CN114015983B - 一种体垂直各向异性的亚铁磁合金薄膜及其制备方法 - Google Patents

一种体垂直各向异性的亚铁磁合金薄膜及其制备方法 Download PDF

Info

Publication number
CN114015983B
CN114015983B CN202111297810.4A CN202111297810A CN114015983B CN 114015983 B CN114015983 B CN 114015983B CN 202111297810 A CN202111297810 A CN 202111297810A CN 114015983 B CN114015983 B CN 114015983B
Authority
CN
China
Prior art keywords
sputtering
mgo
film
substrate
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111297810.4A
Other languages
English (en)
Other versions
CN114015983A (zh
Inventor
陈焕坚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Lab
Original Assignee
Zhejiang Lab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Lab filed Critical Zhejiang Lab
Priority to CN202111297810.4A priority Critical patent/CN114015983B/zh
Publication of CN114015983A publication Critical patent/CN114015983A/zh
Application granted granted Critical
Publication of CN114015983B publication Critical patent/CN114015983B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering

Abstract

本发明公开了一种体垂直各向异性的亚铁磁合金薄膜及其制备方法,包括衬底,位于所述衬底上的亚铁磁合金薄膜,位于所述亚铁磁合金薄膜上的MgO薄膜,位于所述MgO薄膜上的Pt薄膜;制备方法包括以下步骤:S1:在真空及高纯度氩气条件下,以过渡族磁性金属Co和稀土金属Tb为靶材,采用超高真空磁控溅射技术在衬底上共溅射Co和Tb得到CoTb亚铁磁合金薄膜层;S2:在真空及高纯度氩气条件下,以MgO陶瓷为靶材,采用超高真空磁控溅射技术在所述合金薄膜层上沉积MgO得到MgO薄膜层;S3:在真空及高纯度氩气条件下,以金属Pt为靶材,采用超高真空磁控溅射技术在所述MgO薄膜层上沉积Pt得到Pt薄膜层。本发明在粗糙度很大的铝箔片和柔性衬底上都能保持较好的垂直各向异性。

Description

一种体垂直各向异性的亚铁磁合金薄膜及其制备方法
技术领域
本发明涉及一种磁性材料与磁电子技术领域,尤其涉及一种体垂直各向异性的亚铁磁合金薄膜及其制备方法。
背景技术
磁各向异性是指磁性材料的磁性能(磁化率、剩磁、矫顽力等)沿不同方向磁化时表现不一样的现象。对于磁性薄膜材料,当易磁化轴垂直薄膜表面时,表现出垂直各向异性。目前常见的垂直各向异性薄膜有:(1)铁磁层/非磁层的多层膜,例如[Co/Pt]n和[Co/Pd]n多层膜;(2)重金属层/铁磁层/氧化层薄膜,例如Pt/Co/AlOx和Ta/CoFeB/MgO;(3)过渡族磁性金属-稀土金属组成的合金薄膜,例如GdFeCo和TbFeCo;(4)有序合金薄膜,比如L10-CoPt和L10-FePt。垂直各向异性优良的磁性薄膜在高密度磁记录和高密度磁光存储等领域发挥着重要作用。
然而,对于大多数磁性薄膜材料,其垂直各向异性通常表现出界面的特性:(1)铁磁层厚度低至1nm;(2)磁性异质结的界面须择优氧化;(3)需要缓冲层。铁磁层厚度较低,直接影响着磁存储和磁性传感器件的热稳定性,界面的择优氧化和添加缓冲层使得器件的制备工艺非常复杂。此外,绝大多数垂直各向异性薄膜只能在刚性的衬底上生长,且严重依赖平整的衬底,这制约着磁性材料在柔性电子中的应用。因此,制备出一种具有体特性、对衬底的依赖性不高、且在柔性衬底上表现出垂直各向异性的磁性材料尤为重要。
发明内容
本发明的目的在于提供一种体垂直各向异性的亚铁磁合金薄膜及其制备方法,解决了现有技术中磁性材料对衬底依赖性高、磁性异质结的界面须择优氧化、铁磁层厚度较低影响磁存储和磁性传感器件的热稳定性、制备工艺复杂的问题。
本发明采用的技术方案如下:
一种体垂直各向异性的亚铁磁合金薄膜,其特征在于,包括衬底,位于所述衬底上的亚铁磁合金薄膜,位于所述亚铁磁合金薄膜上的MgO薄膜,位于所述MgO薄膜上的Pt薄膜。
进一步地,所述衬底为以下任意一种:玻璃、Si/SiO2、载玻片、铝箔片或手机贴膜,所述铝箔片的表面粗糙度达到十纳米级别,所述手机贴膜为柔性衬底。
进一步地,所述亚铁磁合金薄膜为过渡族磁性金属和稀土金属组成的CoTb亚铁磁合金薄膜。
本发明还提供了一种体垂直各向异性的亚铁磁合金薄膜的制备方法,其特征在于,包括以下步骤:
S1:在真空及高纯度氩气条件下,以过渡族磁性金属Co和稀土金属Tb为靶材,采用超高真空磁控溅射技术在衬底上共溅射Co和Tb得到CoTb亚铁磁合金薄膜层;
S2:在真空及高纯度氩气条件下,以MgO陶瓷为靶材,采用超高真空磁控溅射技术在所述合金薄膜层上沉积MgO得到MgO薄膜层;
S3:在真空及高纯度氩气条件下,以金属Pt为靶材,采用超高真空磁控溅射技术在所述MgO薄膜层上沉积Pt得到Pt薄膜层。
进一步地,所述衬底沿顺时针方向旋转。
进一步地,所述Co、Tb、MgO和Pt靶倾斜放置,靶心距离托盘的中心位置30cm。
进一步地,所述步骤S1-S3中所述真空及高纯度氩气条件为:本底真空为5×10- 6Pa,氩气压强为0.45Pa。
进一步地,所述步骤S1中Co的溅射模式为直流溅射,功率为40-80W;所述Tb的溅射模式为射频溅射,功率为20W;所述CoTb亚铁磁合金薄膜的生长方式为共溅射,所述Co、Tb共溅射的时间为450s,所述CoTb亚铁磁合金薄膜的沉积厚度为13.7-21.5nm。
进一步地,所述步骤S2中所述MgO的溅射模式为射频溅射,功率为60W,溅射时间为600s,MgO的沉积厚度为3nm。
进一步地,所述步骤S3中所述Pt的溅射模式为直流溅射,功率为40W,溅射时间为30s,Pt的沉积厚度为2nm。
本发明的有益效果是:
本发明通过优化亚铁磁合金的溅射功率,可获得具有体垂直各向异性的亚铁磁合金薄膜,该薄膜在粗糙度很大的铝箔片和柔性衬底上都能保持较好的垂直各向异性。上述亚铁磁垂直各向异性薄膜的制备方法具有如下特点:
(1) 制备方便,成本低;
(2) 通过调控Co或Tb的溅射功率可灵活调控CoTb亚铁磁合金薄膜的成分和垂直各向异性;
(3) 对衬底的粗糙度不敏感;
(4) 制备出的CoTb亚铁磁合金薄膜的热稳定性较高。
附图说明
图1为实施例1中不同Co功率生长的CoTb亚铁磁合金薄膜的反常霍尔曲线;
图2为测试1中不同衬底上生长的CoTb亚铁磁合金薄膜的XRR图谱;
图3为测试1中不同衬底上生长的CoTb亚铁磁合金薄膜的磁滞回线;
图4为测试2中不同条件热处理的CoTb亚铁磁合金薄膜的磁滞回线。
具体实施方式
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
(1)将直径50mm、厚度3mm、纯度99.99%的Co靶、Tb靶、Pt靶和MgO靶放入磁控溅射靶位,靶位倾斜放置、靶位距离圆形转盘的中心位置30cm;
(2)将清洗好的10×10mm2的Si/SiO2基片放入圆形托盘中,再将托盘放入传样室中;
(3)关闭磁控溅射室和传样室,两个腔室之间的挡板阀也关闭,分别对溅射室和传样室抽真空;
(4)当溅射室的本底真空优于1.0×10-5Pa时,往溅射室内通入纯度为99.99%的氩气,调节氩气流量,使氩气的压强为0.45Pa,启动Co靶、Tb靶、Pt靶和MgO靶的溅射开关,Co靶为直流溅射、功率为40W,Tb靶为射频溅射、功率为20W,Pt靶为直流溅射、功率为40W,MgO靶为射频溅射、功率为60W,Pt靶预溅射2min、其它靶预溅射20min,使得靶材表面的杂质和氧化层溅射掉,预溅射结束后关闭氩气阀门,溅射室继续抽真空;
(5)当溅射室和传样室的本底真空均优于1.0×10-5Pa时,打开二者之间的挡板阀,用传样杆将含有Si/SiO2基片的圆形托盘传入溅射室,并将托盘和转盘衔接好,抽出传样杆,关闭挡板阀,溅射室继续抽真空;
(6)当溅射室的本底真空为5×10-6Pa时,往溅射室内通入纯度为99.99%的氩气,调节氩气流量,使氩气的压强保持0.45Pa,启动Co靶、Tb靶的溅射开关,Co靶为直流溅射、溅射功率为40W,Tb为射频溅射、溅射功率为20W,预溅射2min后同时打开Co靶和Tb靶的挡板,溅射450s,CoTb亚铁磁合金薄膜的沉积厚度为13.7nm。溅射过程中Si/SiO2基片沿顺时针方向匀速旋转,使得CoTb亚铁磁合金薄膜在Si/SiO2基片上均匀分布,溅射结束后关闭Co、Tb靶的挡板,关闭Co、Tb的溅射开关;
(7)启动MgO靶的溅射开关,MgO为射频溅射、溅射功率为60W,预溅射2min后打开MgO靶的挡板,溅射600s,MgO薄膜的沉积厚度为3nm。溅射过程中Si/SiO2基片沿顺时针方向匀速旋转,使得MgO薄膜在CoTb亚铁磁合金薄膜表面上均匀分布,溅射结束后关闭MgO靶的挡板,关闭MgO靶的溅射开关;
(8)启动Pt靶的溅射开关,Pt为直流溅射、溅射功率为40W,预溅射1min后打开Pt靶的挡板,溅射30s,Pt的沉积厚度为2nm。溅射过程中Si/SiO2基片沿顺时针方向匀速旋转,使得Pt薄膜在MgO薄膜表面上均匀分布,溅射结束后关闭Pt靶的挡板,关闭Pt靶的溅射开关;
(9)按照(5)-(8)的步骤,继续生长Co的溅射功率为50、60和80W的CoTb亚铁磁合金薄膜,其它生长条件保持不变,对应的CoTb亚铁磁合金薄膜的厚度分别为15.3、17.6和21.5nm。
(10)取出(5)-(9)步骤生长的样品,即Co的溅射功率分别为40、50、60和80W的CoTb亚铁磁合金薄膜,测量它们的反常霍尔曲线。
图1为溅射功率为40、50、60和80W的CoTb亚铁磁合金薄膜的反常霍尔曲线,由图可知,Co的溅射功率为40W时,生长厚度为13.7nm的CoTb亚铁磁合金薄膜具有良好的垂直各向异性。与传统的界面垂直各向异性的磁性多层膜相比,CoTb亚铁磁合金薄膜在十纳米级别仍能保持较好的垂直各向异性,这有助于设计出高稳定性的磁存储和磁性传感器件。
测试1:对不同衬底的体垂直各向异性的亚铁磁合金薄膜进行测试对比;
(1)将清洗好的10×10mm2的玻璃、Si/SiO2、载玻片、铝箔片和手机贴膜衬底放入同一个圆形托盘中,再将托盘放入磁控溅射仪的传样室中,抽真空;
(2)当传样室的本底真空均优于1.0×10-5Pa时,打开溅射室和传样室之间的挡板阀,用传样杆将圆形托盘传入溅射室,将托盘和转盘衔接好,抽出传样杆,关闭挡板阀,溅射室继续抽真空;
(3)当溅射室的本底真空为5×10-6Pa时,往溅射室内通入纯度为99.99%的氩气,调节氩气流量,使氩气的压强保持0.45Pa,启动Co靶、Tb靶的溅射开关,Co靶为直流溅射、溅射功率为40W,Tb为射频溅射、功率为20W,预溅射1min后同时打开Co靶和Tb靶的挡板,共溅射450s,CoTb亚铁磁合金薄膜的沉积厚度约为13.7nm。溅射过程中Si/SiO2基片沿顺时针方向匀速旋转,使得CoTb亚铁磁合金薄膜在Si/SiO2基片上均匀分布,溅射结束后关闭Co、Tb靶的挡板,关闭Co、Tb的溅射开关;
(4)启动MgO靶的溅射开关,MgO为射频溅射、溅射功率为60W,预溅射1min后打开MgO靶的挡板,溅射600s,MgO薄膜的沉积厚度为3nm。溅射过程中Si/SiO2基片沿顺时针方向匀速旋转,使得MgO在CoTb亚铁磁合金薄膜表面上均匀分布,溅射结束后关闭MgO靶的挡板,关闭MgO靶的溅射开关;
(5)启动Pt靶的溅射开关,Pt为直流溅射、溅射功率为40W,预溅射1min后打开Pt靶的挡板,溅射30s,Pt的沉积厚度为2nm。溅射过程中Si/SiO2基片沿顺时针方向匀速旋转,使得Pt薄膜在MgO薄膜表面上均匀分布,溅射结束后关闭Pt靶的挡板,关闭Pt靶的溅射开关。
取出样品,测量不同衬底上生长的CoTb亚铁磁合金薄膜的XRR和磁滞回线。图2为玻璃、Si/SiO2、载玻片、铝箔片和手机贴膜上生长的CoTb亚铁磁合金薄膜的XRR图谱。玻璃、Si/SiO2、载玻片上生长的CoTb亚铁磁合金薄膜的XRR衍射峰可拓展到较高角度,说明上述衬底的粗糙度较低。通过快速傅里叶变换可拟合出CoTb亚铁磁合金薄膜的厚度,约为13.7nm。铝箔片和手机贴膜上生长的CoTb亚铁磁合金薄膜的XRR没有衍射峰,说明铝箔片和手机贴膜的粗糙度很大。图3为玻璃Si/SiO2、载玻片、铝箔片和手机贴膜上生长的CoTb亚铁磁合金薄膜的磁滞回线。由图3可知,CoTb亚铁磁合金薄膜可克服界面垂直各向异性过度依赖粗糙度的缺陷,CoTb亚铁磁合金薄膜生长在粗糙度很大的铝箔片和手机贴膜的衬底都能保持较好的垂直各向异性。因此,CoTb亚铁磁合金薄膜在绝大多数衬底上都能保持较好的体垂直各向异性,这有助于设计柔性传感及柔性磁存储器件。
测试2:实施例2中Si/SiO2衬底上生长的CoTb亚铁磁合金薄膜测试;
(1)对实施例2中Si/SiO2衬底上生长的CoTb亚铁磁合金薄膜样品分成6份,将其中的4份样品放在烤盘上加热,条件分别为:100℃加热1h、100℃加热1.5h、130℃加热1h和200℃加热1h;
(2)测量上述6份CoTb亚铁磁合金薄膜样品的磁滞回线,探究样品的热稳定性,见图4。
图4为CoTb亚铁磁合金薄膜样品经过不同条件处理后的磁滞回线。由图4可知,CoTb亚铁磁合金薄膜样品常温下放置1月后的磁性与生长后的几乎一样,说明MgO/Pt覆盖层可长期保护CoTb亚铁磁合金薄膜样品免受空气氧化;经过100℃加热1h、100℃加热1.5h或130℃加热1h的条件下热处理后,CoTb亚铁磁合金薄膜样品的磁性与生长后的变化不大,说明CoTb亚铁磁合金薄膜样品具有较强的热稳定性;在200℃加热1h的条件下热处理后,CoTb亚铁磁合金薄膜样品的磁性变化很大,由原来的垂直各向异性变成面内各向异性。基于CoTb亚铁磁合金薄膜这一特性,可用于设计热稳定较高的磁存储器件。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种体垂直各向异性的亚铁磁合金薄膜的制备方法,其特征在于,包括以下步骤:
S1:在真空及高纯度氩气条件下,以过渡族磁性金属Co和稀土金属Tb为靶材,采用超高真空磁控溅射技术在衬底上共溅射Co和Tb得到CoTb亚铁磁合金薄膜层,所述Co的溅射模式为直流溅射,功率为40-80W;
S2:在真空及高纯度氩气条件下,以MgO陶瓷为靶材,采用超高真空磁控溅射技术在所述合金薄膜层上沉积MgO得到MgO薄膜层;所述MgO的溅射模式为射频溅射,功率为60W,溅射时间为600s,MgO的沉积厚度为3nm;
S3:在真空及高纯度氩气条件下,以金属Pt为靶材,采用超高真空磁控溅射技术在所述MgO薄膜层上沉积Pt得到Pt薄膜层,制备得到体垂直各向异性的亚铁磁合金薄膜,包括衬底,位于所述衬底上的亚铁磁合金薄膜,位于所述亚铁磁合金薄膜上的MgO薄膜,位于所述MgO薄膜上的Pt薄膜,所述衬底为以下任意一种:铝箔片或手机贴膜,所述铝箔片的表面粗糙度达到十纳米级别,所述手机贴膜为柔性衬底。
2.如权利要求1所述的一种体垂直各向异性的亚铁磁合金薄膜的制备方法,其特征在于,所述衬底沿顺时针方向旋转。
3.如权利要求1所述的一种体垂直各向异性的亚铁磁合金薄膜的制备方法,其特征在于,所述Co、Tb、MgO和Pt靶倾斜放置,靶心距离托盘的中心位置30cm。
4.如权利要求1所述的一种体垂直各向异性的亚铁磁合金薄膜的制备方法,其特征在于,所述步骤S1-S3中所述真空及高纯度氩气条件为:本底真空为5×10-6Pa,氩气压强为0.45Pa。
5.如权利要求1所述的一种体垂直各向异性的亚铁磁合金薄膜的制备方法,其特征在于,所述步骤S1中所述Tb的溅射模式为射频溅射,功率为20W;所述CoTb亚铁磁合金薄膜的生长方式为共溅射,所述Co、Tb共溅射的时间为450s,所述CoTb亚铁磁合金薄膜的沉积厚度为13.7-21.5nm。
6.如权利要求1所述的一种体垂直各向异性的亚铁磁合金薄膜的制备方法,其特征在于,所述步骤S3中所述Pt的溅射模式为直流溅射,功率为40W,溅射时间为30s,Pt的沉积厚度为2nm。
CN202111297810.4A 2021-11-04 2021-11-04 一种体垂直各向异性的亚铁磁合金薄膜及其制备方法 Active CN114015983B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111297810.4A CN114015983B (zh) 2021-11-04 2021-11-04 一种体垂直各向异性的亚铁磁合金薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111297810.4A CN114015983B (zh) 2021-11-04 2021-11-04 一种体垂直各向异性的亚铁磁合金薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN114015983A CN114015983A (zh) 2022-02-08
CN114015983B true CN114015983B (zh) 2022-06-07

Family

ID=80060819

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111297810.4A Active CN114015983B (zh) 2021-11-04 2021-11-04 一种体垂直各向异性的亚铁磁合金薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN114015983B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169758A (ja) * 1987-12-24 1989-07-05 Hitachi Ltd 光磁気記録媒体
CN101996734A (zh) * 2009-08-25 2011-03-30 中国科学院物理研究所 一种线性响应巨磁电阻效应多层膜
CN102709466A (zh) * 2012-06-04 2012-10-03 清华大学 一种室温隧道各向异性磁电阻器件及其制备方法
TW201539439A (zh) * 2014-03-10 2015-10-16 Toshiba Kk 磁性記憶體、磁性記憶體裝置、及磁性記憶體之動作方法
CN110412081A (zh) * 2019-07-16 2019-11-05 三峡大学 一种稀土(re)-过渡族金属(tm)合金中非共线反铁磁耦合原子磁矩间夹角测量方法
CN111243816A (zh) * 2020-01-16 2020-06-05 东华理工大学 磁化材料、制备方法、垂直磁化膜结构、电子自旋器件

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4908540B2 (ja) * 2009-03-25 2012-04-04 株式会社東芝 スピンmosfetおよびリコンフィギャラブルロジック回路
CN109904291B (zh) * 2019-02-13 2021-09-28 湖北大学 一种自旋电子器件及其制备方法、调控方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169758A (ja) * 1987-12-24 1989-07-05 Hitachi Ltd 光磁気記録媒体
CN101996734A (zh) * 2009-08-25 2011-03-30 中国科学院物理研究所 一种线性响应巨磁电阻效应多层膜
CN102709466A (zh) * 2012-06-04 2012-10-03 清华大学 一种室温隧道各向异性磁电阻器件及其制备方法
TW201539439A (zh) * 2014-03-10 2015-10-16 Toshiba Kk 磁性記憶體、磁性記憶體裝置、及磁性記憶體之動作方法
CN110412081A (zh) * 2019-07-16 2019-11-05 三峡大学 一种稀土(re)-过渡族金属(tm)合金中非共线反铁磁耦合原子磁矩间夹角测量方法
CN111243816A (zh) * 2020-01-16 2020-06-05 东华理工大学 磁化材料、制备方法、垂直磁化膜结构、电子自旋器件

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
formation and magnetic-field stability of magnetic dipole skyrmions and bubbles in a ferrimagnet;junwei zhang等;《applied physics letters》;20200409;第116卷(第14期);第1947-1950页 *
制备工艺及参数对TbCo薄膜垂直磁各向异性能的影响;黄致新等;《稀有金属材料与工程》;20071115(第11期);第142404-1~142404-5页 *

Also Published As

Publication number Publication date
CN114015983A (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
Zhang et al. FePt (001) texture development on an Fe–Ta–C magnetic soft underlayer with SiO 2/MgO as an intermediate layer
CN105331942B (zh) 钇铁石榴石薄膜材料及其制备方法
KR20040037609A (ko) FePtC 박막을 이용한 고밀도 자기기록매체 및 그제조방법
Parhofer et al. Growth characteristics and magnetic properties of sputtered Nd Fe B thin films
US5607781A (en) Oxide film with preferred crystal orientation, method of manufacturing the same, and magneto-optical recording medium
Naoe et al. Properties of amorphous Co–Ta and Co–W films deposited by rf sputtering
CN114015983B (zh) 一种体垂直各向异性的亚铁磁合金薄膜及其制备方法
CN108914080A (zh) 一种制备具有室温交换偏置效应锰铋合金薄膜的方法
CN107134341A (zh) 一种垂直取向强磁性介质薄膜及其制备方法
Wang et al. Preparation and characterization of Al doped longitudinal barium ferrite thin film media
Morisako et al. Properties of c-axis oriented Ba-ferrite sputtered films
JPWO2013141337A1 (ja) 高い垂直磁気異方性を示す極薄垂直磁化膜、その製造方法及び用途
Fischer et al. Effect of magnetic annealing on the τ-phase of MnAl thin films
US20190318860A1 (en) Iron-aluminum alloy magnetic thin film
CN107275073A (zh) 一种垂直磁特性可调纳米厚度GdFeCo合金薄膜的制备方法
Li et al. Effect of composition on L10 ordering in FePt and FePtCu thin films
Choe Effect of film morphology on grain boundary segregation induced magnetic properties in heat treated CoCrPt/Cr films
US20200058429A1 (en) Fe-Co-Si ALLOY MAGNETIC THIN FILM
Sun et al. Magnetic properties and microstructure studies of Sm–Fe magnetic thin films
CN111243816A (zh) 磁化材料、制备方法、垂直磁化膜结构、电子自旋器件
Xun et al. High-coercivity CoPt alloy films prepared at ultra-high Ar pressure
Nakagawa et al. Low temperature deposition of c-axis oriented Sr-ferrite thin films prepared by facing targets sputtering with mixture gas of Ar and Kr
Jeong et al. Controlling the crystallographic orientation in ultrathin L1/sub 0/FePt [111] films on MgO [111] underlayer
Zhong et al. Microstructure and magnetic properties of CoFe 2 O 4 thin films deposited on Si substrates with an Fe 3 O 4 under-layer
US11585013B2 (en) Fe—Co—Al alloy magnetic thin film

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant