CN114011398B - 3D花状Zn3In2S6@Bi2O4/β-Bi2O3双Z型异质结光电催化剂及应用 - Google Patents

3D花状Zn3In2S6@Bi2O4/β-Bi2O3双Z型异质结光电催化剂及应用 Download PDF

Info

Publication number
CN114011398B
CN114011398B CN202111373527.5A CN202111373527A CN114011398B CN 114011398 B CN114011398 B CN 114011398B CN 202111373527 A CN202111373527 A CN 202111373527A CN 114011398 B CN114011398 B CN 114011398B
Authority
CN
China
Prior art keywords
double
flower
reduction
electrolyte solution
heterojunction photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111373527.5A
Other languages
English (en)
Other versions
CN114011398A (zh
Inventor
李双
刘芳邑
闫天一
刘雪岩
张蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning University
Original Assignee
Liaoning University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning University filed Critical Liaoning University
Priority to CN202111373527.5A priority Critical patent/CN114011398B/zh
Publication of CN114011398A publication Critical patent/CN114011398A/zh
Application granted granted Critical
Publication of CN114011398B publication Critical patent/CN114011398B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4676Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction
    • C02F1/4678Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction of metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及3D花状Zn3In2S6@Bi2O4/β‑Bi2O3双Z型异质结光电催化剂及应用。将Bi(NO3)3·5H2O溶解在苯甲醇中,搅拌10‑20min后,加入Zn3In2S6,超声10‑20min后,再搅拌50min,将所得混合溶液转移到聚四氟乙烯衬里的不锈钢高压釜中,进行水热反应,反应结束后自然冷却至环境温度,产物用蒸馏水和无水乙醇洗涤,真空干燥后放入马弗炉中,于300‑350℃保持5小时,得目标产物。本发明构建的双Z型异质结光电催化剂,用于高效还原高毒性的Cr(VI)为无毒的Cr(III),为含铬废水的处理提供理论基础,有助于推动光电催化技术在环境修复领域的应用。

Description

3D花状Zn3In2S6@Bi2O4/β-Bi2O3双Z型异质结光电催化剂及应用
技术领域
本发明属于光电催化剂领域,特别涉及一种具有双Z型异质结结构的3D花状Zn3In2S6@Bi2O4/β-Bi2O3光电催化剂及其在光电催化Cr(VI)还原为Cr(III)中的应用。
背景技术
铬是一种典型的重金属污染物,主要来源于皮革鞣制、纺织制造、钢铁制造等行业。主要以Cr(VI)和Cr(III)两种价态存在,其中,Cr(VI)因其对生物体的急性毒性而被认为是高致癌物,而Cr(III)无毒,是人体必需的微量金属。因此,将Cr(VI)还原为Cr(III)被认为是一种行之有效的水处理方法。为此,研究人员已经开展了大量的研究工作,比如:微生物还原、化学还原和光催化还原、电催化还原、光电催化还原等等。其中,光电催化技术是近年来发展起来的一种高效的催化技术,它利用可再生的太阳光作为能源,结合电化学技术的优势,加快了光生载流子的分离,提高太阳能转换成化学能的转化效率,实现了节能、环保、高效催化等特性。目前,该技术已被广泛应用在析氢、加氢、CO2还原及合成氨等各种催化领域,其关键是合理设计和构建性能优异的催化剂。
具有Z-型电荷传导机制的半导体异质结,因其具有超高的氧化还原能力而备受关注,特别地,双Z型电荷传导模式使催化剂具有更好的电荷分离能力,从而获得更高的性能。
发明内容
本发明的目的是构建一种3D花状Zn3In2S6@Bi2O4/β-Bi2O3双Z型异质结光电催化剂,用于高效还原高毒性的Cr(VI)为无毒的Cr(III),为含铬废水的处理提供理论基础,有助于推动光电催化技术在环境修复领域的应用。
为了实现上述目的,本发明采用的技术方案是:3D花状Zn3In2S6@Bi2O4/β-Bi2O3双Z型异质结光电催化剂,制备方法包括如下步骤:将Bi(NO3)3·5H2O溶解在苯甲醇中,搅拌10-20min后,加入Zn3In2S6,超声10-20min后,再搅拌50min,将所得混合溶液转移到聚四氟乙烯衬里的不锈钢高压釜中,进行水热反应,反应结束后自然冷却至环境温度,产物用蒸馏水和无水乙醇洗涤,真空干燥后放入马弗炉中,于300-350℃保持5小时,得3D花状Zn3In2S6@Bi2O4/β-Bi2O3双Z型异质结光电催化剂。
进一步的,所述Zn3In2S6的制备方法包括如下步骤:将ZnSO4·7H2O和硫代乙酰胺溶于去离子水中后,加入InCl3水溶液,搅拌30-40min,所得混合溶液转移至高压釜中在160℃水热反应12h,洗涤,干燥,得到Zn3In2S6
进一步的,所述水热反应是,在120℃下水热反应24h。
本发明提供的3D花状Zn3In2S6@Bi2O4/β-Bi2O3双Z型异质结光电催化剂在光电催化Cr(VI)还原为Cr(III)中的应用。
进一步的,方法如下:将Zn3In2S6@Bi2O4/β-Bi2O3涂覆在导电玻璃上作为工作电极,铂片为对电极,Ag/AgCl为参比电极组成三电极体系,将三电极体系置于含Cr(VI)的电解质溶液中,进行光电催化还原。
进一步的,光电催化还原的条件为:偏压为-0.6V,光源为300W氙灯(λ>420 nm),平均光强为100mW·cm-2
进一步的,所述电解质溶液是pH=3.0-5.0的浓度为0.1mol L-1的Na2SO4电解质溶液。
更进一步的,所述电解质溶液是pH=3.0的浓度为0.1mol L-1的Na2SO4电解质溶液。
进一步的,调节含Cr(VI)的电解质溶液中,Cr(VI)的浓度为3-4mg·L-1,每50mL含Cr(VI)的电解质溶液中加入2-5mg Zn3In2S6@Bi2O4/β-Bi2O3
本发明的有益效果是:
1、Zn3In2S6、Bi2O4和β-Bi2O3三种半导体都是非常优秀的n型半导体,具有合适的带隙宽度和良好的稳定性,本发明成功将n型半导体Bi2O4和β-Bi2O3纳米粒子负载到三维花状Zn3In2S6上,形成稳定的n-n-n三元异质结。该复合材料具有大的比表面积,超高的可见光吸收能力,增强的电子-空穴对分离效率,展现了优异的可见光催化性能。并且,通过材料的能带结构及能带弯曲理论推断,该Zn3In2S6@Bi2O4/β-Bi2O3异质结的光催化过程是一种新颖的双Z型载流子传导方式。
2、本发明设计并构建的三维分级结构的花状Zn3In2S6@Bi2O4/β-Bi2O3三元半导体异质结。由二维纳米片自组装形成的三维花状结构,不仅具有大的比表面积及丰富的多孔结构,而且利于入射光在材料表面和内部的多次反射和散射,从而提高了对可见光的利用率。在可见光照射下,构建的Zn3In2S6@Bi2O4/β-Bi2O3异质结材料对Cr(VI)展现了较好的催化还原效果(>80%)。
3、本发明Zn3In2S6@Bi2O4/β-Bi2O3复合材料形成了双Z型电荷传导路径,不仅有效抑制光生电子-空穴对的复合,还保留半导体材料突出的氧化还原能力。
附图说明
图1是Zn3In2S6(a)和Zn3In2S6@Bi2O4/β-Bi2O3(b)的SEM图。
图2是Bi2O4/β-Bi2O3,Zn3In2S6和Zn3In2S6@Bi2O4/β-Bi2O3的XRD图。
图3是Bi2O4/β-Bi2O3,Zn3In2S6和Zn3In2S6@Bi2O4/β-Bi2O3催化活性对比图。
图4是Zn3In2S6@Bi2O4/β-Bi2O3在纯光、纯电、光/电协同作用下及在无催化剂条件下还原效果对比。
图5是溶液的pH对催化还原Cr(VI)活性的影响。
图6是不同Zn3In2S6@Bi2O4/β-Bi2O3用量对Cr(VI)还原效果的影响(pH=3)。
图7是本发明Zn3In2S6@Bi2O4/β-Bi2O3光电催化Cr(VI)还原为Cr(III)的反应动力曲线。
图8是Zn3In2S6@Bi2O4/β-Bi2O3在光/电协同作用下催化Cr(VI)还原反应机理。
具体实施方式
实施例1 3D花状Zn3In2S6@Bi2O4/β-Bi2O3双Z型异质结光电催化剂 (一)制备方法如下:
1、0.5865g InCl3·4H2O溶于25mL去离子水,0.8711g ZnSO4·7H2O和0.4545g硫代乙酰胺溶于45mL去离子水,将两溶液合并后搅拌30min,将所得混合溶液转移至高压釜中在160℃水热反应12h,洗涤,干燥,得到黄色粉末状固体Zn3In2S6
2、将0.0312g Bi(NO3)3·5H2O溶解在30mL的苯甲醇中,搅拌10min后,加入0.0851gZn3In2S6,超声10min后,再搅拌50min。将所得混合溶液转移到聚四氟乙烯衬里的不锈钢高压釜,在120℃下水热反应24h,然后将反应釜自然冷却至环境温度。产物用蒸馏水和无水乙醇分别洗涤3次,真空干燥,然后在马弗炉中以5℃/min速度升温至300℃保持5小时,获得3D花状双Z型异质结光电催化剂Zn3In2S6@Bi2O4/β-Bi2O3
对比例——Bi2O4/β-Bi2O3复合物的制备:将0.0312g Bi(NO3)3·5H2O溶解在30mL的苯甲醇中,搅拌10min后,超声10min,再搅拌50min,将所得物转移到聚四氟乙烯衬里的不锈钢高压釜,在120℃下水热反应24h,然后将反应釜自然冷却至环境温度。产物用蒸馏水和无水乙醇分别洗涤3次,真空干燥,然后在马弗炉中以5℃/min速度升温至300℃保持 5小时,获得Bi2O4/β-Bi2O3复合物。
(二)检测
图1是Zn3In2S6(a)和Zn3In2S6@Bi2O4/β-Bi2O3(b)的SEM图。由图1中(a)可见,Zn3In2S6展现了由2D纳米片组成了3D分级花状结构,这种分层级结构有利于可见光的吸收及目标物/反应中间产物的传质。由图1中(b)可见,大量Bi2O4/β-Bi2O3纳米粒状被成功镶嵌在Zn3In2S6花片里,形成稳定的复合物。
图2是Bi2O4/β-Bi2O3,Zn3In2S6和Zn3In2S6@Bi2O4/β-Bi2O3的XRD图。由图2可见,在Bi2O4/β-Bi2O3的谱图中,2θ=29.35°,34.23°,41.34°,48.51°的衍射峰归因于Bi2O4(JCPDSno.50-0864),2θ=24.04°,28.34°,32.09°,45.71°,54.69°,58.94°处的衍射峰归因于β-Bi2O3(JCPDS no.78-1793)。对于单独的Zn3In2S6样品,其2θ=28.23°,46.92°和56.44°处的衍射峰归因于Zn3In2S6(JCPDS no.65-4003)。Bi2O4/β-Bi2O3结构在Zn3In2S6@Bi2O4/β- Bi2O3复合材料中仅显示了较弱的特征峰,这是因为在该复合材料中的含量较低。
实施例2 Zn3In2S6@Bi2O4/β-Bi2O3光电催化剂在光电催化Cr(VI)还原为Cr(III)中的应用 (一)催化活性评价
方法:将K2Cr2O7溶解于浓度为0.1mol L-1,pH=3.0的Na2SO4电解质溶液中,获得Cr(VI)浓度为3.5mg·L-1的Cr(VI)电解质溶液。将3mg Zn3In2S6@Bi2O4/β-Bi2O3涂覆在导电玻璃上作为工作电极,铂片为对电极,Ag/AgCl为参比电极组成三电极体系,偏压为- 0.6V,光源为300W氙灯(λ>420nm),平均光强为100mW·cm-2。将三电极体系置于50 mL浓度为3.5mg·L-1的Cr(VI)电解质溶液中,评价Zn3In2S6@Bi2O4/β-Bi2O3催化Cr(VI)还原为Cr(III)的活性。电/光开始前,在黑暗中搅拌20min以达吸附和解吸平衡。采用显色法在 540nm处的紫外可见吸收进行定量分析,每隔20min测定一次目标物浓度。
图3是Zn3In2S6、Bi2O4/β-Bi2O3和Zn3In2S6@Bi2O4/β-Bi2O3催化Cr(VI)还原为Cr(III)的对比图。由图3可见,相比于单独的Zn3In2S6和Bi2O4/β-Bi2O3,Zn3In2S6@Bi2O4/β-Bi2O3光电催化剂展示了更高的催化还原活性,在光电催化120min时,还原率达到81.2%。
(二)催化还原条件对Cr(VI)还原为Cr(III)的影响
方法同(一),分别对比了Zn3In2S6@Bi2O4/β-Bi2O3在单纯的光催化、电催化和在光电催化协同催化下,对Cr(VI)还原为Cr(III)的影响。
图4是Zn3In2S6@Bi2O4/β-Bi2O3在纯光、纯电、光/电协同作用下及在无催化剂条件下还原效果对比。由图4可见,在没有催化剂下Cr(VI)的还原效率很低,并且,相比于单纯的光催化和电催化,Zn3In2S6@Bi2O4/β-Bi2O3在光电催化协同作用下也展示了明显增强的催化活性,证明了光电的协同作用。
(三)pH对Cr(VI)还原为Cr(III)的影响
方法:将K2Cr2O7分别溶解于浓度为0.1mol L-1,pH=3.0、4.0、5.0的Na2SO4电解质溶液中,获得不同pH的Cr(VI)浓度为3.5mg·L-1的Cr(VI)电解质溶液。将3mg Zn3In2S6@Bi2O4/β-Bi2O3涂覆在导电玻璃上作为工作电极,铂片为对电极,Ag/AgCl为参比电极组成三电极体系,偏压为-0.6V,光源为300W氙灯(λ>420nm),平均光强为100 mW·cm-2,将三电极体系置于50mL浓度为3.5mg·L-1的Cr(VI)电解质溶液中,评价Zn3In2S6@Bi2O4/β-Bi2O3催化Cr(VI)还原为Cr(III)的活性。电/光开始前,在黑暗中搅拌20 min以达吸附和解吸平衡。采用显色法在540nm处的紫外可见吸收进行定量分析,每隔 20min测定一次目标物浓度。
图5是溶液pH对催化还原Cr(VI)活性的影响。由图5可见,pH值对Cr(VI)还原有明显影响,pH=5时,还原效率较低,随着pH值降低催化活性明显增强,说明酸性条件有利于Cr(VI)的还原,本发明优选,采用pH=3作为优选条件。
(四)不同Zn3In2S6@Bi2O4/β-Bi2O3用量对Cr(VI)还原效果的影响(pH=3)
方法:将K2Cr2O7溶解于浓度为0.1mol L-1,pH=3.0的Na2SO4电解质溶液中,获得Cr(VI)浓度为3.5mg·L-1的Cr(VI)电解质溶液。分别将2mg、3mg、4mg和5mg Zn3In2S6@Bi2O4/β-Bi2O3涂覆在导电玻璃上作为工作电极,铂片为对电极,Ag/AgCl为参比电极组成三电极体系,偏压为-0.6V,光源为300W氙灯(λ>420nm),平均光强为100 mW·cm-2,将三电极体系置于50mL浓度为3.5mg·L-1的Cr(VI)电解质溶液中,评价Zn3In2S6@Bi2O4/β-Bi2O3催化Cr(VI)还原为Cr(III)的活性。电/光开始前,在黑暗中搅拌20 min以达吸附和解吸平衡。采用显色法在540nm处的紫外可见吸收进行定量分析,每隔 20min测定一次目标物浓度。
图6是不同Zn3In2S6@Bi2O4/β-Bi2O3用量对Cr(VI)还原效果的影响(pH=3)。由图6可见,催化剂用量从2mg增大到3mg时,催化活性得到了明显提升,进一步增大催化剂用量,催化活性没有提升,而是些微降低,这可能是由于过多的催化剂降低了光的吸收及电荷传导速率,本发明优选每50mL浓度为3.5mg·L-1的Cr(VI)的溶液中加入3mg Zn3In2S6@Bi2O4/β-Bi2O3作为工作电极。
图7是本发明Zn3In2S6@Bi2O4/β-Bi2O3光电催化Cr(VI)还原为Cr(III)的反应动力曲线。由图7可见,表明该反应过程符合准一级动力学,相比于纯光和纯电条件, Zn3In2S6@Bi2O4/β-Bi2O3在光电协同作用下展现了更高的速率常数(速率常数为k=0.01196 min-1)。
图8是Zn3In2S6@Bi2O4/β-Bi2O3在光/电协同作用下催化Cr(VI)还原反应机理。Zn3In2S6、Bi2O4及β-Bi2O3三种半导体均是n-型半导体,根据其带隙结构及能带弯曲理论,Zn3In2S6、Bi2O4及β-Bi2O3组成的三元异质结更易形成双Z型电荷传导模式,使复合材料具有更高的催化氧化/还原能力及更好的电荷分离效率。

Claims (7)

1.3D花状Zn3In2S6@Bi2O4/β-Bi2O3双Z型异质结光电催化剂,其特征在于,制备方法包括如下步骤:将Bi(NO3)3·5H2O溶解在苯甲醇中,搅拌10-20 min后,加入Zn3In2S6,超声10-20min后,再搅拌50 min,将所得混合溶液转移到聚四氟乙烯衬里的不锈钢高压釜中,在120℃下水热反应24h,反应结束后自然冷却至环境温度,产物用蒸馏水和无水乙醇洗涤,真空干燥后放入马弗炉中,于300-350 ℃保持5小时,得3D花状Zn3In2S6@Bi2O4/β-Bi2O3双Z型异质结光电催化剂。
2.根据权利要求1所述的3D花状Zn3In2S6@Bi2O4/β-Bi2O3双Z型异质结光电催化剂,其特征在于,所述Zn3In2S6的制备方法包括如下步骤:将ZnSO4·7H2O和硫代乙酰胺溶于去离子水中后,加入InCl3水溶液,搅拌30-40 min,所得混合溶液转移至高压釜中在160 ℃水热反应12 h,洗涤,干燥,得到Zn3In2S6
3.权利要求1所述的3D花状Zn3In2S6@Bi2O4/β-Bi2O3双Z型异质结光电催化剂在光电催化Cr(VI)还原为Cr(III)中的应用。
4.根据权利要求3所述的应用,其特征在于,方法如下:将Zn3In2S6@Bi2O4/β-Bi2O3涂覆在导电玻璃上作为工作电极,铂片为对电极,Ag/AgCl为参比电极组成三电极体系,将三电极体系置于含Cr(VI)的电解质溶液中,进行光电催化还原。
5.根据权利要求4所述的应用,其特征在于,光电催化还原的条件为:偏压为-0.6V,光源为 300 W 氙灯,λ> 420 nm,平均光强为100 mW·cm-2
6.根据权利要求4或5所述的应用,其特征在于,所述电解质溶液是pH=3.0的浓度为0.1mol·L-1的Na2SO4电解质溶液。
7.根据权利要求4或5所述的应用,其特征在于,调节含Cr(VI)的电解质溶液中,Cr(VI)的浓度为3-4mg·L-1,每50 mL含Cr(VI)的电解质溶液中加入2-5 mg Zn3In2S6@Bi2O4/β-Bi2O3
CN202111373527.5A 2021-11-19 2021-11-19 3D花状Zn3In2S6@Bi2O4/β-Bi2O3双Z型异质结光电催化剂及应用 Active CN114011398B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111373527.5A CN114011398B (zh) 2021-11-19 2021-11-19 3D花状Zn3In2S6@Bi2O4/β-Bi2O3双Z型异质结光电催化剂及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111373527.5A CN114011398B (zh) 2021-11-19 2021-11-19 3D花状Zn3In2S6@Bi2O4/β-Bi2O3双Z型异质结光电催化剂及应用

Publications (2)

Publication Number Publication Date
CN114011398A CN114011398A (zh) 2022-02-08
CN114011398B true CN114011398B (zh) 2023-01-17

Family

ID=80065083

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111373527.5A Active CN114011398B (zh) 2021-11-19 2021-11-19 3D花状Zn3In2S6@Bi2O4/β-Bi2O3双Z型异质结光电催化剂及应用

Country Status (1)

Country Link
CN (1) CN114011398B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114405499B (zh) * 2022-02-14 2023-09-26 辽宁石油化工大学 一种铋氧化物及其制备方法和应用
CN114700087B (zh) * 2022-04-28 2023-09-29 广西大学 一种高效可见光光催化材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106732524A (zh) * 2017-02-24 2017-05-31 云南大学 一种α/β‑氧化铋相异质结光催化剂及其制法和用途
CN109589989A (zh) * 2018-12-19 2019-04-09 江苏大学 ZnIn2S4纳米片包裹β-Bi2O3核壳异质复合光催化剂及其制备方法和应用
CN110563036A (zh) * 2019-10-10 2019-12-13 中国科学技术大学 一种富含氧空位的氧化铋纳米材料及其制备方法
CN112657515A (zh) * 2021-01-04 2021-04-16 辽宁大学 3D花状Z型异质结光电催化剂Zn3In2S6@α-Fe2O3及其制备方法和应用
CN113351226A (zh) * 2021-06-12 2021-09-07 景德镇陶瓷大学 一种负载花瓣状ZnIn2S4的氧化铋复合可见光催化材料的制备方法及其制得的产品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106732524A (zh) * 2017-02-24 2017-05-31 云南大学 一种α/β‑氧化铋相异质结光催化剂及其制法和用途
CN109589989A (zh) * 2018-12-19 2019-04-09 江苏大学 ZnIn2S4纳米片包裹β-Bi2O3核壳异质复合光催化剂及其制备方法和应用
CN110563036A (zh) * 2019-10-10 2019-12-13 中国科学技术大学 一种富含氧空位的氧化铋纳米材料及其制备方法
CN112657515A (zh) * 2021-01-04 2021-04-16 辽宁大学 3D花状Z型异质结光电催化剂Zn3In2S6@α-Fe2O3及其制备方法和应用
CN113351226A (zh) * 2021-06-12 2021-09-07 景德镇陶瓷大学 一种负载花瓣状ZnIn2S4的氧化铋复合可见光催化材料的制备方法及其制得的产品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"In situ synthesis of α-β phase heterojunction on Bi2O3 nanowireswith exceptional visible-light photocatalytic performance";Jungang Hou et al.;《Applied Catalysis B: Environmental》;20130530;第142-143卷;摘要和实验部分 *

Also Published As

Publication number Publication date
CN114011398A (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
CN114011398B (zh) 3D花状Zn3In2S6@Bi2O4/β-Bi2O3双Z型异质结光电催化剂及应用
Chen et al. Synergy effect between adsorption and heterogeneous photo-Fenton-like catalysis on LaFeO3/lignin-biochar composites for high efficiency degradation of ofloxacin under visible light
Fang et al. Facile synthesis of anatase/rutile TiO2/g-C3N4 multi-heterostructure for efficient photocatalytic overall water splitting
Li et al. The enhanced photo-catalytic CO2 reduction performance of g-C3N4 with high selectivity by coupling CoNiSx
Han et al. Visible-light-enhanced Cr (VI) reduction at Pd-decorated silicon nanowire photocathode in photoelectrocatalytic microbial fuel cell
Huang et al. Broad spectrum response flower spherical-like composites CQDs@ CdIn2S4/CdS modified by CQDs with up-conversion property for photocatalytic degradation and water splitting
CN110773213B (zh) 一维硫化镉/二维碳化钛复合光催化剂及其制备方法与应用
CN111389442B (zh) 负载于泡沫镍表面的p-n异质结复合材料及其制备方法与应用
CN103506142B (zh) 一种二硫化钼/磷酸银复合可见光光催化材料及其制备方法
Guo et al. Review on the advancement of SnS 2 in photocatalysis
CN108043436A (zh) 碳化钼/硫铟锌复合光催化剂的制备方法及其应用
CN105854865B (zh) 一种三维多孔结构石墨烯-二氧化铈复合物光催化剂
CN107761127B (zh) 一种多酸和酞菁共同修饰的纳米多孔钒酸铋析氧电极的制备方法
Tan et al. Visible-light-responsive BiVO4/NH2-MIL-125 (Ti) Z-scheme heterojunctions with enhanced photoelectrocatalytic degradation of phenol
Guo et al. Progress on simultaneous photocatalytic degradation of pollutants and production of clean energy: A review
CN111437840B (zh) 3D分级花状MoS2@CoMoS4 Z型异质结构光电催化剂及其制备方法和应用
CN111172559B (zh) 一种超薄水滑石基复合光电极及其光电分解水耦合有机物氧化反应的应用
CN112657515B (zh) 3D花状Z型异质结光电催化剂Zn3In2S6@α-Fe2O3及其制备方法和应用
CN107376950B (zh) 一种纳米复合光催化薄膜材料及其制备方法
Zheng et al. Interaction between InP and SnO2 on TiO2 nanotubes for photoelectrocatalytic reduction of CO2
Tan et al. Fabrication of visible-light-active Fe-2MI film electrode for simultaneous removal of Cr (VI) and phenol
Tripathi et al. A donor-acceptor self-assembled graphitic carbon nitride based EB-T photocatalytic system for generation and regeneration of C (sp3) F bond and NADH under sunlight
Liu et al. Bi3. 64Mo0. 36O6. 55 nanoparticles anchored in BiOI: A pn heterojunction photocatalyst to enhance water purification
CN111468138B (zh) 一维棒状CuBi2O4@CuBi2S4可见光催化剂及其制备方法和应用
CN111921558B (zh) 一种可见光响应的MIL-125/BiOBr复合催化剂及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant