CN114015959A - 一种核电厂锆合金包壳管用耐磨损抗氧化复合涂层及其制备方法 - Google Patents

一种核电厂锆合金包壳管用耐磨损抗氧化复合涂层及其制备方法 Download PDF

Info

Publication number
CN114015959A
CN114015959A CN202111313422.0A CN202111313422A CN114015959A CN 114015959 A CN114015959 A CN 114015959A CN 202111313422 A CN202111313422 A CN 202111313422A CN 114015959 A CN114015959 A CN 114015959A
Authority
CN
China
Prior art keywords
resistant
layer
wear
zirconium alloy
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111313422.0A
Other languages
English (en)
Inventor
卢俊强
李崇
崔严光
陆辉
曾奇锋
陈小强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Nuclear Engineering Research and Design Institute Co Ltd
Original Assignee
Shanghai Nuclear Engineering Research and Design Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Nuclear Engineering Research and Design Institute Co Ltd filed Critical Shanghai Nuclear Engineering Research and Design Institute Co Ltd
Priority to CN202111313422.0A priority Critical patent/CN114015959A/zh
Publication of CN114015959A publication Critical patent/CN114015959A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • G21C3/07Casings; Jackets characterised by their material, e.g. alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

本发明属于核燃料技术领域,具体公开了一种核电厂锆合金包壳管用耐磨损抗氧化复合涂层及其制备方法,包括锆合金包壳管基体、粘结层、耐腐蚀层和耐磨层;本发明外部中的耐磨层可采用多层膜层,并且多层膜层可采用CrN、Cr3C2、ZrO2等材料实现表面硬度的提升,提高锆合金包壳管的耐磨性能,并采用金属Cr、Nb、Zr等缓冲热膨胀系数差异,减少应力集中,该材料在事故工况下和在高温水蒸气腐蚀环境中,可在最初防护阶段可形成Cr2O3致密氧化膜,减少高温蒸汽环境的影响,在内部粘结层可利用与锆合金匹配的热膨胀系数,避免在升降温过程中产生裂纹或涂层脱落,通过以上对涂层的结构与物相设计,使得涂层具有优异的耐磨损性能和优异的抗高温水蒸汽腐蚀性能。

Description

一种核电厂锆合金包壳管用耐磨损抗氧化复合涂层及其制备 方法
技术领域
本发明涉及核燃料技术领域,具体为一种核电厂锆合金包壳管用耐磨损抗氧化复合涂层及其制备方法。
背景技术
轻水反应堆是核电站的主要堆型,采用棒状核燃料元件(以下简称“燃料棒”)。燃料棒由短圆柱状的UO2燃料芯块、锆合金包壳、端塞、贮气腔压紧弹簧等构成,燃料芯块与包壳之间留有一定的间隙,燃料元件充填了惰性气体,如图1所示,图1中:1、端塞,2、锆合金包壳,3、压紧弹簧,4、短圆柱状的UO2燃料芯块。
继2011年福岛核电站发生灾难之后,为了提高核电站的安全性以应对全厂断电事故,国际核燃料界提出了增强事故容耐受能力的抗事故燃料(Accident Tolerant Fuel)的概念。目前,在压水堆中使用锆-氧化铀系统作为核燃料,而在失水事故工况下,锆合金在1200℃下将与水蒸气发生如下反应:
Zr+2H2O=ZrO2+2H2
该反应所产生的氢气不断积聚,将产生氢爆,威胁反应堆安全。在锆合金包壳管表面制备涂层以隔绝失水事故下的水蒸气与锆合金的直接接触,从而减缓事故的发生,增强压水反应堆的安全性。
对于燃料棒锆合金包壳管,除了抗高温水蒸气腐蚀性能亟需提升外,在寿期末状态下锆合金格架,格架弹簧与燃料棒包壳管间将出现间隙,在冷却剂的冲刷作用下将导致燃料棒振动,格架与燃料棒包壳管之间出现碰撞、摩擦,产生包壳管的微动磨损,严重者将导致包壳管破裂,甚至出现核泄漏。因此,需要提高包壳管的耐磨性能,减少摩擦对包壳管的影响。
研究表明,含有Cr、Al、Si等元素的材料,如:金属Cr、FeCrAl合金、SiC陶瓷等,在高温水蒸气环境中常可形成Cr2O3、Al2O3、SiO2等致密膜,该膜层可阻碍高温水蒸气向内侵蚀,从而使材料具有抗高温水蒸气腐蚀性能。因此可将该材料作为耐腐蚀涂层使用。
过渡族金属(Cr、Fe、Zr)的碳化物、氮化物、氧化物,具有优异的耐磨性能。简中华等人采用超音速喷涂制备NiCr-Cr3C2,涂层显微硬度达到950HV0.3,具有优良的抗磨损性能。【简中华,马壮,曹素红,等,超音速火焰喷涂WC-Co与NiCr-Cr2C3涂层磨损性能研究,材料工程,2007(7):21-24】钟厉等人通过磁控溅射技术在钢具表面制备CrN涂层,结果表明膜层结合强度可达31.6N,在5N载荷下涂层具有优异的耐磨损性能。【钟厉,龙永杰,韩西,刀具表面磁控溅射CrN涂层及其耐磨性能研究,表面技术,2018(10):151-156】林松盛等人在钛合金表面制备了Ti-TiN-Zr-ZrN多层膜,膜厚度约为5.8μm,显微硬度为28.1Gpa,膜基结合力为56N,具有优异的耐磨性能。【林松盛,周克崧,代明江等,钛合金表面Ti-TiN-Zr-ZrN多层膜制备及性能,材料工程,2017(6):31-35】裴旭等人在45号钢表面表面制备了Ni-ZrO2纳米复合涂层,该涂层的显微硬度可达934.19HV0.1,并且具有优异的耐磨性能。【裴旭,易剑,Ni-ZrO2纳米复合涂层制备及其耐磨耐蚀性能研究,浙江理工大学学报,2015(5):336-339】。
对于锆合金包壳管的抗高温水蒸气腐蚀性能与耐磨性能亟需提升的情况,虽然有研究人员改善其相关性能,但无法实现2项性能同时大幅提升。本发明将过渡族金属的碳化物、氮化物、氧化物(Cr3C2、CrN、ZrN、ZrO2等物质)制备为涂层外层,将增强锆合金包壳管的耐磨性能,并且可将外层制备为多层膜结构,如:制备陶瓷相与金属相交叠多层膜,该结构中金属相增加薄膜韧性,并缓冲热膨胀系数差异,减少应力集中,增强涂层的服役性能。膜层所选用的材料中含有Cr、Si、Al、Ti等易于分别形成Cr2O3、SiO2、Al2O3、TiO2等致密氧化膜的元素,使得膜层兼有抗高温水蒸气腐蚀性能。该发明可使得锆合金包壳管的抗高温水蒸气腐蚀性能与耐磨性能均有大幅提升。
发明内容
本发明的目的在于提供一种核电厂锆合金包壳管用耐磨损抗氧化复合涂层及其制备方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:一种核电厂锆合金包壳管用耐磨损抗氧化复合涂层及其制备方法,包括锆合金包壳管基体、粘结层、耐腐蚀层和耐磨层,所述锆合金包壳管基体表面涂覆有粘结层,所述粘结层表面涂覆有耐腐蚀层,所述耐腐蚀层表面涂覆有耐磨层。
优选的,所述粘结层包括金属材料和陶瓷材料,其中金属材料包括Zr、Cr、Nb和Ni,陶瓷材料包括ZrO2、ZrN、CrN和Cr3C2
优选的,所述耐腐蚀层的成分包括Cr、FeCrAl、FeCrSi、ZrAlCrSi、ZrCr2、ZrAl3、ZrSi2、ZrO2、ZrN、ZrC、CrSi2、CrO2、CrN、Cr3C2,其中Cr、Al、Si、Ti为必须元素。
优选的,所述耐磨层为单一膜层,耐磨层的成分中需含有O、C、N其中的一种元素,并含有Cr、Al、Si、Ti、Zr一种或一种以上元素,包括但不限于以下物质:ZrSi2、ZrO2、ZrN、ZrC、CrSi2、CrO2、CrN、Cr3C2等。
优选的,所述耐磨层为多层膜层,包括陶瓷相层和金属相层,且陶瓷相层与金属相层交叠往复,其中陶瓷相的组成需含有O、C、N一种元素,并含有Cr、Al、Si、Ti、Zr一种和一种以上元素,金属相的组成由Cr、Fe、Al、Zr、Nb、Ni元素中的一种或多种组成;其中陶瓷相层和金属相层厚度为10-500nm。
优选的,所述粘结层厚度为0.1-10μm。
优选的,所述耐腐蚀层厚度为1-30μm。
优选的,所述耐磨层厚度为0.5-10μm。
本发明还提供一种核电厂锆合金包壳管用耐磨损抗氧化复合涂层的制备方法,包括以下步骤:
S1.预处理:利用酒精、丙酮等清洗剂对锆合金包壳管进行清洗,去除表面污垢,进行喷沙处理,烘干后将包壳管无尘存放;
S2.涂覆粘结层:采用磁控溅射、多弧离子镀、热喷涂、冷喷涂、3D激光涂覆、原子层沉积技术在锆合金包壳管表面涂覆粘结层;
S3.涂覆耐腐蚀层:采用磁控溅射、多弧离子镀、热喷涂、冷喷涂、3D激光涂覆、原子层沉积技术在粘结层表面涂覆耐腐蚀层;
S4.涂覆耐磨层:采用磁控溅射、多弧离子镀、原子层沉积在耐腐蚀层表面涂覆耐磨层。
与现有技术相比,本发明的有益效果是:本发明外部中的耐磨层可采用多层膜层,多层膜层可采用CrN、Cr3C2、ZrO2等材料实现表面硬度的提升,从而提高锆合金包壳管的耐磨性能,并采用金属Cr、Nb、Zr等缓冲热膨胀系数差异,减少应力集中。该材料事故工况下,高温水蒸气腐蚀可在最初防护阶段可形成Cr2O3致密氧化膜,减少高温蒸汽环境的影响。如若高温蒸汽突破了最外防护层,到达耐腐蚀层后利用涂层优异的抗高温水蒸气腐蚀性能继续抵御蒸汽腐蚀,延长锆合金包壳管的服役时间。在内部粘结层可利用与锆合金匹配的热膨胀系数,减少热应力集中,避免在升降温过程中生成裂纹或涂层脱落,从而具有优异的耐磨损性能和优异的抗高温水蒸汽腐蚀性能。
附图说明
图1为现役核电站的棒状核燃料元件;
图2为本发明耐磨层为单一膜层时的横截面结构示意图;
图3为本发明耐磨层为多层膜层时的横截面结构示意图。
图中:1、锆合金包壳管基体;2、粘结层;3、耐腐蚀层;4、耐磨层;5、陶瓷相层;6、金属相层。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图2-3;本发明提供一种核电厂锆合金包壳管用耐磨损抗氧化复合涂层,包括锆合金包壳管基体1、粘结层2、耐腐蚀层3和耐磨层4,锆合金包壳管基体1表面涂覆有粘结层2,粘结层2表面涂覆有耐腐蚀层3,耐腐蚀层3表面涂覆有耐磨层4;粘结层2包括金属材料和陶瓷材料,其中金属材料包括Zr、Cr、Nb和Ni,陶瓷材料包括ZrO2、ZrN、CrN和Cr3C2
耐腐蚀层3的成分包括Cr、FeCrAl、FeCrSi、ZrAlCrSi、ZrCr2、ZrAl3、ZrSi2、ZrO2、ZrN、ZrC、CrSi2、CrO2、CrN、Cr3C2,其中Cr、Al、Si、Ti为必须元素,其在高温有氧环境初期可分别生成Cr2O3、Al2O3、SiO2、TiO2等致密氧化膜层,阻碍氧向基体扩散,实现腐蚀防护功能;
其中,耐磨层4可选为单一膜层或多层膜层,若为单一膜层,则为图2所示结构,此时耐磨层4的成分中需含有O、C、N其中的一种元素,并含有Cr、Al、Si、Ti、Zr一种或一种以上元素,包括但不限于以下物质:ZrSi2、ZrO2、ZrN、ZrC、CrSi2、CrO2、CrN、Cr3C2等;若为多层膜层,则为图3所示结构,此时耐磨层4包括陶瓷相层5和金属相层6,且陶瓷相层5与金属相层6交叠往复,其中陶瓷相的组成需含有O、C、N一种元素,并含有Cr、Al、Si、Ti、Zr一种和一种以上元素,金属相的组成由Cr、Fe、Al、Zr、Nb、Ni元素中的一种或多种组成;其中陶瓷相层5和金属相层6厚度为10-500nm;该结构可以利用陶瓷相的高硬度、耐磨损的特性提升锆合金包壳管耐磨性能,并利用金属相层6优异的延展性缓冲热膨胀系数的差异,并减少应力集中,降低薄膜开裂脱落的风险。
进一步的,所述粘结层2厚度为0.1-10μm。
进一步的,所述耐腐蚀层3厚度为1-30μm。
进一步的,所述耐磨层4厚度为0.5-10μm。
本发明还提供一种核电厂锆合金包壳管用耐磨损抗氧化复合涂层的制备方法,包括以下步骤:
S1.预处理:利用酒精、丙酮等清洗剂对锆合金包壳管进行清洗,去除表面污垢,进行喷沙处理,烘干后将包壳管无尘存放;
S2.涂覆粘结层2:采用磁控溅射、多弧离子镀、热喷涂、冷喷涂、3D激光涂覆、原子层沉积技术在锆合金包壳管表面涂覆粘结层2;
S3.涂覆耐腐蚀层3:采用磁控溅射、多弧离子镀、热喷涂、冷喷涂、3D激光涂覆、原子层沉积技术在粘结层2表面涂覆耐腐蚀层3;
S4.涂覆耐磨层4:采用磁控溅射、多弧离子镀、原子层沉积在耐腐蚀层3表面涂覆耐磨层4。
实施例1:
在锆合金包壳管表面制备金属Nb为粘结层2,该层厚度为2μm;制备Cr为耐腐蚀层3,该层厚度12μm;制备Cr3C2为耐磨层4,该层厚度为3μm。
本发明实施例中的特点是:1、利用Nb、Zr、Cr三者较为接近的热膨胀系数,从而采用Nb为粘结层2,缓冲热膨胀系数的差异,减少涂层开裂与剥落的风险,增强锆合金基体与功能涂层间的结合性能;2、采用Cr为耐腐蚀层3,在表面可生成致密Cr2O3膜,减少高温水蒸气向内部渗透。3、采用Cr3C2为耐磨层4,利用Cr3C2优异的耐磨性能增强锆合金的功能,并可在事故工况初期形成致密Cr2O3膜,增强抗腐蚀性能。
因此,通过本发明的涂层可显著提高锆合金包壳管的耐磨性能和抗高温水蒸气腐蚀性能。
实施例2:
在锆合金包壳管表面制备金属Nb为粘结层2,该层厚度为1μm;制备Cr为耐腐蚀层3,该层厚度10μm;制备Cr3C2/Cr耐磨层4,该层厚度为2μm,其中Cr3C2相层每层50nm,Cr相层每层50nm。
本发明实施例中的特点是:1、利用Nb、Zr、Cr三者较为接近的热膨胀系数,从而采用Nb为粘结层2,缓冲热膨胀系数的差异,减少涂层开裂与剥落的风险,增强锆合金基体与功能涂层间的结合性能;2、采用Cr为耐腐蚀层3,在表面可生成致密Cr2O3膜,减少高温水蒸气向内部渗透。3、Cr3C2/Cr耐磨多层膜中Cr3C2相层与Cr相层每层均为50nm,该结构利用Cr3C2优异的耐磨性能增强锆合金的功能,并将Cr相层制备为致密等轴晶层,减少腐蚀过程中氧通道,增强抗事故能力。
因此,通过本发明的涂层可显著提高锆合金包壳管的耐磨性能和抗高温水蒸气腐蚀性能。
实施例3:
在锆合金包壳管表面制备ZrN为粘结层2,该层厚度为2μm;制备CrN为耐腐蚀层3,厚度为10μm;制备CrN/FeCrAl为耐磨层4,该层厚度为1μm,其中CrN相层每层40nm,FeCrAl相层每层60nm。
本发明实施例中的特点是:1、采用ZrN为粘结层2,该层与锆合金有较好的化学相容性,并可以减缓锆合金与CrN间的热膨胀系数差异,增强涂层结合性能,减少涂层开裂与剥落的风险;2、采用CrN为耐腐蚀层3,利用CrN在高温水蒸气腐蚀环境中生成的致密Cr2O3膜,减少高温水蒸气向内部渗透;3、采用CrN/FeCrAl多层膜为耐磨层4,其中CrN相每层40nm,FeCrAl相每层60nm,该结构可形成致密CrN/FeCrAl层达100层,使表面兼具耐磨与耐腐蚀性能。
因此,通过本发明的涂层可显著提高锆合金包壳管的耐磨性能和抗高温水蒸气腐蚀性能。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (9)

1.一种核电厂锆合金包壳管用耐磨损抗氧化复合涂层,其特征在于:包括锆合金包壳管基体(1)、粘结层(2)、耐腐蚀层(3)和耐磨层(4),所述锆合金包壳管基体(1)表面涂覆有粘结层(2),所述粘结层(2)表面涂覆有耐腐蚀层(3),所述耐腐蚀层(3)表面涂覆有耐磨层(4)。
2.根据权利要求1所述的一种核电厂锆合金包壳管用耐磨损抗氧化复合涂层,其特征在于:所述粘结层(2)包括金属材料和陶瓷材料,其中金属材料包括Zr、Cr、Nb和Ni,陶瓷材料包括ZrO2、ZrN、CrN和Cr3C2
3.根据权利要求1所述的一种核电厂锆合金包壳管用耐磨损抗氧化复合涂层,其特征在于:所述耐腐蚀层(3)的成分包括Cr、FeCrAl、FeCrSi、ZrAlCrSi、ZrCr2、ZrAl3、ZrSi2、ZrO2、ZrN、ZrC、CrSi2、CrO2、CrN、Cr3C2,其中Cr、Al、Si、Ti为必须元素。
4.根据权利要求1所述的一种核电厂锆合金包壳管用耐磨损抗氧化复合涂层,其特征在于:所述耐磨层(4)为单一膜层,耐磨层(4)的成分中需含有O、C、N其中的一种元素,并含有Cr、Al、Si、Ti、Zr一种或一种以上元素,包括但不限于以下物质:ZrSi2、ZrO2、ZrN、ZrC、CrSi2、CrO2、CrN、Cr3C2等。
5.根据权利要求1所述的一种核电厂锆合金包壳管用耐磨损抗氧化复合涂层,其特征在于:所述耐磨层(4)为多层膜层,包括陶瓷相层(5)和金属相层(6),且陶瓷相层(5)与金属相层(6)交叠往复,其中陶瓷相的组成需含有O、C、N一种元素,并含有Cr、Al、Si、Ti、Zr一种和一种以上元素,金属相的组成由Cr、Fe、Al、Zr、Nb、Ni元素中的一种或多种组成;其中陶瓷相层(5)和金属相层(6)厚度为10-500nm。
6.根据权利要求1所述的一种核电厂锆合金包壳管用耐磨损抗氧化复合涂层,其特征在于:所述粘结层(2)厚度为0.1-10μm。
7.根据权利要求1所述的一种核电厂锆合金包壳管用耐磨损抗氧化复合涂层,其特征在于:所述耐腐蚀层(3)厚度为1-30μm。
8.根据权利要求1所述的一种核电厂锆合金包壳管用耐磨损抗氧化复合涂层,其特征在于:所述耐磨层(4)厚度为0.5-10μm。
9.根据权利要求1-8任一所述的一种核电厂锆合金包壳管用耐磨损抗氧化复合涂层的制备方法,其特征在于,包括以下步骤:
S1.预处理:利用酒精、丙酮等清洗剂对锆合金包壳管进行清洗,去除表面污垢,进行喷沙处理,烘干后将包壳管无尘存放;
S2.涂覆粘结层(2):采用磁控溅射、多弧离子镀、热喷涂、冷喷涂、3D激光涂覆、原子层沉积技术在锆合金包壳管表面涂覆粘结层(2);
S3.涂覆耐腐蚀层(3):采用磁控溅射、多弧离子镀、热喷涂、冷喷涂、3D激光涂覆、原子层沉积技术在粘结层(2)表面涂覆耐腐蚀层(3);
S4.涂覆耐磨层(4):采用磁控溅射、多弧离子镀、原子层沉积在耐腐蚀层(3)表面涂覆耐磨层(4)。
CN202111313422.0A 2021-11-08 2021-11-08 一种核电厂锆合金包壳管用耐磨损抗氧化复合涂层及其制备方法 Pending CN114015959A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111313422.0A CN114015959A (zh) 2021-11-08 2021-11-08 一种核电厂锆合金包壳管用耐磨损抗氧化复合涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111313422.0A CN114015959A (zh) 2021-11-08 2021-11-08 一种核电厂锆合金包壳管用耐磨损抗氧化复合涂层及其制备方法

Publications (1)

Publication Number Publication Date
CN114015959A true CN114015959A (zh) 2022-02-08

Family

ID=80062018

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111313422.0A Pending CN114015959A (zh) 2021-11-08 2021-11-08 一种核电厂锆合金包壳管用耐磨损抗氧化复合涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN114015959A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114951691A (zh) * 2022-03-28 2022-08-30 上海大学 一种核燃料包壳用ZrC颗粒增强FeCrAl金属基复合材料的激光增材制造方法
CN117174354A (zh) * 2023-11-02 2023-12-05 上海核工程研究设计院股份有限公司 核反应堆燃料元件用复合包壳管材及其制备方法、燃料棒

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130344348A1 (en) * 2012-06-25 2013-12-26 Korea Hydro And Nuclear Power Co., Ltd. Zirconium alloy with coating layer containing mixed layer formed on surface, and preparation method thereof
CN106128532A (zh) * 2016-06-12 2016-11-16 上海核工程研究设计院 一种核燃料元件包壳锆合金钛合金复合管及其制备方法
US20180025794A1 (en) * 2016-07-22 2018-01-25 Westinghouse Electric Company Llc Spray methods for coating nuclear fuel rods to add corrosion resistant barrier
CN108624882A (zh) * 2018-05-18 2018-10-09 天津师范大学 锆合金表面氧化锆/氮化铬复合膜及其制备方法与应用
US20180294062A1 (en) * 2015-10-06 2018-10-11 The Penn State Research Foundation Ceramic coating for corrosion resistance of nuclear fuel cladding
CN110791730A (zh) * 2019-12-07 2020-02-14 西北有色金属研究院 一种核燃料用锆合金包壳表面复合涂层的制备方法
CN111139434A (zh) * 2020-01-08 2020-05-12 西安交通大学 一种锆合金表面用事故容错核燃料包壳涂层
CN111172503A (zh) * 2019-12-26 2020-05-19 西安交通大学 一种锆合金包壳表面多层复合涂层及其制备方法
CN112795875A (zh) * 2020-12-15 2021-05-14 西安稀有金属材料研究院有限公司 核燃料锆合金包壳元件
CN113293374A (zh) * 2021-05-07 2021-08-24 上海核工程研究设计院有限公司 一种用于锆合金包壳管外表面的涂层及制作方法
CN114438493A (zh) * 2021-11-08 2022-05-06 上海核工程研究设计院有限公司 一种核电厂锆合金包壳管表面用抗高温水蒸气腐蚀涂层及其制备方法
CN217556266U (zh) * 2021-11-08 2022-10-11 上海核工程研究设计院有限公司 一种核电厂锆合金包壳管用耐磨损抗氧化复合涂层

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130344348A1 (en) * 2012-06-25 2013-12-26 Korea Hydro And Nuclear Power Co., Ltd. Zirconium alloy with coating layer containing mixed layer formed on surface, and preparation method thereof
US20180294062A1 (en) * 2015-10-06 2018-10-11 The Penn State Research Foundation Ceramic coating for corrosion resistance of nuclear fuel cladding
CN106128532A (zh) * 2016-06-12 2016-11-16 上海核工程研究设计院 一种核燃料元件包壳锆合金钛合金复合管及其制备方法
US20180025794A1 (en) * 2016-07-22 2018-01-25 Westinghouse Electric Company Llc Spray methods for coating nuclear fuel rods to add corrosion resistant barrier
CN108624882A (zh) * 2018-05-18 2018-10-09 天津师范大学 锆合金表面氧化锆/氮化铬复合膜及其制备方法与应用
CN110791730A (zh) * 2019-12-07 2020-02-14 西北有色金属研究院 一种核燃料用锆合金包壳表面复合涂层的制备方法
CN111172503A (zh) * 2019-12-26 2020-05-19 西安交通大学 一种锆合金包壳表面多层复合涂层及其制备方法
CN111139434A (zh) * 2020-01-08 2020-05-12 西安交通大学 一种锆合金表面用事故容错核燃料包壳涂层
CN112795875A (zh) * 2020-12-15 2021-05-14 西安稀有金属材料研究院有限公司 核燃料锆合金包壳元件
CN113293374A (zh) * 2021-05-07 2021-08-24 上海核工程研究设计院有限公司 一种用于锆合金包壳管外表面的涂层及制作方法
CN114438493A (zh) * 2021-11-08 2022-05-06 上海核工程研究设计院有限公司 一种核电厂锆合金包壳管表面用抗高温水蒸气腐蚀涂层及其制备方法
CN217556266U (zh) * 2021-11-08 2022-10-11 上海核工程研究设计院有限公司 一种核电厂锆合金包壳管用耐磨损抗氧化复合涂层

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114951691A (zh) * 2022-03-28 2022-08-30 上海大学 一种核燃料包壳用ZrC颗粒增强FeCrAl金属基复合材料的激光增材制造方法
CN117174354A (zh) * 2023-11-02 2023-12-05 上海核工程研究设计院股份有限公司 核反应堆燃料元件用复合包壳管材及其制备方法、燃料棒
CN117174354B (zh) * 2023-11-02 2024-02-02 上海核工程研究设计院股份有限公司 核反应堆燃料元件用复合包壳管材及其制备方法、燃料棒

Similar Documents

Publication Publication Date Title
Tang et al. Protective coatings on zirconium-based alloys as accident-tolerant fuel (ATF) claddings
CN114015959A (zh) 一种核电厂锆合金包壳管用耐磨损抗氧化复合涂层及其制备方法
CN111172503B (zh) 一种锆合金包壳表面多层复合涂层及其制备方法
EP3004420B1 (en) A KINETICALLY APPLIED GRADATED Zr-Al-C CERAMIC OR Ti-Al-C CERAMIC OR AMORPHOUS OR SEMI-AMORPHOUS STAINLESS STEEL WITH NUCLEAR GRADE ZIRCONIUM ALLOY METAL STRUCTURE
WO2019052315A1 (zh) 燃料包壳及燃料组件
EP3884503B1 (en) Coatings and surface modifications to mitigate sic cladding during operation in light water reactors
CN111139434A (zh) 一种锆合金表面用事故容错核燃料包壳涂层
CN113388811B (zh) 一种事故容错燃料包壳用双层Cr/Cr2AlC涂层及其制备方法
CN217556266U (zh) 一种核电厂锆合金包壳管用耐磨损抗氧化复合涂层
CN109355611A (zh) 一种用于锆合金包壳的复合陶瓷涂层制备方法
KR20130125985A (ko) 초고온 내산화성 증진을 위한 지르코늄 합금 및 이의 제조방법
JP2022519444A (ja) 超合金及びその製造方法
CN217948265U (zh) 一种核电厂锆合金包壳管表面用抗高温水蒸气腐蚀涂层
CN109811322B (zh) 一种具有空间环境适应性的超润滑固体薄膜
CN114438493A (zh) 一种核电厂锆合金包壳管表面用抗高温水蒸气腐蚀涂层及其制备方法
FR2946663A1 (fr) Revetement thermique, piece thermomecanique comportant un tel revetement thermique, turbomachine, moteur d'aeronef, d'astronef ou de fusee comportant une telle piece thermomecanique
CN108588532B (zh) 多元合金涂层、锆合金包壳及燃料组件
Tang et al. Metallic and ceramic coatings for enhanced accident tolerant fuel cladding
FR2974581A1 (fr) Piece comportant un revetement sur un substrat metallique en superalliage, le revetement comprenant une sous-couche metallique
WO2020093246A1 (zh) 核燃料组件的管材及燃料包壳
Sagiroun et al. Zirconium-based cladding coating technique for oxidation, corrosion and embrittlement reduction at high-temperature: an overview
Guan et al. Effects of the different interlayer deposition processes on the microstructure of Cr/TiN coating
JP2001295075A (ja) 金属基材への耐食セラミックコ−ティング部材、その製造方法、およびその部材から構成される部品
US20220384062A1 (en) Cathodic arc applied randomized grain structured coatings on zirconium alloy nuclear fuel cladding
CN115341176B (zh) 应用于热障涂层的多层粘结层材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: No. 29 Hong Cao Road, Xuhui District, Shanghai

Applicant after: Shanghai Nuclear Engineering Research and Design Institute Co.,Ltd.

Address before: No. 29 Hong Cao Road, Xuhui District, Shanghai

Applicant before: SHANGHAI NUCLEAR ENGINEERING RESEARCH & DESIGN INSTITUTE Co.,Ltd.

WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220208