n +s)×(n+s+p)为任意矩阵;
步骤4:观测器(17)为区间观测器的充分条件为:
Figure GDA0003727728280000065
定义如下误差系统:
Figure GDA0003727728280000066
由于下面不等式成立:
Figure GDA0003727728280000067
因此可得:
Figure GDA0003727728280000068
Figure GDA0003727728280000069
Figure GDA00037277282800000610
Figure GDA00037277282800000611
Figure GDA00037277282800000612
Figure GDA00037277282800000613
因此容易得到:
Figure GDA00037277282800000614
观测器(17)为区间观测器;
步骤5:构造Lyapunov函数
Figure GDA00037277282800000615
利用Lyapunov稳定性理论和线性矩阵不等式分析方法得到增广系统鲁棒区间观测器存在的充分条件。
PTA-YC≥0 (20)
P>γI (21)
Figure GDA00037277282800000616
其中:
Figure GDA00037277282800000617
Figure GDA0003727728280000071
其中,Y∈R(n+s)×p,P∈R(n+s)×(n+s)为通过上述不等式求解的矩阵,0<λ<1,γ>0为给定的标量参数;
利用MATLAB中的LMI工具箱进行求解式子(9)-(11),若可解,则区间观测器(6)是增广系统(4)的一个鲁棒区间观测器,估计误差
Figure GDA0003727728280000072
e(k)满足L性能指标:
Figure GDA0003727728280000073
Figure GDA0003727728280000074
其中,
Figure GDA0003727728280000075
V(0)=e T(0)Pe(0),若式子(9)-(11)可解,可得待设计的参数矩阵T,N和L的表达式如下:
Figure GDA0003727728280000076
Figure GDA0003727728280000077
L=P-1Y
其中,
Figure GDA0003727728280000078
表示矩阵M的伪逆矩,
Figure GDA0003727728280000079
H∈R(n +s)×(n+s+p)为任意矩阵。
实施例:
采用本发明的一种隐蔽式攻击下网络化控制系统的状态与故障的联合区间估计方法,在考虑系统发生执行器故障和遭受隐蔽式攻击情况下,设计鲁棒区间观测器以实现对状态和故障的联合区间估计。具体实现方法如下:
考虑如下形式的离散时间系统:
Figure GDA00037277282800000710
本文所考虑的参数矩阵如下:
Figure GDA00037277282800000711
Figure GDA00037277282800000712
此外,假设输入干扰为w(k)=0.01cos(k),那么,干扰边界为w(k)=-w(k)=[0.010.01 0.01 0.01]Τ,根据式(16)可以得到攻击信号的上下界估计,选择隐蔽式攻击信号为
Figure GDA00037277282800000713
选取观测器的初始值分别为
Figure GDA00037277282800000714
x(0)=[0.93 0.950.6 -1],增广系统初始状态为x(0)=[1 1 1 0]Τ,假设系统执行器故障故障形式如下:
Figure GDA00037277282800000715
给定γ=0.0188和λ=0.6,选取H矩阵为:
Figure GDA0003727728280000081
求解线性矩阵不等式(20-22),可以得到增广状态观测器(17)的待设计参数为:
Figure GDA0003727728280000082
执行器故障仿真结果如图2所示,系统三个状态的上下界估计的仿真结果分别如图3、图4和图5所示。
总之,从仿真结果来看,所设计的区间估计方法是有效的,实现了隐蔽式攻击下网络化控制系统的状态与故障的联合区间估计。

Claims (1)

1.一种隐蔽式攻击下网络化控制系统状态与故障的联合区间估计方法,其特征在于,在系统遭受隐蔽式攻击且发生传感器故障的情况下实现对系统状态与传感器故障的联合区间估计,具体包括以下步骤:
1)建立执行器发生故障的网络化控制系统的被控对象模型:
Figure FDA0003727728270000011
式中,
Figure FDA0003727728270000012
u(k)∈Rm
Figure FDA0003727728270000013
w(k)∈Rd和f(k)∈Rs分别为系统状态向量,输入向量,输出向量,输入干扰和执行器故障向量,
Figure FDA0003727728270000014
Figure FDA0003727728270000015
记号Rn表示n维欧几里得空间;Rn×m表示n×m维实数矩阵的集合;
攻击者通过网络向传感器测量通道注入隐蔽式攻击信号后,增广状态观测器的输入为:
Figure FDA0003727728270000016
其中,a(k)∈Rp为攻击者注入的隐蔽式攻击信号;
根据式(1)和式(2),可将遭受攻击的网络化控制系统重写为:
Figure FDA0003727728270000017
将执行器故障视为增广状态:
Figure FDA0003727728270000018
则得到如下的增广系统:
Figure FDA0003727728270000019
其中:
Figure FDA00037277282700000110
Figure FDA00037277282700000111
In表示单位矩阵
需要说明的是,增广系统(4)与系统(3)完全等价,故能通过设计增广状态区间观测器估计出增广状态,也就实现了隐蔽式攻击下执行器故障与状态的联合区间估计,为了得到更加精确的估计,对隐蔽式攻击的上下界进行估计是必要的;
2)设计区间观测器估计攻击信号上下界:
Figure FDA00037277282700000112
其中:
Figure FDA0003727728270000021
a(k)∈Rp分别是隐蔽式攻击信号a(k)的上界和下界估计值,
Figure FDA0003727728270000022
w(k)分别为w(k)已知的上下界,S∈Rn×n是自由选择使得
Figure FDA0003727728270000023
是Schur且非负的矩阵,
Figure FDA0003727728270000024
且S+=max(S,0),S-=S+-S;
3)设计增广状态区间观测器
Figure FDA0003727728270000025
其中,
Figure FDA0003727728270000026
ξ(k)∈Rn+s是中间状态变量,
Figure FDA0003727728270000027
Figure FDA0003727728270000028
分别是增广状态x(k)的上界和下界估计值,T∈R(n+s)×(n+s),N∈R(n+s)×p和L∈R(n+s)×p为待设计的参数矩阵,
Figure FDA0003727728270000029
Δ(k)∈Rn+s的表达式如下:
Figure FDA00037277282700000210
其中,L+=max(L,0),L-=L+-L,N+=max(N,0),N-=N+-N,
Figure FDA00037277282700000211
此外,待设计的参数矩阵T和N满足:
TE+NC=In+s
区间观测器(6)中矩阵T和N的通解为:
Figure FDA00037277282700000212
其中,
Figure FDA00037277282700000213
表示矩阵M的伪逆矩,
Figure FDA00037277282700000214
H∈R(n +s)×(n+s+p)为任意矩阵;
4)区间观测器(6)为区间观测器的充分条件:
Figure FDA00037277282700000215
5)鲁棒区间观测器存在的充分条件
PTA-YC≥0 (9)
Figure FDA00037277282700000218
Figure FDA00037277282700000216
其中:
Figure FDA00037277282700000217
Figure FDA0003727728270000031
其中,Y∈R(n+s)×p,P∈R(n+s)×(n+s)为通过上述不等式求解的矩阵,0<λ<1,γ>0为给定的标量参数;
利用MATLAB中的LMI工具箱进行求解式子(9)-(11),若可解,则区间观测器(6)是增广系统(4)的一个鲁棒区间观测器,估计误差
Figure FDA0003727728270000032
e(k)满足L性能指标:
Figure FDA0003727728270000033
Figure FDA0003727728270000034
其中,
Figure FDA0003727728270000035
V(0)=e T(0)Pe(0),若式子(9)-(11)可解,可得待设计的参数矩阵T,N和L的表达式如下:
Figure FDA0003727728270000036
Figure FDA0003727728270000037
L=P-1Y
其中,
Figure FDA0003727728270000038
表示矩阵M的伪逆矩阵,
Figure FDA0003727728270000039
H∈R(n +s)×(n+s+p)为任意矩阵。
CN202111313140.0A 2021-11-08 2021-11-08 一种隐蔽式攻击下网络化控制系统状态与故障的联合区间估计方法 Active CN114039867B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111313140.0A CN114039867B (zh) 2021-11-08 2021-11-08 一种隐蔽式攻击下网络化控制系统状态与故障的联合区间估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111313140.0A CN114039867B (zh) 2021-11-08 2021-11-08 一种隐蔽式攻击下网络化控制系统状态与故障的联合区间估计方法

Publications (2)

Publication Number Publication Date
CN114039867A CN114039867A (zh) 2022-02-11
CN114039867B true CN114039867B (zh) 2022-09-06

Family

ID=80143262

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111313140.0A Active CN114039867B (zh) 2021-11-08 2021-11-08 一种隐蔽式攻击下网络化控制系统状态与故障的联合区间估计方法

Country Status (1)

Country Link
CN (1) CN114039867B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115118510A (zh) * 2022-06-30 2022-09-27 东北大学 一种基于泄露资源和破坏资源的隐蔽性欺骗攻击方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106506567A (zh) * 2017-01-12 2017-03-15 成都信息工程大学 一种基于行为评判的隐蔽式网络攻击主动发现方法
CN110290118A (zh) * 2019-06-10 2019-09-27 浙江工业大学 一种基于隐马尔可夫模型的重复加工过程隐蔽性攻击检测方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107329083B (zh) * 2017-07-28 2019-07-19 南京航空航天大学 针对高速列车牵引电机非线性系统传感器的故障诊断方法
CN110209148B (zh) * 2019-06-18 2021-05-14 江南大学 一种基于描述系统观测器的网络化系统的故障估计方法
CN110908364B (zh) * 2019-12-06 2021-02-05 南京航空航天大学 一种基于鲁棒区间估计的故障检测方法
CN112034823B (zh) * 2020-09-03 2022-03-22 西北工业大学 一种基于区间观测器的飞机系统容错控制方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106506567A (zh) * 2017-01-12 2017-03-15 成都信息工程大学 一种基于行为评判的隐蔽式网络攻击主动发现方法
CN110290118A (zh) * 2019-06-10 2019-09-27 浙江工业大学 一种基于隐马尔可夫模型的重复加工过程隐蔽性攻击检测方法

Also Published As

Publication number Publication date
CN114039867A (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
Li et al. Robust fault estimation and fault-tolerant control for Markovian jump systems with general uncertain transition rates
Langbort et al. Distributed control design for systems interconnected over an arbitrary graph
Li et al. Synchronization of stochastic hybrid coupled systems with multi-weights and mixed delays via aperiodically adaptive intermittent control
CN110209148B (zh) 一种基于描述系统观测器的网络化系统的故障估计方法
Li et al. Event-based fault-tolerant control for networked control systems applied to aircraft engine system
CN109088749B (zh) 一种随机通讯协议下复杂网络的状态估计方法
CN114039867B (zh) 一种隐蔽式攻击下网络化控制系统状态与故障的联合区间估计方法
CN112085050A (zh) 基于pid控制器的对抗性攻击与防御方法及系统
CN110531621B (zh) 一种面向混合攻击下的信息物理系统可靠控制方法
Chu et al. H∞ non-fragile observer-based dynamic event-triggered sliding mode control for nonlinear networked systems with sensor saturation and dead-zone input
CN106383442B (zh) 一种网络化线性参数变化系统的h∞控制方法
Yang et al. Composite anti‐disturbance control for switched systems via mixed state‐dependent and time‐driven switching
He et al. Multiple Lyapunov Functions with Blending for Induced L 2‐norm Control of Switched LPV Systems and its Application to an F‐16 Aircraft Model
Bi et al. Operator-based robust control for nonlinear uncertain systems with unknown backlash-like hysteresis
Sun et al. Robust fault estimation for Takagi–Sugeno nonlinear systems with time-varying state delay
Djennoune et al. Modulating function‐based fast convergent observer and output feedback control for a class of non‐linear systems
Shen et al. Generalized synchronization of delayed complex-valued dynamical networks via hybrid control
Lu et al. Adaptive event‐triggered H∞ state estimation of semi‐Markovian jump neural networks with randomly occurred sensor nonlinearity
CN113325708B (zh) 基于异构多智能体的多无人机系统的故障估计方法
Zeng et al. Stochastic reliable synchronization for coupled Markovian reaction–diffusion neural networks with actuator failures and generalized switching policies
CN113721458A (zh) 一种具有扰动的非线性系统故障估计观测方法和装置
Grimble et al. State-space approach to nonlinear predictive generalised minimum variance control
CN107563103B (zh) 基于局部条件的一致性滤波器设计方法
Song et al. Distributed dynamic edge-based event-triggered formation control for multiple underactuated unmanned surface vessels
CN114019944B (zh) 一种fdi攻击下网络化控制系统状态与故障的联合区间估计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant