CN114014924B - 一种通过brca1和bard1蛋白提高基因编辑过程中同源重组效率的方法 - Google Patents

一种通过brca1和bard1蛋白提高基因编辑过程中同源重组效率的方法 Download PDF

Info

Publication number
CN114014924B
CN114014924B CN202111363020.1A CN202111363020A CN114014924B CN 114014924 B CN114014924 B CN 114014924B CN 202111363020 A CN202111363020 A CN 202111363020A CN 114014924 B CN114014924 B CN 114014924B
Authority
CN
China
Prior art keywords
brca1
bard1
sequence
seq
fragment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111363020.1A
Other languages
English (en)
Other versions
CN114014924A (zh
Inventor
郭熙志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ankeli Chongqing Biomedical Technology Co ltd
Original Assignee
Ankeli Chongqing Biomedical Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ankeli Chongqing Biomedical Technology Co ltd filed Critical Ankeli Chongqing Biomedical Technology Co ltd
Priority to CN202111363020.1A priority Critical patent/CN114014924B/zh
Publication of CN114014924A publication Critical patent/CN114014924A/zh
Application granted granted Critical
Publication of CN114014924B publication Critical patent/CN114014924B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Mycology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及分子生物学技术领域,尤其涉及一种通过BRCA1和BARD1蛋白提高基因编辑过程中同源重组效率的方法,包括如下步骤:(1)将BRCA1蛋白和BARD1蛋白组合,得到BRCA1/BARD1蛋白复合体;(2)将BRCA1/BARD1蛋白复合体与基因编辑表达载体共转染即可。本发明的方法能将基因编辑中同源重组的DNA修复效率大幅提高至9%左右,有效提高基因治疗的成功率。

Description

一种通过BRCA1和BARD1蛋白提高基因编辑过程中同源重组效 率的方法
技术领域
本发明涉及分子生物学技术领域,尤其涉及一种通过BRCA1和BARD1蛋白提高基因编辑过程中同源重组效率的方法。
背景技术
BRCA1最初被认为是早发性乳腺癌的易感基因。作为一种抑癌基因,BRCA1的缺失可导致细胞周期停滞和细胞凋亡,说明BRCA1并不直接抑制细胞增殖,而是充当细胞周期稳态的维护者和调停者。BRCA1同时在HDR等多种DNA修复途径中起关键作用,以参与HDR为主,BRCA1缺失会导致DNA损伤修复功能丧失、基因组不稳定。
BARD1(BRCA1 AssociatedRING Domain)是BRCA1蛋白的必需伴侣。BRCA1/BARD1形成的异源二聚体在DNA损伤的HDR修复和正常复制过程中起到关键的监控保护作用,对于细胞周期稳态和基因组稳定性至关重要。BARD1和BRCA1在结构上具有相同的特点:N端都有1个由42个氨基酸组成的高度保守的RING(Really Interesting New Gene)motif,富含半胱氨酸,能够螯合锌离子以介导蛋白相互作用,包含众多与辐射敏感性相关的突变;C端都有2个串联重复的BRCT(BRCA1 C-Terminus)结构域,含有磷酸结合口袋以结合DNA或磷酸化的蛋白质。BARD1/BRCA1通过RING motif所处的N端结构域相互结合,形成稳定的异源二聚体,结合区域具体为BRCA1的1-109位氨基酸和BARD1的26-119位氨基酸。研究表明,将BARD1的互作区域删除会严重降低细胞的HDR效率,提示了BARD1/BRCA1互作的必要性。BRCA1/BARD1异源二聚体在对DNA损伤的响应过程中充当了枢纽的关键角色,至少参与了3种大复合体的招募和组成,分别负责控制G2/M检查点(BRCA1-BARD1-CtIP)、复制起始(BRCA1-BARD1-BACH1)和将Rad51重组酶定位在DSB位点(BRCA1-BARD1-BRCA2)的过程。BRCA1/BARD1互作能够强化Rad51的重组酶活性,且与二聚体的结合对于Rad51的激活是必需的。在DNA复制的过程中,未完成复制而中途停滞的复制叉如果缺乏保护会有基因组紊乱的风险,而BRCA1/BARD1对于停滞复制叉的保护(Stalled Fork Protection,SFP)是必要的,BARD1的BRCT结构域直接进行磷酸识别,发生异构并与复制叉结合,进一步介导Rad51等在停滞复制叉处富集。可见BRCA1/BARD1蛋白的复合体可以修复DNA损伤。但是现有技术仍未发现一种通过BRCA1和BARD1蛋白在提高基因编辑过程中同源重组效率的方法。
发明内容
针对现有技术的不足,本发明的目的为提供一种通过BRCA1和BARD1蛋白提高基因编辑过程中同源重组效率的方法。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种通过BRCA1和BARD1蛋白提高基因编辑过程中同源重组效率的方法,包括如下步骤:
(1)将BRCA1蛋白和BARD1蛋白组合,得到BRCA1/BARD1蛋白复合体;
(2)将BRCA1/BARD1蛋白复合体与基因编辑表达载体共转染即可。
作为优选,编码BRCA1蛋白的基因序列如SEQ ID NO.1所示;编码BARD1蛋白的基因序列如SEQ ID NO.2所示。
作为优选,BRCA1蛋白和BARD1蛋白的质量比为1:1~14。
作为优选,BRCA1/BARD1蛋白复合体为MS2-BRCA1-T2A-BARD1质粒载体编码的蛋白;
或者为pcDNA-NLS-BRCA1质粒载体编码的蛋白和pcDNA-NLS-BARD1质粒载体编码的蛋白。
作为优选,MS2-BRCA1-T2A-BARD1质粒载体的构建方法为:
(1)以psPAX2-D64V-NC-MS2质粒为模板,MS2-for1(Xho1)/MS2-BRCA1-rev1为引物组合,PCR扩增,回收得到MS2片段;
(2)以pcDNA-NLS-BRCA1质粒为模板,MS2-BRCA1-for2/BRCA1-T2A-rev2为引物组合,PCR扩增,回收BRCA1片段;
(3)以pcDNA-NLS-BARD1质粒为模板,T2A-BARD1-for3/BARD1-rev3(Mlu1)为引物组合,PCR扩增,回收得到BARD1片段;
(4)以步骤(1)得到的MS2片段和步骤(2)得到的BRCA1片段混合为模板,MS2-for1(Xho1)/BRCA1-T2A-rev2为引物组合,PCR扩增,回收得到MS2-BRCA1片段;
(5)以步骤(3)得到的BARD1片段和步骤(4)得到的MS2-BRCA1片段混合为模板,MS2-for1(Xho1)/BARD1-rev3(Mlu1)为引物组合,PCR扩增,回收得到MS2-BRCA1-BARD1片段;
(6)利用Xho1-Mlu1酶将步骤(5)得到的片段进行双酶切后,克隆到pLenti6.2-Flag载体上,得到pLenti6.2-MS2-BRCA1-P2A-BARD1质粒载体。
作为优选,MS2-for1(Xho1)的序列如SEQ ID NO.3所示;
MS2-BRCA1-rev1的序列如SEQ ID NO.4所示;
MS2片段的序列如SEQ ID NO.5所示;
MS2-BRCA1-for2的序列如SEQ ID NO.6所示;
BRCA1-T2A-rev2的序列如SEQ ID NO.7所示;
T2A-BARD1-for3的序列如SEQ ID NO.8所示;
BARD1-rev3(Mlu1)的序列如SEQ ID NO.9所示;
pLenti6.2-Flag的序列如SEQ ID NO.10所示。
作为优选,pcDNA-NLS-BRCA1质粒载体的构建方法为:将BRCA1基因片段克隆至pcDNA3.1载体上后,N端通过引物插入核定位信号序列,得到;
pcDNA-NLS-BARD1质粒载体的构建方法为:将BARD1基因片段克隆至pcDNA载体上后,N端通过引物插入核定位信号序列,得到。
作为优选,基因编辑表达载体为pLenti-U6-sgRNA-MS2-CRISPR或Lenti-SceGFPgRNA1-CRISPR。
作为优选,pLenti-U6-sgRNA-MS2-CRISPR表达载体的构建方法为:将Lenti-sgRNA(MS2)-puro backbone质粒的PCR产物与pLH-sgRNA-CRISPRv2载体进行Kpn1-EcoR1双酶切后,将酶切片段进行连接、转化、克隆得到pLenti-U6-sgRNA-MS2-CRISPR;
Lenti-SceGFPgRNA1-CRISPR表达载体的构建方法为:将针对I-Sce1酶切位点设计的sgRNA序列,克隆入pLenti-CRISPR-v2载体上得到。
作为优选,sgRNA序列如SEQ ID NO.11所示。
本发明提供了一种通过BRCA1和BARD1蛋白提高基因编辑过程中同源重组效率的方法,本发明的方法较现有技术具有如下优点:
(1)本发明的方法将CRISPR/Cas9基因编辑中同源重组的DNA修复效率大幅提高至9%,显著提高了基因治疗的成功率;
(2)本发明的方法相比于RAD51系统,可以以长链双链DNA为模板,通过同源重组来进行对多碱基与大片段DNA变异进行修复。
(3)本发明的方法相比于Prime editing系统,可能修复多碱基与大片段DNA变异,修复功能更强。
附图说明
图1为pcDNA-NLS-BRCA1质粒载体图。
图2为pcDNA-NLS-BARD1质粒载体图。
图3为pLenti6.2-Flag质粒载体图。
图4为sgRNA在pLenti-U6-sgRNA-MS2-CRISPR表达载体中的插入位点图。
图5为Lenti-sgRNA(MS2)-puro backbone载体图。
图6为sgRNA在Lenti-SceGFPgRNA1-CRISPR表达载体中的插入位点图。
图7为pLenti-CRISPR-v2载体图。
图8为293T细胞转染不同载体组合后GFP+细胞的数量(从左到有依次为第1种转染方式得到的GFP+细胞的数量,第2种转染方式得到的GFP+细胞的数量,第3种转染方式得到的GFP+细胞的数量,第4种转染方式得到的GFP+细胞的数量)。
图9为293T细胞转染不同量的载体组合后GFP+细胞的数量(上左图为第1种转染方式得到的GFP+细胞的数量,上中图为第2种转染方式得到的GFP+细胞的数量,上右图为第3种转染方式得到的GFP+细胞的数量,下左图为第4种转染方式得到的GFP+细胞的数量,下中图为第5种转染方式得到的GFP+细胞的数量,下右图为第6种转染方式得到的GFP+细胞的数量)。
具体实施方式
本发明提供了一种通过BRCA1和BARD1蛋白提高基因编辑过程中同源重组效率的方法,包括如下步骤:
(1)将BRCA1蛋白和BARD1蛋白组合,得到BRCA1/BARD1蛋白复合体;
(2)将BRCA1/BARD1蛋白复合体与基因编辑表达载体共转染即可。
在本发明中,编码BRCA1蛋白的基因序列如SEQ ID NO.1所示;编码BARD1蛋白的基因序列如SEQ ID NO.2所示。
在本发明中,BRCA1蛋白和BARD1蛋白的质量比为1:1~14,优选为1:4~11,进一步优选为1:7.5。
在本发明中,BRCA1/BARD1蛋白复合体为MS2-BRCA1-T2A-BARD1质粒载体编码的蛋白;
或者为pcDNA-NLS-BRCA1质粒载体编码的蛋白和pcDNA-NLS-BARD1质粒载体编码的蛋白。
在本发明中,MS2-BRCA1-T2A-BARD1质粒载体的构建方法为:
(1)以psPAX2-D64V-NC-MS2质粒为模板,MS2-for1(Xho1)/MS2-BRCA1-rev1为引物组合,PCR扩增,回收得到MS2片段;
(2)以pcDNA-NLS-BRCA1质粒为模板,MS2-BRCA1-for2/BRCA1-T2A-rev2为引物组合,PCR扩增,回收BRCA1片段;
(3)以pcDNA-NLS-BARD1质粒为模板,T2A-BARD1-for3/BARD1-rev3(Mlu1)为引物组合,PCR扩增,回收得到BARD1片段;
(4)以步骤(1)得到的MS2片段和步骤(2)得到的BRCA1片段混合为模板,MS2-for1(Xho1)/BRCA1-T2A-rev2为引物组合,PCR扩增,回收得到MS2-BRCA1片段;
(5)以步骤(3)得到的BARD1片段和步骤(4)得到的MS2-BRCA1片段混合为模板,MS2-for1(Xho1)/BARD1-rev3(Mlu1)为引物组合,PCR扩增,回收得到MS2-BRCA1-BARD1片段;
(6)利用Xho1-Mlu1酶将步骤(5)得到的片段进行双酶切后,克隆到pLenti6.2-Flag载体上,得到pLenti6.2-MS2-BRCA1-P2A-BARD1质粒载体。
在本发明中pcDNA-NLS-BRCA1如图1所示;pcDNA-NLS-BARD1如图2所示。
在本发明中,MS2-for1(Xho1)的序列如SEQ ID NO.3所示;
MS2-BRCA1-rev1的序列如SEQ ID NO.4所示;
MS2片段的序列如SEQ ID NO.5所示;
MS2-BRCA1-for2的序列如SEQ ID NO.6所示;
BRCA1-T2A-rev2的序列如SEQ ID NO.7所示;
T2A-BARD1-for3的序列如SEQ ID NO.8所示;
BARD1-rev3(Mlu1)的序列如SEQ ID NO.9所示;
pLenti6.2-Flag的序列如SEQ ID NO.10所示;
在本发明中,所述T2A的序列如SEQ ID NO.14所示。
在本发明中pLenti6.2-Flag如图3所示。
在本发明中所述psPAX2-D64V-NC-MS2质粒购自于Addgene编号为#122944;
pLenti6.2-Flag为自己构建,所得序列如SEQ ID NO.10所示。
在本发明中,pcDNA-NLS-BRCA1质粒载体的构建方法为:将BRCA1基因片段克隆至pcDNA3.1载体上后,N端通过引物插入核定位信号序列,得到;
pcDNA-NLS-BARD1质粒载体的构建方法为:将BARD1基因片段克隆至pcDNA载体上后,N端通过引物插入核定位信号序列,得到。
在本发明中,所述NLS的序列如SEQ ID NO.13所示。
在本发明中,基因编辑表达载体为pLenti-U6-sgRNA-MS2-CRISPR或Lenti-SceGFPgRNA1-CRISPR。
在本发明中pLenti-U6-sgRNA-MS2-CRISPR表达载体中sgRNA的插入位点如图4所示。
在本发明中,pLenti-U6-sgRNA-MS2-CRISPR表达载体的构建方法为:将Lenti-sgRNA(MS2)-puro backbone质粒的PCR产物与pLH-sgRNA-CRISPRv2载体进行Kpn1-EcoR1双酶切后,将酶切片段进行连接、转化、克隆得到pLenti-U6-sgRNA-MS2-CRISPR;
Lenti-SceGFPgRNA1-CRISPR表达载体的构建方法为:将针对I-Sce1酶切位点设计的sgRNA序列,克隆入pLenti-CRISPR-v2载体上得到。
在本发明中Lenti-sgRNA(MS2)-puro backbone质粒如图5所示。
在本发明中Lenti-SceGFPgRNA1-CRISPR表达载体插入sgRNA序列的位点如图6所示。
在本发明中,sgRNA序列如SEQ ID NO.11所示。
在本发明实施例中以利用SEQ ID NO.12所示的pDR-GFP载体做I-Sce1-HR/NHEJ系统同源重组效率评估的荧光报告质粒来检测BRCA1和BARD1蛋白复合体在同源重组修复中的效率。
在本发明中Lenti-sgRNA(MS2)-purobackbone质粒为自建,构建的质粒如图5所示。
pLH-sgRNA-CRISPRv2载体购自于Addgene编号为#52961的载体。
在本发明实施例中设计的I-Sce1-HR/NHEJ系统只有在Cas9酶介导的DNA同源重组修复后才会发出正常的GFP荧光。如果NHEJ介导的DNA连接修复,GFP荧光会比较弱或者没有荧光。
下面结合实施例对本发明提供的技术方案进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
在本发明实施例中所述的pcDNA3.1载体购自于武汉淼灵生物。
实施例1
将pDR-GFP载体的GFP编码框中插入一个I-Sce1的酶切位点,针对I-Sce1的酶切位点设计sgRNA,设计得到的sgRNA如SEQ ID NO.11所示。将sgRNA序列克隆入如图7所示pLenti-CRISPR-v2载体中得到Lenti-SceGFPgRNA1-CRISPR表达载体。
sgRNA序列在Lenti-SceGFPgRNA1-CRISPR表达载体中的插入位置如图6所示。
将SEQ ID NO.1所示的编码BRCA1蛋白的基因序列克隆至pcDNA3.1载体上后,N端通过引物插入核定位信号序列,得到pcDNA-NLS-BRCA1载体。
将SEQ ID NO.2所示的编码BARD1蛋白的基因序列克隆至pcDNA载体上后,N端通过引物插入核定位信号序列,得到pcDNA-NLS-BARD1载体。
将293T细胞培养于24孔平板,分别转染pDR-GFP载体、Lenti-SceGFPgRNA1-CRISPR表达载体、pcDNA-NLS-BRCA1载体和pcDNA-NLS-BARD1载体,MS2-BRCA1-T2A-BARD1载体,按下表1进行转染,每种载体转染500ng。转染36h后在荧光显微镜下观察GFP+细胞的相对数量。结果见图8。
表1转染方式
载体 1 2 3 4
pDR-GFP
Lenti-SceGFPgRNA1-CRISPR
pcDNA-NLS-BRCA1
pcDNA-NLS-BARD1
MS2-BRCA1-T2A-BARD1
实施例2
将pcDNA-NLS-BRCA1质粒载体、pcDNA-NLS-BARD1质粒载体、pLenti-MS2-BRCA1-T2A-BARD1质粒载体、pDR-GFP载体与基因表达载体pLenti-U6-sgRNA-MS2-CRISPR按下表2的方式在293T细胞中共转染,每种载体转染500ng。36h后通过FACS检测GFP+细胞,结果如图9。
表2转染方式
载体 1 2 3 4 5 6
pDR-GFP
Lenti-SceGFPgRNA1-CRISPR
pcDNA-NLS-BRCA1
pcDNA-NLS-BARD1
MS2-BRCA1-T2A-BARD1
由图8~9可以看出,本发明的载体组合可以显著提高基因编辑过程中基因同源重组修复效率,能将其修复效率提高至9%左右。
由以上实施例可以看出,本发明提供了一种通过BRCA1和BARD1蛋白提高基因编辑过程中同源重组效率的方法,本发明的方法较现有技术具有如下优点:
(1)本发明的方法将CRISPR/Cas9基因编辑中同源重组的DNA修复效率大幅提高至9%,显著提高了基因治疗的成功率;
(2)本发明的方法相比于RAD51系统,可以以长链双链DNA为模板,通过同源重组来进行对多碱基与大片段DNA变异进行修复;
(3)本发明的方法相比于Prime editing系统,可能修复多碱基与大片段DNA变异,修复功能更强。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
序列表
<110> 安可来(重庆)生物医药科技有限公司
<120> 一种通过BRCA1和BARD1蛋白提高基因编辑过程中同源重组效率的方法
<160> 14
<170> SIPOSequenceListing 1.0
<210> 1
<211> 5589
<212> DNA
<213> Artificial Sequence
<400> 1
atggatttat ctgctcttcg cgttgaagaa gtacaaaatg tcattaatgc tatgcagaaa 60
atcttagagt gtcccatctg tctggagttg atcaaggaac ctgtctccac aaagtgtgac 120
cacatatttt gcaaattttg catgctgaaa cttctcaacc agaagaaagg gccttcacag 180
tgtcctttat gtaagaatga tataaccaaa aggagcctac aagaaagtac gagatttagt 240
caacttgttg aagagctatt gaaaatcatt tgtgcttttc agcttgacac aggtttggag 300
tatgcaaaca gctataattt tgcaaaaaag gaaaataact ctcctgaaca tctaaaagat 360
gaagtttcta tcatccaaag tatgggctac agaaaccgtg ccaaaagact tctacagagt 420
gaacccgaaa atccttcctt gcaggaaacc agtctcagtg tccaactctc taaccttgga 480
actgtgagaa ctctgaggac aaagcagcgg atacaacctc aaaagacgtc tgtctacatt 540
gaattgggat ctgattcttc tgaagatacc gttaataagg caacttattg cagtgtggga 600
gatcaagaat tgttacaaat cacccctcaa ggaaccaggg atgaaatcag tttggattct 660
gcaaaaaagg ctgcttgtga attttctgag acggatgtaa caaatactga acatcatcaa 720
cccagtaata atgatttgaa caccactgag aagcgtgcag ctgagaggca tccagaaaag 780
tatcagggta gttctgtttc aaacttgcat gtggagccat gtggcacaaa tactcatgcc 840
agctcattac agcatgagaa cagcagttta ttactcacta aagacagaat gaatgtagaa 900
aaggctgaat tctgtaataa aagcaaacag cctggcttag caaggagcca acataacaga 960
tgggctggaa gtaaggaaac atgtaatgat aggcggactc ccagcacaga aaaaaaggta 1020
gatctgaatg ctgatcccct gtgtgagaga aaagaatgga ataagcagaa actgccatgc 1080
tcagagaatc ctagagatac tgaagatgtt ccttggataa cactaaatag cagcattcag 1140
aaagttaatg agtggttttc cagaagtgat gaactgttag gttctgatga ctcacatgat 1200
ggggagtctg aatcaaatgc caaagtagct gatgtattgg acgttctaaa tgaggtagat 1260
gaatattctg gttcttcaga gaaaatagac ttactggcca gtgatcctca tgaggcttta 1320
atatgtaaaa gtgaaagagt tcactccaaa tcagtagaga gtaatattga agacaaaata 1380
tttgggaaaa cctatcggaa gaaggcaagc ctccccaact taagccatgt aactgaaaat 1440
ctaattatag gagcatttgt tactgagcca cagataatac aagagcgtcc cctcacaaat 1500
aaattaaagc gtaaaaggag acctacatca ggccttcatc ctgaggattt tatcaagaaa 1560
gcagatttgg cagttcaaaa gactcctgaa atgataaatc agggaactaa ccaaacggag 1620
cagaatggtc aagtgatgaa tattactaat agtggtcatg agaataaaac aaaaggtgat 1680
tctattcaga atgagaaaaa tcctaaccca atagaatcac tcgaaaaaga atctgctttc 1740
aaaacgaaag ctgaacctat aagcagcagt ataagcaata tggaactcga attaaatatc 1800
cacaattcaa aagcacctaa aaagaatagg ctgaggagga agtcttctac caggcatatt 1860
catgcgcttg aactagtagt cagtagaaat ctaagcccac ctaattgtac tgaattgcaa 1920
attgatagtt gttctagcag tgaagagata aagaaaaaaa agtacaacca aatgccagtc 1980
aggcacagca gaaacctaca actcatggaa ggtaaagaac ctgcaactgg agccaagaag 2040
agtaacaagc caaatgaaca gacaagtaaa agacatgaca gtgatacttt cccagagctg 2100
aagttaacaa atgcacctgg ttcttttact aagtgttcaa ataccagtga acttaaagaa 2160
tttgtcaatc ctagccttcc aagagaagaa aaagaagaga aactagaaac agttaaagtg 2220
tctaataatg ctgaagaccc caaagatctc atgttaagtg gagaaagggt tttgcaaact 2280
gaaagatctg tagagagtag cagtatttca ctggtacctg gtactgatta tggcactcag 2340
gaaagtatct cgttactgga agttagcact ctagggaagg caaaaacaga accaaataaa 2400
tgtgtgagtc agtgtgcagc atttgaaaac cccaagggac taattcatgg ttgttccaaa 2460
gataatagaa atgacacaga aggctttaag tatccattgg gacatgaagt taaccacagt 2520
cgggaaacaa gcatagaaat ggaagaaagt gaacttgatg ctcagtattt gcagaataca 2580
ttcaaggttt caaagcgcca gtcatttgct ctgttttcaa atccaggaaa tgcagaagag 2640
gaatgtgcaa cattctctgc ccactctggg tccttaaaga aacaaagtcc aaaagtcact 2700
tttgaatgtg aacaaaagga agaaaatcaa ggaaagaatg agtctaatat caagcctgta 2760
cagacagtta atatcactgc aggctttcct gtggttggtc agaaagataa gccagttgat 2820
aatgccaaat gtagtatcaa aggaggctct aggttttgtc tatcatctca gttcagaggc 2880
aacgaaactg gactcattac tccaaataaa catggacttt tacaaaaccc atatcgtata 2940
ccaccacttt ttcccatcaa gtcatttgtt aaaactaaat gtaagaaaaa tctgctagag 3000
gaaaactttg aggaacattc aatgtcacct gaaagagaaa tgggaaatga gaacattcca 3060
agtacagtga gcacaattag ccgtaataac attagagaaa atgtttttaa aggagccagc 3120
tcaagcaata ttaatgaagt aggttccagt actaatgaag tgggctccag tattaatgaa 3180
ataggttcca gtgatgaaaa cattcaagca gaactaggta gaaacagagg gccaaaattg 3240
aatgctatgc ttagattagg ggttttgcaa cctgaggtct ataaacaaag tcttcctgga 3300
agtaattgta agcatcctga aataaaaaag caagaatatg aagaagtagt tcagactgtt 3360
aatacagatt tctctccata tctgatttca gataacttag aacagcctat gggaagtagt 3420
catgcatctc aggtttgttc tgagacacct gatgacctgt tagatgatgg tgaaataaag 3480
gaagatacta gttttgctga aaatgacatt aaggaaagtt ctgctgtttt tagcaaaagc 3540
gtccagagag gagagcttag caggagtcct agccctttca cccatacaca tttggctcag 3600
ggttaccgaa gaggggccaa gaaattagag tcctcagaag agaacttatc tagtgaggat 3660
gaagagcttc cctgcttcca acacttgtta tttggtaaag taaacaatat accttctcag 3720
tctactaggc atagcaccgt tgctaccgag tgtctgtcta agaacacaga ggagaattta 3780
ttatcattga agaatagctt aaatgactgc agtaaccagg taatattggc aaaggcatct 3840
caggaacatc accttagtga ggaaacaaaa tgttctgcta gcttgttttc ttcacagtgc 3900
agtgaattgg aagacttgac tgcaaataca aacacccagg atcctttctt gattggttct 3960
tccaaacaaa tgaggcatca gtctgaaagc cagggagttg gtctgagtga caaggaattg 4020
gtttcagatg atgaagaaag aggaacgggc ttggaagaaa ataatcaaga agagcaaagc 4080
atggattcaa acttaggtga agcagcatct gggtgtgaga gtgaaacaag cgtctctgaa 4140
gactgctcag ggctatcctc tcagagtgac attttaacca ctcagcagag ggataccatg 4200
caacataacc tgataaagct ccagcaggaa atggctgaac tagaagctgt gttagaacag 4260
catgggagcc agccttctaa cagctaccct tccatcataa gtgactcctc tgcccttgag 4320
gacctgcgaa atccagaaca aagcacatca gaaaaagcag tattaacttc acagaaaagt 4380
agtgaatacc ctataagcca gaatccagaa ggcctttctg ctgacaagtt tgaggtgtct 4440
gcagatagtt ctaccagtaa aaataaagaa ccaggagtgg aaaggtcatc cccttctaaa 4500
tgcccatcat tagatgatag gtggtacatg cacagttgct ctgggagtct tcagaataga 4560
aactacccat ctcaagagga gctcattaag gttgttgatg tggaggagca acagctggaa 4620
gagtctgggc cacacgattt gacggaaaca tcttacttgc caaggcaaga tctagaggga 4680
accccttacc tggaatctgg aatcagcctc ttctctgatg accctgaatc tgatccttct 4740
gaagacagag ccccagagtc agctcgtgtt ggcaacatac catcttcaac ctctgcattg 4800
aaagttcccc aattgaaagt tgcagaatct gcccagggtc cagctgctgc tcatactact 4860
gatactgctg ggtataatgc aatggaagaa agtgtgagca gggagaagcc agaattgaca 4920
gcttcaacag aaagggtcaa caaaagaatg tccatggtgg tgtctggcct gaccccagaa 4980
gaatttatgc tcgtgtacaa gtttgccaga aaacaccaca tcactttaac taatctaatt 5040
actgaagaga ctactcatgt tgttatgaaa acagatgctg agtttgtgtg tgaacggaca 5100
ctgaaatatt ttctaggaat tgcgggagga aaatgggtag ttagctattt ctgggtgacc 5160
cagtctatta aagaaagaaa aatgctgaat gagcatgatt ttgaagtcag aggagatgtg 5220
gtcaatggaa gaaaccacca aggtccaaag cgagcaagag aatcccagga cagaaagatc 5280
ttcagggggc tagaaatctg ttgctatggg cccttcacca acatgcccac agatcaactg 5340
gaatggatgg tacagctgtg tggtgcttct gtggtgaagg agctttcatc attcaccctt 5400
ggcacaggtg tccacccaat tgtggttgtg cagccagatg cctggacaga ggacaatggc 5460
ttccatgcaa ttgggcagat gtgtgaggca cctgtggtga cccgagagtg ggtgttggac 5520
agtgtagcac tctaccagtg ccaggagctg gacacctacc tgatacccca gatcccccac 5580
agccactac 5589
<210> 2
<211> 2334
<212> DNA
<213> Artificial Sequence
<400> 2
atgccggata atcggcagcc gaggaaccgg cagccgagga tccgctccgg gaacgagcct 60
cgttccgcgc ccgccatgga accggatggt cgcggtgcct gggcccacag tcgcgccgcg 120
ctcgaccgcc tggagaagct gctgcgctgc tcgcgttgta ctaacattct gagagagcct 180
gtgtgtttag gaggatgtga gcacatcttc tgtagtaatt gtgtaagtga ctgcattgga 240
actggatgtc cagtgtgtta caccccggcc tggatacaag acttgaagat aaatagacaa 300
ctggacagca tgattcaact ttgtagtaag cttcgaaatt tgctacatga caatgagctg 360
tcagatttga aagaagataa acctaggaaa agtttgttta atgatgcagg aaacaagaag 420
aattcaatta aaatgtggtt tagccctcga agtaagaaag tcagatatgt tgtgagtaaa 480
gcttcagtgc aaacccagcc tgcaataaaa aaagatgcaa gtgctcagca agactcatat 540
gaatttgttt ccccaagtcc tcctgcagat gtttctgaga gggctaaaaa ggcttctgca 600
agatctggaa aaaagcaaaa aaagaaaact ttagctgaaa tcaaccaaaa atggaattta 660
gaggcagaaa aagaagatgg tgaatttgac tccaaagagg aatctaagca aaagctggta 720
tccttctgta gccaaccatc tgttatctcc agtcctcaga taaatggtga aatagactta 780
ctagcaagtg gctccttgac agaatctgaa tgttttggaa gtttaactga agtctcttta 840
ccattggctg agcaaataga gtctccagac actaagagca ggaatgaagt agtgactcct 900
gagaaggtct gcaaaaatta tcttacatct aagaaatctt tgccattaga aaataatgga 960
aaacgtggcc atcacaatag actttccagt cccatttcta agagatgtag aaccagcatt 1020
ctgagcacca gtggagattt tgttaagcaa acggtgccct cagaaaatat accattgcct 1080
gaatgttctt caccaccttc atgcaaacgt aaagttggtg gtacatcagg gaggaaaaac 1140
agtaacatgt ccgatgaatt cattagtctt tcaccaggta caccaccttc tacattaagt 1200
agttcaagtt acaggcgagt gatgtctagt ccctcagcaa tgaagctgtt gcccaatatg 1260
gctgtgaaaa gaaatcatag aggagagact ttgctccata ttgcttctat taagggcgac 1320
ataccttctg ttgaatacct tttacaaaat ggaagtgatc caaatgttaa agaccatgct 1380
ggatggacac cattgcatga agcttgcaat catgggcacc tgaaggtagt ggaattattg 1440
ctccagcata aggcattggt gaacaccacc gggtatcaaa atgactcacc acttcacgat 1500
gcagccaaga atgggcatgt ggatatagtc aagctgttac tttcctatgg agcctccaga 1560
aatgctgtta atatatttgg tctgcggcct gtcgattata cagatgatga aagtatgaaa 1620
tcgctattgc tgctaccaga gaagaatgaa tcatcctcag ctagccactg ctcagtaatg 1680
aacactgggc agcgtaggga tggacctctt gtacttatag gcagtgggct gtcttcagaa 1740
caacagaaaa tgctcagtga gcttgcagta attcttaagg ctaaaaaata tactgagttt 1800
gacagtacag taactcatgt tgttgttcct ggtgatgcag ttcaaagtac cttgaagtgt 1860
atgcttggga ttctcaatgg atgctggatt ctaaaatttg aatgggtaaa agcatgtcta 1920
cgaagaaaag tatgtgaaca ggaagaaaag tatgaaattc ctgaaggtcc acgcagaagc 1980
aggctcaaca gagaacagct gttgccaaag ctgtttgatg gatgctactt ctatttgtgg 2040
ggaaccttca aacaccatcc aaaggacaac cttattaagc tcgtcactgc aggtgggggc 2100
cagatcctca gtagaaagcc caagccagac agtgacgtga ctcagaccat caatacagtc 2160
gcataccatg cgagacccga ttctgatcag cgcttctgca cacagtatat catctatgaa 2220
gatttgtgta attatcaccc agagagggtt cggcagggca aagtctggaa ggctccttcg 2280
agctggttta tagactgtgt gatgtccttt gagttgcttc ctcttgacag ctga 2334
<210> 3
<211> 29
<212> DNA
<213> Artificial Sequence
<400> 3
tcctcgagat ggcgtccaat ttcacgcag 29
<210> 4
<211> 45
<212> DNA
<213> Artificial Sequence
<400> 4
caacgcgaag agcagataaa tccattatat accggagttg gctgc 45
<210> 5
<211> 350
<212> DNA
<213> Artificial Sequence
<400> 5
atggcgtcca atttcacgca gttcgtcctg gttgacaacg gggggactgg ggacgttacg 60
gtcgctccga gcaactttgc caatggtatt gcggagtgga tttcttctaa ttcacggtcc 120
caagcttaca aagtgacctg ttccgtgcgg caaagttctg ctcagaatag aaagtacact 180
ataaaggtcg aagtccctaa gggggcctgg cgatcatatc tcaatatgga gcttaccatc 240
ccaatatttg ccactaattc tgattgtgaa ttgattgtca aagcaatgca aggactcttg 300
aaagacggaa acccaatccc cagcgcaatc gcagccaact ccggtatata 350
<210> 6
<211> 45
<212> DNA
<213> Artificial Sequence
<400> 6
gcagccaact ccggtatata atggatttat ctgctcttcg cgttg 45
<210> 7
<211> 76
<212> DNA
<213> Artificial Sequence
<400> 7
agggccggga ttctcctcca cgtcaccgca tgttagaaga cttcctctgc cctcgtagtg 60
gctgtggggg atctgg 76
<210> 8
<211> 78
<212> DNA
<213> Artificial Sequence
<400> 8
gagggcagag gaagtcttct aacatgcggt gacgtggagg agaatcccgg ccctatgccg 60
gataatcggc agccgagg 78
<210> 9
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 9
gtacgcgttc agctgtcaag aggaagcaac 30
<210> 10
<211> 4399
<212> DNA
<213> Artificial Sequence
<400> 10
cccggcggca ttaaccctca ctaaagggaa caaaagctgg agctgcaagc ttaatgtagt 60
cttatgcaat actcttgtag tcttgcaaca tggtaacgat gagttagcaa catgccttac 120
aaggagagaa aaagcaccgt gcatgccgat tggtggaagt aaggtggtac gatcgtgcct 180
tattaggaag gcaacagacg ggtctgacat ggattggacg aaccactgaa ttgccgcatt 240
gcagagatat tgtatttaag tgcctagctc gatacataaa cgggtctctc tggttagacc 300
agatctgagc ctgggagctc tctggctaac tagggaaccc actgcttaag cctcaataaa 360
gcttgccttg agtgcttcaa gtagtgtgtg cccgtctgtt gtgtgactct ggtaactaga 420
gatccctcag acccttttag tcagtgtgga aaatctctag cagtggcgcc cgaacaggga 480
cttgaaagcg aaagggaaac cagaggagct ctctcgacgc aggactcggc ttgctgaagc 540
gcgcacggca agaggcgagg ggcggcgact ggtgagtacg ccaaaaattt tgactagcgg 600
aggctagaag gagagagatg ggtgcgagag cgtcagtatt aagcggggga gaattagatc 660
gcgatgggaa aaaattcggt taaggccagg gggaaagaaa aaatataaat taaaacatat 720
agtatgggca agcagggagc tagaacgatt cgcagttaat cctggcctgt tagaaacatc 780
agaaggctgt agacaaatac tgggacagct acaaccatcc cttcagacag gatcagaaga 840
acttagatca ttatataata cagtagcaac cctctattgt gtgcatcaaa ggatagagat 900
aaaagacacc aaggaagctt tagacaagat agaggaagag caaaacaaaa gtaagaccac 960
cgcacagcaa gcggccgctg atcttcagac ctggaggagg agatatgagg gacaattgga 1020
gaagtgaatt atataaatat aaagtagtaa aaattgaacc attaggagta gcacccacca 1080
aggcaaagag aagagtggtg cagagagaaa aaagagcagt gggaatagga gctttgttcc 1140
ttgggttctt gggagcagca ggaagcacta tgggcgcagc gtcaatgacg ctgacggtac 1200
aggccagaca attattgtct ggtatagtgc agcagcagaa caatttgctg agggctattg 1260
aggcgcaaca gcatctgttg caactcacag tctggggcat caagcagctc caggcaagaa 1320
tcctggctgt ggaaagatac ctaaaggatc aacagctcct ggggatttgg ggttgctctg 1380
gaaaactcat ttgcaccact gctgtgcctt ggaatgctag ttggagtaat aaatctctgg 1440
aacagatttg gaatcacacg acctggatgg agtgggacag agaaattaac aattacacaa 1500
gcttaataca ctccttaatt gaagaatcgc aaaaccagca agaaaagaat gaacaagaat 1560
tattggaatt agataaatgg gcaagtttgt ggaattggtt taacataaca aattggctgt 1620
ggtatataaa attattcata atgatagtag gaggcttggt aggtttaaga atagtttttg 1680
ctgtactttc tatagtgaat agagttaggc agggatattc accattatcg tttcagaccc 1740
acctcccaac cccgagggga cccgacaggc ccgaaggaat agaagaagaa ggtggagaga 1800
gagacagaga cagatccatt cgattagtga acggatctcg acggtatcga tgtcgacgtt 1860
aacgctagcg actgggtctg cgatgtcgac gttaacgcta gcgactgggt ctgcgataag 1920
cttgggagtt ccgcgttaca taacttacgg taaatggccc gcctggctga ccgcccaacg 1980
acccccgccc attgacgtca ataatgacgt atgttcccat agtaacgcca atagggactt 2040
tccattgacg tcaatgggtg gagtatttac ggtaaactgc ccacttggca gtacatcaag 2100
tgtatcatat gccaagtacg ccccctattg acgtcaatga cggtaaatgg cccgcctggc 2160
attatgccca gtacatgacc ttatgggact ttcctacttg gcagtacatc tacgtattag 2220
tcatcgctat taccatggtg atgcggtttt ggcagtacat caatgggcgt ggatagcggt 2280
ttgactcacg gggatttcca agtctccacc ccattgacgt caatgggagt ttgttttggc 2340
accaaaatca acgggacttt ccaaaatgtc gtaacaactc cgccccattg acgcaaatgg 2400
gcggtaggcg tgtacggtgg gaggtctata taagcagagc tcgtttagtg aaccgtcaga 2460
tcgcctggag acgccatcca cgctgttttg acctccatag aagacaccga ctctagagga 2520
tctgccacca tggattacaa ggatgacgac gataaggaaa acctgtattt tcagggagga 2580
tccccagaat tctgggatat cctcgagtct agagggcccg cggttcgaag gtaagcctat 2640
ccctaaccct ctcctcggtc tcgattctac gcgtaccggt tagtaatgac gatggtacct 2700
accgggtagg ggaggcgctt ttcccaaggc agtctggagc atgcgcttta gcagccccgc 2760
tgggcacttg gcgctacaca agtggcctct ggcctcgcac acattccaca tccaccggta 2820
ggcgccaacc ggctccgttc tttggtggcc ccttcgcgcc accttctact cctcccctag 2880
tcaggaagtt cccccccgcc ccgcagctcg cgtcgtgcag gacgtgacaa atggaagtag 2940
cacgtctcac tagtctcgtg cagatggaca gcaccgctga gcaatggaag cggtaggcct 3000
ttggggcagc ggccaatagc agctttgctc cttcgctttc tgggctcaga ggctgggaag 3060
gggtgggtcc gggggcgggc tcaggggcgg gctcaggggc ggggcgggcg cccgaagtcc 3120
tccggaggcc cggcattctg cacgcttcaa aagcgcacgt ctgccgcgct gttctcctct 3180
tcctcatctc cgggcctttc gactctagac acgtgttgac aattaatcat cggcatagta 3240
tatcggcata gtataatacg acaaggtgag gaactaaacc atggccaagc ctttgtctca 3300
agaagaatcc accctcattg aaagagcaac ggctacaatc aacagcatcc ccatctctga 3360
agactacagc gtcgccagcg cagctctctc tagcgacggc cgcatcttca ctggtgtcaa 3420
tgtatatcat tttactgggg gaccttgtgc agaactcgtg gtgctgggca ctgctgctgc 3480
tgcggcagct ggcaacctga cttgtatcgt cgcgatcgga aatgagaaca ggggcatctt 3540
gagcccctgc ggacggtgcc gacaggtgct tctcgatctg catcctggga tcaaagccat 3600
agtgaaggac agtgatggac agccgacggc agttgggatt cgtgaattgc tgccctctgg 3660
ttatgtgtgg gagggctaag cacaattcga gctcggtacc tttaagacca atgacttaca 3720
aggcagctgt agatcttagc cactttttaa aagaaaaggg gggactggaa gggctaattc 3780
actcccaacg aagacaagat ctgctttttg cttgtactgg gtctctctgg ttagaccaga 3840
tctgagcctg ggagctctct ggctaactag ggaacccact gcttaagcct caataaagct 3900
tgccttgagt gcttcaagta gtgtgtgccc gtctgttgtg tgactctggt aactagagat 3960
ccctcagacc cttttagtca gtgtggaaaa tctctagcag tagtagttca tgtcatctta 4020
ttattcagta tttataactt gcaaagaaat gaatatcaga gagtgagagg aacttgttta 4080
ttgcagctta taatggttac aaataaagca atagcatcac aaatttcaca aataaagcat 4140
ttttttcact gcattctagt tgtggtttgt ccaaactcat caatgtatct tatcatgtct 4200
ggctctagct atcccgcccc taactccgcc catcccgccc ctaactccgc ccagttccgc 4260
ccattctccg ccccatggct gactaatttt ttttatttat gcagaggccg aggccgcctc 4320
ggcctctgag ctattccaga agtagtgagg aggctttttt ggaggcctag ggacgtaccc 4380
aatcgcccta taggagtct 4399
<210> 11
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 11
aagttcagcg tgtccggcta 20
<210> 12
<211> 8646
<212> DNA
<213> Artificial Sequence
<400> 12
gtcgacattg attattgact agttattaat agtaatcaat tacggggtca ttagttcata 60
gcccatatat ggagttccgc gttacataac ttacggtaaa tggcccgcct ggctgaccgc 120
ccaacgaccc ccgcccattg acgtcaataa tgacgtatgt tcccatagta acgccaatag 180
ggactttcca ttgacgtcaa tgggtggagt atttacggta aactgcccac ttggcagtac 240
atcaagtgta tcatatgcca agtccgcccc ctattgacgt caatgacggt aaatggcccg 300
cctggcatta tgcccagtac atgaccttac gggactttcc tacttggcag tacatctacg 360
tattagtcat cgctattacc atgggtcgag gtgagcccca cgttctgctt cactctcccc 420
atctcccccc cctccccacc cccaattttg tatttattta ttttttaatt attttgtgca 480
gcgatggggg cggggggggg gggggcgcgc gccaggcggg gcggggcggg gcgaggggcg 540
gggcggggcg aggcggagag gtgcggcggc agccaatcag agcggcgcgc tccgaaagtt 600
tccttttatg gcgaggcggc ggcggcggcg gccctataaa aagcgaagcg cgcggcgggc 660
gggagtcgct gcgttgcctt cgccccgtgc cccgctccgc gccgcctcgc gccgcccgcc 720
ccggctctga ctgaccgcgt tactcccaca ggtgagcggg cgggacggcc cttctcctcc 780
gggctgtaat tagcgcttgg tttaatgacg gctcgtttct tttctgtggc tgcgtgaaag 840
ccttaaaggg ctccgggagg gccctttgtg cgggggggag cggctcgggg ggtgcgtgcg 900
tgtgtgtgtg cgtggggagc gccgcgtgcg gcccgcgctg cccggcggct gtgagcgctg 960
cgggcgcggc gcggggcttt gtgcgctccg cgtgtgcgcg aggggagcgc ggccgggggc 1020
ggtgccccgc ggtgcggggg ggctgcgagg ggaacaaagg ctgcgtgcgg ggtgtgtgcg 1080
tgggggggtg agcagggggt gtgggcgcgg cggtcgggct gtaacccccc cctgcacccc 1140
cctccccgag ttgctgagca cggcccggct tcgggtgcgg ggctccgtgc ggggcgtggc 1200
gcggggctcg ccgtgccggg cggggggtgg cggcaggtgg gggtgccggg cggggcgggg 1260
ccgcctcggg ccggggaggg ctcgggggag gggcgcggcg gccccggagc gccggcggct 1320
gtcgaggcgc ggcgagccgc agccattgcc ttttatggta atcgtgcgag agggcgcagg 1380
gacttccttt gtcccaaatc tggcggagcc gaaatctggg aggcgccgcc gcaccccctc 1440
tagcgggcgc gggcgaagcg gtgcggcgcc ggcaggaagg aaatgggcgg ggagggcctt 1500
cgtgcgtcgc cgcgccgccg tccccttctc catctccagc ctcggggctg ccgcaggggg 1560
acggctgcct tcggggggga cggggcaggg cggggttcgg cttctggcgt gtgaccggcg 1620
gctctagagc ctctgctaac catgttcatg ccttcttctt tttcctacag ctcctgggca 1680
acgtgctggt tattgtgctg tctcatcatt ttggcaaaga attcagatcc gccgccacta 1740
tgggatcaag atcgccaaaa aagaagagaa aggtgccgaa gaagcatgca gcaccaccaa 1800
aaaaaaaacg aaaagtagaa gacccacgag gcaacaccag cggcgtgctg agcaccccca 1860
aggccaagag ggccaagcac ccccccggca ccgagaagcc caggagcagg agccagagcg 1920
agcagcccgc cacctgcccc atctgctacg ccgtgatcag gcagagcagg aacctgagga 1980
ggcacctgga gctgaggcac ttcgccaagc ccggcgtgga tccaccggtc gccaccatgg 2040
tgagcaaggg cgaggagctg ttcaccgggg tggtgcccat cctggtcgag ctggacggcg 2100
acgtaaacgg ccacaagttc agcgtgtccg gctagggata acagggtaat acctacggca 2160
agctgaccct gaagttcatc tgcaccaccg gcaagctgcc cgtgccctgg cccaccctcg 2220
tgaccaccct gacctacggc gtgcagtgct tcagccgcta ccccgaccac atgaagcagc 2280
acgacttctt caagtccgcc atgcccgaag gctacgtcca ggagcgcacc atcttcttca 2340
aggacgacgg caactacaag acccgcgccg aggtgaagtt cgagggcgac accctggtga 2400
accgcatcga gctgaagggc atcgacttca aggaggacgg caacatcctg gggcacaagc 2460
tggagtacaa ctacaacagc cacaacgtct atatcatggc cgacaagcag aagaacggca 2520
tcaaggtgaa cttcaagatc cgccacaaca tcgaggacgg cagcgtgcag ctcgccgacc 2580
actaccagca gaacaccccc atcggcgacg gccccgtgct gctgcccgac aaccactacc 2640
tgagcaccca gtccgccctg agcaaagacc ccaacgagaa gcgcgatcac atggtcctgc 2700
tggagttcgt gaccgccgcc gggatcactc tcggcatgga cgagctgtac aagtaaagcg 2760
gccgcgactc tagatcataa tcagccatac cacatttgta gaggttttac ttgctttaaa 2820
aaacctccca cacctccccc tgaacctgaa acataaaatg aatgcaattg ttgttgttaa 2880
cttgtttatt gcagcttata atggttacaa ataaagcaat agcatcacaa atttcacaaa 2940
taaagcattt ttttcactgc attctagttg tggtttgtcc aaactcatca atgtatctta 3000
aggcgtaaat tgtaagcgtt aatctgaagc ttctgatgga attagaactt ggcaaaacaa 3060
tactgagaat gaagtgtatg tggaacagag gctgctgatc tcgttcttca ggctatgaaa 3120
ctgacacatt tggaaaccac agtacttaga accacaaagt gggaatcaag agaaaaacaa 3180
tgatcccacg agagatctat agatctatag atcatgagtg ggaggaatga gctggccctt 3240
aatttggttt tgcttgttta aattatgata tccaactatg aaacattatc ataaagcaat 3300
agtaaagagc cttcagtaaa gagcaggcat ttatctaatc ccaccccacc cccacccccg 3360
tagctccaat ccttccattc aaaatgtagg tactctgttc tcacccttct taacaaagta 3420
tgacaggaaa aacttccatt ttagtggaca tctttattgt ttaatagatc atcaatttcg 3480
atccgctcct gggcaccgaa ctgcgccgcg tgttcagcag ggtcggcgtg ttcggtgtgt 3540
cccccgcggt gggcctcggg ggcgggtgcg gggtcggcgg ggccgccccg ggtggcttcg 3600
gtcggagcca tggggtcgtg cgctcctttc ggtcgggcgc tgcgggtcgt ggggcgggcg 3660
tcaggcaccg ggcttgcggg tcatgcacca ggtgcgcggt ccttcgggca cctcgacgtc 3720
ggcggtgacg gtgaagccga gccgctcgta gaaggggagg ttgcggggcg cggaggtctc 3780
caggaaggcg ggcaccccgg cgcgctcggc cgcctccact ccggggagca cgacggcgct 3840
gcccagaccc ttgccctggt ggtcgggcga gacgccgacg gtggccagga accacgcggg 3900
ctccttgggc cggtgcggcg ccaggaggcc ttccatctgt tgctgcgcgg ccagccggga 3960
accgctcaac tcggccatgc gcgggccgat ctcggcgaac accgcccccg cttcgacgct 4020
ctccggcgtg gtccagaccg ccaccgcggc gccgtcgtcc gcgacccaca ccttgccgat 4080
gtcgagcccg acgcgcgtga ggaagagttc ttgcagctcg gtgacccgct cgatgtggcg 4140
gtccgggtcg acggtgtggc gcgtggcggg gtagtcggcg aacgcggcgg cgagggtgcg 4200
tacggcccgg gggacgtcgt cgcgggtggc gaggcgcacc gtgggcttgt actcggtcat 4260
ggtggcggct ggatcggtcg aaaggcccgg agatgaggaa gaggagaaca gcgcggcaga 4320
cgtgcgcttt tgaagcgtgc agaatgccgg gcctccggag gaccttcggg cgcccgcccc 4380
gcccctgagc ccgcccctga gcccgccccc ggacccaccc cttcccagcc tctgagccca 4440
gaaagcgaag gagcaaagct gctattggcc gctgccccaa aggcctaccc gcttccattg 4500
ctcagcggtg ctgtccatct gcacgagact agtgagacgt gctacttcca tttgtcacgt 4560
cctgcacgac gcgagctgcg gggcgggggg gaacttcctg actaggggag gagtagaagg 4620
tggcgcgaag gggccaccaa agaacggagc cggttggcgc ctaccggtgg atgtggaatg 4680
tgtgaggcca gaggccactt gtgtagcgcc aagtgcccag cggggctgct aaagcgcatg 4740
ctccagactg ccttgggaaa agcgcctccc ctacccggta gaattcactc ctcaggtgca 4800
ggctgcctat cagaaggtgg tggctggtgt ggccaatgcc ctggctcaca aataccactg 4860
agatcttttt ccctctgcca aaaattatgg ggacatcatg aagccccttg agcatctgac 4920
ttctggctaa taaaggaaat ttattttcat tgcaatagtg tgttggaatt ttttgtgtct 4980
ctcactcgga aggacatatg ggagggcaaa tcatttaaaa catcagaatg agtatttggt 5040
ttagagtttg gcaacatatg ccatatgctg gctgccatga acaaaggtgg ctataaagag 5100
gtcatcagta tatgaaacag ccccctgctg tccattcctt attccataga aaagccttga 5160
cttgaggtta gatttttttt atattttgtt ttgtgttatt tttttcttta acatccctaa 5220
aattttcctt acatgtttta ctagccagat ttttcctcct ctcctgacta ctcccagtca 5280
tagctgtccc tcttctctta tgaagatccc tcgacctgca gcccaagctt tagggatcaa 5340
gatcgccaaa aaagaagaga aaggtgccga agaagcatgc agcaccacca aaaaaaaaac 5400
gaaaagtaga agacccacga ggcaacacca gcggcgtgct gagcaccccc aaggccaaga 5460
gggccaagca cccccccggc accgagaagc ccaggagcag gagccagagc gagcagcccg 5520
ccacctgccc catctgctac gccgtgatca ggcagagcag gaacctgagg aggcacctgg 5580
agctgaggca cttcgccaag cccggcgtgg atccaccggt cgccaccatg gtgagcaagg 5640
gcgaggagct gttcaccggg gtggtgccca tcctggtcga gctggacggc gacgtaaacg 5700
gccacaagtt cagcgtgtcc ggcgagggcg agggcgatgc cacctacggc aagctgaccc 5760
tgaagttcat ctgcaccacc ggcaagctgc ccgtgccctg gcccaccctc gtgaccaccc 5820
tgacctacgg cgtgcagtgc ttcagccgct accccgacca catgaagcag cacgacttct 5880
tcaagtccgc catgcccgaa ggctacgtcc aggagcgcac catcttcttc aaggacgacg 5940
gcaactacaa gacccgcgcc gaggtgaagt tcgagggcga caccctggtg aaccgcatcg 6000
agctgaaggg catcgacttc aaggaggacg gcaacatcct ggggcacaag ctggagtaca 6060
actacaacag ccacaacgtc tatatcatgg ccgacaagca gaagaacggc atcaaggtga 6120
acttcaataa aagcttggcg taatcatggt catagctgtt tcctgtgtga aattgttatc 6180
cgctcacaat tccacacaac atacgagccg gaagcataaa gtgtaaagcc tggggtgcct 6240
aatgagtgag ctaactcaca ttaattgcgt tgcgctcact gcccgctttc cagtcgggaa 6300
acctgtcgtg ccagcggatc cgcatctcaa ttagtcagca accatagtcc cgcccctaac 6360
tccgcccatc ccgcccctaa ctccgcccag ttccgcccat tctccgcccc atggctgact 6420
aatttttttt atttatgcag aggccgaggc cgcctcggcc tctgagctat tccagaagta 6480
gtgaggaggc ttttttggag gcctaggctt ttgcaaaaag ctaacttgtt tattgcagct 6540
tataatggtt acaaataaag caatagcatc acaaatttca caaataaagc atttttttca 6600
ctgcattcta gttgtggttt gtccaaactc atcaatgtat cttatcatgt ctggatccgc 6660
tgcattaatg aatcggccaa cgcgcgggga gaggcggttt gcgtattggg cgctcttccg 6720
cttcctcgct cactgactcg ctgcgctcgg tcgttcggct gcggcgagcg gtatcagctc 6780
actcaaaggc ggtaatacgg ttatccacag aatcagggga taacgcagga aagaacatgt 6840
gagcaaaagg ccagcaaaag gccaggaacc gtaaaaaggc cgcgttgctg gcgtttttcc 6900
ataggctccg cccccctgac gagcatcaca aaaatcgacg ctcaagtcag aggtggcgaa 6960
acccgacagg actataaaga taccaggcgt ttccccctgg aagctccctc gtgcgctctc 7020
ctgttccgac cctgccgctt accggatacc tgtccgcctt tctcccttcg ggaagcgtgg 7080
cgctttctca aagctcacgc tgtaggtatc tcagttcggt gtaggtcgtt cgctccaagc 7140
tgggctgtgt gcacgaaccc cccgttcagc ccgaccgctg cgccttatcc ggtaactatc 7200
gtcttgagtc caacccggta agacacgact tatcgccact ggcagcagcc actggtaaca 7260
ggattagcag agcgaggtat gtaggcggtg ctacagagtt cttgaagtgg tggcctaact 7320
acggctacac tagaagaaca gtatttggta tctgcgctct gctgaagcca gttaccttcg 7380
gaaaaagagt tggtagctct tgatccggca aacaaaccac cgctggtagc ggtggttttt 7440
ttgtttgcaa gcagcagatt acgcgcagaa aaaaaggatc tcaagaagat cctttgatct 7500
tttctacggg gtctgacgct cagtggaacg aaaactcacg ttaagggatt ttggtcatga 7560
gattatcaaa aaggatcttc acctagatcc ttttaaatta aaaatgaagt tttaaatcaa 7620
tctaaagtat atatgagtaa acttggtctg acagttacca atgcttaatc agtgaggcac 7680
ctatctcagc gatctgtcta tttcgttcat ccatagttgc ctgactcccc gtcgtgtaga 7740
taactacgat acgggagggc ttaccatctg gccccagtgc tgcaatgata ccgcgagacc 7800
cacgctcacc ggctccagat ttatcagcaa taaaccagcc agccggaagg gccgagcgca 7860
gaagtggtcc tgcaacttta tccgcctcca tccagtctat taattgttgc cgggaagcta 7920
gagtaagtag ttcgccagtt aatagtttgc gcaacgttgt tgccattgct acaggcatcg 7980
tggtgtcacg ctcgtcgttt ggtatggctt cattcagctc cggttcccaa cgatcaaggc 8040
gagttacatg atcccccatg ttgtgcaaaa aagcggttag ctccttcggt cctccgatcg 8100
ttgtcagaag taagttggcc gcagtgttat cactcatggt tatggcagca ctgcataatt 8160
ctcttactgt catgccatcc gtaagatgct tttctgtgac tggtgagtac tcaaccaagt 8220
cattctgaga atagtgtatg cggcgaccga gttgctcttg cccggcgtca atacgggata 8280
ataccgcgcc acatagcaga actttaaaag tgctcatcat tggaaaacgt tcttcggggc 8340
gaaaactctc aaggatctta ccgctgttga gatccagttc gatgtaaccc actcgtgcac 8400
ccaactgatc ttcagcatct tttactttca ccagcgtttc tgggtgagca aaaacaggaa 8460
ggcaaaatgc cgcaaaaaag ggaataaggg cgacacggaa atgttgaata ctcatactct 8520
tcctttttca atattattga agcatttatc agggttattg tctcatgagc ggatacatat 8580
ttgaatgtat ttagaaaaat aaacaaatag gggttccgcg cacatttccc cgaaaagtgc 8640
cacctg 8646
<210> 13
<211> 21
<212> DNA
<213> Artificial Sequence
<400> 13
ccaaagaaga agcggaaggt c 21
<210> 14
<211> 54
<212> DNA
<213> Artificial Sequence
<400> 14
gagggcagag gaagtcttct aacatgcggt gacgtggagg agaatcccgg ccct 54

Claims (2)

1.一种通过BRCA1和BARD1蛋白提高基因编辑过程中同源重组效率的方法,其特征在于,包括如下步骤:
(1)将BRCA1蛋白和BARD1蛋白组合,得到BRCA1/BARD1蛋白复合体;
(2)将包含编码BRCA1/BARD1蛋白复合体基因的载体与基因编辑表达载体共转染即可;
编码BRCA1蛋白的基因序列如SEQ ID NO.1所示;编码BARD1蛋白的基因序列如SEQ IDNO.2所示;
BRCA1蛋白和BARD1蛋白的质量比为1:1~14;
BRCA1/BARD1蛋白复合体为MS2-BRCA1-T2A-BARD1质粒载体编码的蛋白;
MS2-BRCA1-T2A-BARD1质粒载体的构建方法为:
(1)以psPAX2-D64V-NC-MS2质粒为模板,MS2-for1(Xho1)/MS2-BRCA1-rev1为引物组合,PCR扩增,回收得到MS2片段;
(2)以pcDNA-NLS-BRCA1质粒为模板,MS2-BRCA1-for2/BRCA1-T2A-rev2为引物组合,PCR扩增,回收BRCA1片段;
(3)以pcDNA-NLS-BARD1质粒为模板,T2A-BARD1-for3/BARD1-rev3(Mlu1)为引物组合,PCR扩增,回收得到BARD1片段;
(4)以步骤(1)得到的MS2片段和步骤(2)得到的BRCA1片段混合为模板,MS2-for1(Xho1)/BRCA1-T2A-rev2为引物组合,PCR扩增,回收得到MS2-BRCA1片段;
(5)以步骤(3)得到的BARD1片段和步骤(4)得到的MS2-BRCA1片段混合为模板,MS2-for1(Xho1)/BARD1-rev3(Mlu1)为引物组合,PCR扩增,回收得到MS2-BRCA1-BARD1片段;
(6)利用Xho1-Mlu1酶将步骤(5)得到的片段进行双酶切后,克隆到pLenti6.2-Flag载体上,得到pLenti6.2-MS2-BRCA1-T2A-BARD1质粒载体;
MS2-for1(Xho1)的序列如SEQ ID NO.3所示;
MS2-BRCA1-rev1的序列如SEQ ID NO.4所示;
MS2片段的序列如SEQ ID NO.5所示;
MS2-BRCA1-for2的序列如SEQ ID NO.6所示;
BRCA1-T2A-rev2的序列如SEQ ID NO.7所示;
T2A-BARD1-for3的序列如SEQ ID NO.8所示;
BARD1-rev3(Mlu1)的序列如SEQ ID NO.9所示;
pLenti6.2-Flag的序列如SEQ ID NO.10所示;
基因编辑表达载体为pLenti-U6-sgRNA-MS2-CRISPR或Lenti-SceGFPgRNA1-CRISPR;
pLenti-U6-sgRNA-MS2-CRISPR表达载体的构建方法为:将Lenti-sgRNA(MS2)-purobackbone质粒的PCR产物与pLH-sgRNA-CRISPRv2载体进行Kpn1-EcoR1双酶切后,将酶切片段进行连接、转化、克隆得到pLenti-U6-sgRNA-MS2-CRISPR;
Lenti-SceGFPgRNA1-CRISPR表达载体的构建方法为:将针对I-Sce1酶切位点设计的sgRNA序列,克隆入pLenti-CRISPR-v2载体上得到。
2.根据权利要求1所述的方法,其特征在于,sgRNA序列如SEQ ID NO.11所示。
CN202111363020.1A 2021-11-17 2021-11-17 一种通过brca1和bard1蛋白提高基因编辑过程中同源重组效率的方法 Active CN114014924B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111363020.1A CN114014924B (zh) 2021-11-17 2021-11-17 一种通过brca1和bard1蛋白提高基因编辑过程中同源重组效率的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111363020.1A CN114014924B (zh) 2021-11-17 2021-11-17 一种通过brca1和bard1蛋白提高基因编辑过程中同源重组效率的方法

Publications (2)

Publication Number Publication Date
CN114014924A CN114014924A (zh) 2022-02-08
CN114014924B true CN114014924B (zh) 2022-06-10

Family

ID=80064921

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111363020.1A Active CN114014924B (zh) 2021-11-17 2021-11-17 一种通过brca1和bard1蛋白提高基因编辑过程中同源重组效率的方法

Country Status (1)

Country Link
CN (1) CN114014924B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131961A1 (ja) * 2017-12-27 2019-07-04 国立大学法人東北大学 相同組換え修復活性の定量法
WO2020003311A1 (en) * 2018-06-25 2020-01-02 Yeda Research And Development Co. Ltd. Systems and methods for increasing efficiency of genome editing
WO2020050294A1 (ja) * 2018-09-05 2020-03-12 学校法人慶應義塾 相同組換え効率上昇剤及びその使用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105779572B (zh) * 2014-12-22 2020-07-07 深圳华大基因研究院 肿瘤易感基因目标序列捕获芯片、方法及突变检测方法
CN106591372B (zh) * 2016-11-30 2021-04-16 上海交通大学 延缓人源骨髓间充质干细胞体外培养导致衰老的方法
US20180305719A1 (en) * 2017-04-19 2018-10-25 The Board Of Trustees Of The University Of Illinois Vectors For Integration Of DNA Into Genomes And Methods For Altering Gene Expression And Interrogating Gene Function
WO2020125576A1 (zh) * 2018-12-17 2020-06-25 苏州克睿基因生物科技有限公司 一种在细胞中递送基因的方法
CA3125175A1 (en) * 2018-12-27 2020-07-02 LifeEDIT Therapeutics, Inc. Polypeptides useful for gene editing and methods of use
CN110863048A (zh) * 2019-12-06 2020-03-06 苏州卫生职业技术学院 一种检测dna同源重组修复通路有效性的探针库、检测方法和试剂盒
CN111139259B (zh) * 2020-01-18 2022-03-25 潍坊医学院 一种提高基因编辑中同源重组效率的方法
CN112210553A (zh) * 2020-09-14 2021-01-12 菁良基因科技(深圳)有限公司 一种同源重组修复检测参考品的制备及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131961A1 (ja) * 2017-12-27 2019-07-04 国立大学法人東北大学 相同組換え修復活性の定量法
WO2020003311A1 (en) * 2018-06-25 2020-01-02 Yeda Research And Development Co. Ltd. Systems and methods for increasing efficiency of genome editing
WO2020050294A1 (ja) * 2018-09-05 2020-03-12 学校法人慶應義塾 相同組換え効率上昇剤及びその使用

Also Published As

Publication number Publication date
CN114014924A (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
CN110022906A (zh) 抗bcma car t细胞组合物
AU2024204743A1 (en) HIV pre-immunization and immunotherapy
US6642028B1 (en) Vectors and genes exhibiting increased expression
WO1996040911A1 (en) Modified steroid hormones for gene therapy and methods for their use
US6759236B1 (en) Methods to enhance and confine expression of genes
CN110637090A (zh) 用于表达大型核酸转基因的质粒载体
CN111089972B (zh) 一种用于检测抗人体髓鞘碱性蛋白抗体的试剂盒及其应用
CN101418286B (zh) 人免疫缺陷病毒ⅰ型的人工假病毒及其制备和应用
CN108707626B (zh) 一种可检测热原的单克隆细胞系的制备方法
CN112522205B (zh) 一种过表达血管紧张素转换酶2的细胞系及其制备方法与应用
KR20200135852A (ko) 유전자 변형 림프구의 제조 방법
CN101372683B (zh) 人丙肝病毒的人工假病毒及其制备和应用
CN114014924B (zh) 一种通过brca1和bard1蛋白提高基因编辑过程中同源重组效率的方法
KR102461837B1 (ko) Cd80 세포외도메인 및 항 lag3 항체 단편을 포함하는 융합 단백질 및 이의 용도
CN109097392A (zh) 一种基于PiggyBac载体的Her2-CAR-T系统构建方法
CN109957551B (zh) 表达人β-防御素2的重组痘苗病毒及其应用
CN108728466A (zh) 一种能够快速获得牙鲆稳转细胞系的载体
CN113234692B (zh) 一种包含狂犬病毒糖蛋白的感染性克隆及应用
KR102664852B1 (ko) 광 유도 유전자 발현 조절용 벡터 시스템 및 이의 용도
KR102422842B1 (ko) 크리스퍼 간섭을 이용한 rna 번역 조절용 조성물
US20040154046A1 (en) Gfp expression vector localized in mitochondria
CN113969287B (zh) 重组单纯疱疹病毒的亲和筛选细胞系及其构建方法和应用
CN114606218B (zh) 冠状病毒中和效应蛋白及其应用
CN114606219B (zh) 一种冠状病毒中和效应蛋白及其应用
CN113025651B (zh) 靶向HBV核心启动子的药物筛选细胞模型、Triciribine及结构类似物新应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant