CN113999013A - 一种反应热压烧结法低温制备碳氮化物-硅化物固溶体复相陶瓷的方法 - Google Patents

一种反应热压烧结法低温制备碳氮化物-硅化物固溶体复相陶瓷的方法 Download PDF

Info

Publication number
CN113999013A
CN113999013A CN202111293798.XA CN202111293798A CN113999013A CN 113999013 A CN113999013 A CN 113999013A CN 202111293798 A CN202111293798 A CN 202111293798A CN 113999013 A CN113999013 A CN 113999013A
Authority
CN
China
Prior art keywords
temperature
carbonitride
powder
solid solution
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111293798.XA
Other languages
English (en)
Inventor
魏博鑫
张孟孟
李学问
房文斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN202111293798.XA priority Critical patent/CN113999013A/zh
Publication of CN113999013A publication Critical patent/CN113999013A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • C04B35/58021Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON based on titanium carbonitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3856Carbonitrides, e.g. titanium carbonitride, zirconium carbonitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

一种反应热压烧结法低温制备碳氮化物‑硅化物固溶体复相陶瓷的方法。本发明属于复相陶瓷材料领域。本发明的目的是为了解决现有复相陶瓷的烧结性和高温性能差的技术问题。方法:步骤1:将碳化物粉体、碳氮化物粉体和硅粉体混合,球磨,得到复合粉体;步骤2:将步骤1得到的复合粉体进行烧结,得到碳氮化物‑硅化物固溶体复相陶瓷。本发明选择能够发生固相交换的第四副族碳化物和碳氮化物,充分利用原始粉末在烧结过程中固相反应及其固溶耦合协同过程,可形成阴阳离子双重固溶体或分相固溶体,与传统手段相比本发明能够降低烧结温度300℃~500℃。且较低的烧结温度保证了经此方法制备的材料具有细小平均晶粒尺寸,并使得其强度和硬度均得到显著提升。

Description

一种反应热压烧结法低温制备碳氮化物-硅化物固溶体复相 陶瓷的方法
技术领域
本发明属于复相陶瓷材料领域,具体涉及一种反应热压烧结法低温制备碳氮化物-硅化物固溶体复相陶瓷的方法。
背景技术
第四副族金属碳化物(MC,如TiC,ZrC,HfC)具有优异的物理和化学性能,如高熔点、高硬度、高模量,良好的耐磨性、抗腐蚀性和抗热震性。然而,由于MC具有强共价键和低扩散系数,并且在烧结过程中缺乏液相传质,只能利用固相扩散进行传质,因此在不使用烧结助剂情况下,想要在低温(<2000℃)下制备出具有较高的相对致密度(>98%)的MC几乎不可能实现,因此导致其使用受到限制。
近年来,人们已经做出许多努力来提高第四副族金属碳化物陶瓷的可烧结性,但是引入不同的添加剂会损伤材料固有性能,且烧结材料依然常出现获得的微观结构与性能不理想、自身烧结温度高,以及高温性能差等问题,因此面对日益迫切的高性能需求,制备出优异的钛副族复相固溶体陶瓷对于复合材料领域具有重要意义。
发明内容
本发明的目的是为了解决现有复相陶瓷的烧结性和高温性能差的技术问题,而提供一种反应热压烧结法低温制备碳氮化物-硅化物固溶体复相陶瓷的方法。
本发明的一种反应热压烧结法低温制备碳氮化物-硅化物固溶体复相陶瓷的方法按以下步骤进行:
步骤1:将碳化物粉体、碳氮化物粉体和硅粉体混合,球磨,得到复合粉体;
步骤2:将步骤1得到的复合粉体进行烧结,所述烧结的具体过程为:在真空条件下,以15℃/min~25℃/min的升温速率匀速升温,当温度达到1200~1500℃时以2MPa/min~4MPa/min的速度进行加压,当温度达到1400~1700℃,压力达到25MPa~35MPa后停止升温和加压,并在该温度和压力下保温保压50min~70min,得到碳氮化物-硅化物固溶体复相陶瓷。
进一步限定,步骤1中所述碳化物粉体为碳化钛粉体、碳化锆粉体或碳化铪粉体。
进一步限定,步骤1中所述碳氮化物粉体为碳氮化钛粉体、碳氮化锆粉体或碳氮化铪粉体。
进一步限定,步骤1中所述碳化物粉体的粒径为0.10μm~0.35μm。
进一步限定,步骤1中所述碳氮化物粉体的粒径为0.10μm~0.30μm。
进一步限定,步骤1中所述硅粉体的粒径为2.0μm~5.0μm。
进一步限定,步骤1中所述球磨的磨球为硬质合金,球料比为(5~50):1,球磨转速为200rpm~300rpm,球磨时间为5h~30h。
进一步限定,步骤1中所述复合粉体(以摩尔百分含量为100%计)中碳化物粉体的摩尔质量分数为45%~91%,碳氮化物粉体的摩尔质量分数为4%~48%,硅粉体的摩尔质量分数为5%~20%。
进一步限定,步骤2中所述烧结的具体过程为:在真空条件下,以20℃/min的升温速率匀速升温,当温度达到1300℃时以3MPa/min的速度进行加压,当温度达到1500℃,压力达到30MPa后停止升温和加压,并在该温度和压力下保温保压60min。
进一步限定,步骤2中所述烧结的具体过程为:在真空条件下,以20℃/min的升温速率匀速升温,当温度达到1400℃时以3MPa/min的速度进行加压,当温度达到1600℃,压力达到30MPa后停止升温和加压,并在该温度和压力下保温保压60min。
本发明与现有技术相比具有的显著效果:
1)本发明选择能够发生固相交换的第四副族碳化物和碳氮化物,充分利用原始粉末在烧结过程中固相反应及其固溶耦合协同过程,可形成阴阳离子双重固溶体(如(Zr,Ti)(C,N))或分相固溶体(如(Zr,Ti)(C,N)+(Ti,Zr)(C,N));
2)本发明通过加入的硅单质在烧结过程中使基体中产生C空位,促进物质扩散并降低临界剪切应力,且Si在烧结过程中形成液相增强物质传输并促进物质间的相互反应;
3)本发明的制备方法将原始粉末采用行星式高能球磨工艺进行研磨制备复合粉体,增加粉体颗粒的比表面积,降低反应活化能并起到细化晶粒的作用。
4)本发明的方法与传统手段相比,能够降低烧结温度300℃~500℃。且较低的烧结温度保证了经此方法制备的材料具有细小平均晶粒尺寸,并使得其强度和硬度均得到显著提升。
附图说明
图1为实施例1的碳氮化物-硅化物固溶体复相陶瓷的XRD图谱;
图2为实施例1的碳氮化物-硅化物固溶体复相陶瓷的断口SEM照片;
图3为图2中A处的元素含量图;
图4为图2中B处的元素含量图;
图5为实施例1的碳氮化物-硅化物固溶体复相陶瓷的断口EDS面扫照片;
图6为实施例5的碳氮化物-硅化物固溶体复相陶瓷的XRD图谱;
图7为实施例5的碳氮化物-硅化物固溶体复相陶瓷的断口SEM照片;
图8为图7中C处的元素含量图;
图9为图7中D处的元素含量图;
图10为实施例5的碳氮化物-硅化物固溶体复相陶瓷的断口EDS面扫照片。
具体实施方式
实施例1:本实施例的一种反应热压烧结法低温制备碳氮化物-硅化物固溶体复相陶瓷的方法按以下步骤进行:
步骤1:将碳化锆粉体、碳氮化钛粉体和硅粉体按摩尔比为81:9:10混合,使用行星式高能球磨机进行球磨,磨球为硬质合金,球料比为30:1,球磨转速为250rpm,球磨时间为24h,得到复合粉体;所述碳化物粉体的平均粒径为0.25μm,所述碳氮化物粉体的平均粒径为0.23μm,所述硅粉体的平均粒径为2.8μm;
步骤2:将步骤1得到的复合粉体进行烧结,所述烧结的具体过程为:在真空条件下,以20℃/min的升温速率匀速升温,当温度达到1300℃时以3MPa/min的速度进行加压,当温度达到1500℃,压力达到30MPa后停止升温和加压,并在该温度和压力下保温保压60min,得到(Zr,Ti)(C,N)-SiC固溶体复相陶瓷。
实施例2:本实施例的一种反应热压烧结法低温制备碳氮化物-硅化物固溶体复相陶瓷的方法按以下步骤进行:
步骤1:将碳化锆粉体、碳氮化钛粉体和硅粉体按摩尔比为72:8:20混合,使用行星式高能球磨机进行球磨,磨球为硬质合金,球料比为30:1,球磨转速为250rpm,球磨时间为24h,得到复合粉体;所述碳化物粉体的平均粒径为0.25μm,所述碳氮化物粉体的平均粒径为0.23μm,所述硅粉体的平均粒径为2.8μm;
步骤2:将步骤1得到的复合粉体进行烧结,所述烧结的具体过程为:在真空条件下,以20℃/min的升温速率匀速升温,当温度达到1300℃时以3MPa/min的速度进行加压,当温度达到1500℃,压力达到30MPa后停止升温和加压,并在该温度和压力下保温保压60min,得到对(Zr,Ti)(C,N)-SiC-ZrSi固溶体复相陶瓷。
实施例3:本实施例的一种反应热压烧结法低温制备碳氮化物-硅化物固溶体复相陶瓷的方法按以下步骤进行:
步骤1:将碳化锆粉体、碳氮化钛粉体和硅粉体按摩尔比为90.25:4.75:5混合,使用行星式高能球磨机进行球磨,磨球为硬质合金,球料比为30:1,球磨转速为250rpm,球磨时间为24h,得到复合粉体;所述碳化物粉体的平均粒径为0.25μm,所述碳氮化物粉体的平均粒径为0.23μm,所述硅粉体的平均粒径为2.8μm;
步骤2:将步骤1得到的复合粉体进行烧结,所述烧结的具体过程为:在真空条件下,以20℃/min的升温速率匀速升温,当温度达到1300℃时以3MPa/min的速度进行加压,当温度达到1500℃,压力达到30MPa后停止升温和加压,并在该温度和压力下保温保压60min,得到(Zr,Ti)(C,N)-SiC-ZrSi固溶体复相陶瓷。
实施例4:本实施例的一种反应热压烧结法低温制备碳氮化物-硅化物固溶体复相陶瓷的方法按以下步骤进行:
步骤1:将碳化锆粉体、碳氮化钛粉体和硅粉体按摩尔比为85.5:4.5:10混合,使用行星式高能球磨机进行球磨,磨球为硬质合金,球料比为30:1,球磨转速为250rpm,球磨时间为24h,得到复合粉体;所述碳化物粉体的平均粒径为0.25μm,所述碳氮化物粉体的平均粒径为0.23μm,所述硅粉体的平均粒径为2.8μm;
步骤2:将步骤1得到的复合粉体进行烧结,所述烧结的具体过程为:在真空条件下,以20℃/min的升温速率匀速升温,当温度达到1300℃时以3MPa/min的速度进行加压,当温度达到1500℃,压力达到30MPa后停止升温和加压,并在该温度和压力下保温保压60min,得到(Zr,Ti)(C,N)-SiC-ZrSi固溶体复相陶瓷。
实施例5:本实施例的一种反应热压烧结法低温制备碳氮化物-硅化物固溶体复相陶瓷的方法按以下步骤进行:
步骤1:将碳化锆粉体、碳氮化钛粉体和硅粉体按摩尔比为47.5:47.5:5混合,使用行星式高能球磨机进行球磨,磨球为硬质合金,球料比为30:1,球磨转速为250rpm,球磨时间为24h,得到复合粉体;所述碳化物粉体的平均粒径为0.25μm,所述碳氮化物粉体的平均粒径为0.23μm,所述硅粉体的平均粒径为2.8μm;
步骤2:将步骤1得到的复合粉体进行烧结,所述烧结的具体过程为:在真空条件下,以20℃/min的升温速率匀速升温,当温度达到1300℃时以3MPa/min的速度进行加压,当温度达到1500℃,压力达到30MPa后停止升温和加压,并在该温度和压力下保温保压60min,得到(Zr,Ti)(C,N)-(Ti,Zr)(C,N)-SiC固溶体复相陶瓷。
实施例6:本实施例的一种反应热压烧结法低温制备碳氮化物-硅化物固溶体复相陶瓷的方法按以下步骤进行:
步骤1:将碳化锆粉体、碳氮化钛粉体和硅粉体按摩尔比为45:45:10混合,使用行星式高能球磨机进行球磨,磨球为硬质合金,球料比为30:1,球磨转速为250rpm,球磨时间为24h,得到复合粉体;所述碳化物粉体的平均粒径为0.25μm,所述碳氮化物粉体的平均粒径为0.23μm,所述硅粉体的平均粒径为2.8μm;
步骤2:将步骤1得到的复合粉体进行烧结,所述烧结的具体过程为:在真空条件下,以20℃/min的升温速率匀速升温,当温度达到1300℃时以3MPa/min的速度进行加压,当温度达到1500℃,压力达到30MPa后停止升温和加压,并在该温度和压力下保温保压60min,得到(Zr,Ti)(C,N)-(Ti,Zr)(C,N)-SiC固溶体复相陶瓷。
实施例7:本实施例的一种反应热压烧结法低温制备碳氮化物-硅化物固溶体复相陶瓷的方法按以下步骤进行:
步骤1:将碳化钛粉体、碳氮化锆粉体和硅粉体按摩尔比为47.5:47.5:5混合,使用行星式高能球磨机进行球磨,磨球为硬质合金,球料比为30:1,球磨转速为250rpm,球磨时间为24h,得到复合粉体;所述碳化物粉体的平均粒径为0.23μm,所述碳氮化物粉体的平均粒径为0.26μm,所述硅粉体的平均粒径为2.8μm;
步骤2:将步骤1得到的复合粉体进行烧结,所述烧结的具体过程为:在真空条件下,以20℃/min的升温速率匀速升温,当温度达到1500℃时以3MPa/min的速度进行加压,当温度达到1700℃,压力达到30MPa后停止升温和加压,并在该温度和压力下保温保压60min,得到(Ti,Zr)(C,N)-(Zr,Ti)(C,N)-SiC固溶体复相陶瓷。
实施例8:本实施例的一种反应热压烧结法低温制备碳氮化物-硅化物固溶体复相陶瓷的方法按以下步骤进行:
步骤1:将碳化钛粉体、碳氮化锆粉体和硅粉体按摩尔比为45:45:10混合,使用行星式高能球磨机进行球磨,磨球为硬质合金,球料比为30:1,球磨转速为250rpm,球磨时间为24h,得到复合粉体;所述碳化物粉体的平均粒径为0.23μm,所述碳氮化物粉体的平均粒径为0.26μm,所述硅粉体的平均粒径为2.8μm;
步骤2:将步骤1得到的复合粉体进行烧结,所述烧结的具体过程为:在真空条件下,以20℃/min的升温速率匀速升温,当温度达到1400℃时以3MPa/min的速度进行加压,当温度达到1600℃,压力达到30MPa后停止升温和加压,并在该温度和压力下保温保压60min,得到(Ti,Zr)(C,N)-(Zr,Ti)(C,N)-SiC固溶体复相陶瓷。
实施例9:本实施例的一种反应热压烧结法低温制备碳氮化物-硅化物固溶体复相陶瓷的方法按以下步骤进行:
步骤1:将碳化钛粉体、碳氮化锆粉体和硅粉体按摩尔比为81:9:10混合,使用行星式高能球磨机进行球磨,磨球为硬质合金,球料比为30:1,球磨转速为250rpm,球磨时间为24h,得到复合粉体;所述碳化物粉体的平均粒径为0.23μm,所述碳氮化物粉体的平均粒径为0.26μm,所述硅粉体的平均粒径为2.8μm;
步骤2:将步骤1得到的复合粉体进行烧结,所述烧结的具体过程为:在真空条件下,以20℃/min的升温速率匀速升温,当温度达到1400℃时以3MPa/min的速度进行加压,当温度达到1600℃,压力达到30MPa后停止升温和加压,并在该温度和压力下保温保压60min,得到(Ti,Zr)(C,N)-SiC固溶体复相陶瓷。
检测试验:
(一)对实施例1-9所得固溶体复相陶瓷进行力学性能表征,使用尺寸为2×4×20mm3的试样,在跨距为16mm、压头速度为0.5mm/min的Instron-5500机器上,通过三点弯曲实验测量弯曲强度。结果表明如表1所示。
(二)维氏硬度使用维氏硬度计进行测试,载荷为9.8N,保压时间为10s。结果表明如表1所示。
(三)固溶体复相陶瓷的实际密度(ρ)采用阿基米德排水法测定,理论密度(ρ)采用混合物法则计算,固溶体复相陶瓷的相对致密度为实际密度与理论密度之比。结果表明如表1所示。
表1实施例1-9样品性能检测数据
抗弯强度(MPa) 硬度(GPa) 相对致密度(%)
实施例1 436±35 21.03±0.8 98.99
实施例2 458±19 20.89±0.75 99.74
实施例3 522±20 19.56±0.74 98.50
实施例4 454±4 21.3±0.46 99.02
实施例5 422±33 24.51±0.69 99.89
实施例6 435±28 22.37±0.49 98.96
实施例7 446±17 23.58±0.62 98.88
实施例8 460±23 22.64±0.57 99.34
实施例9 449±25 19.82±0.65 99.42

Claims (10)

1.一种反应热压烧结法低温制备碳氮化物-硅化物固溶体复相陶瓷的方法,其特征在于,该方法按以下步骤进行:
步骤1:将碳化物粉体、碳氮化物粉体和硅粉体混合,球磨,得到复合粉体;
步骤2:将步骤1得到的复合粉体进行烧结,所述烧结的具体过程为:在真空条件下,以15℃/min~25℃/min的升温速率匀速升温,当温度达到1200~1500℃时以2MPa/min~4MPa/min的速度进行加压,当温度达到1400~1700℃,压力达到25MPa~35MPa后停止升温和加压,并在该温度和压力下保温保压50min~70min,得到碳氮化物-硅化物固溶体复相陶瓷。
2.根据权利要求1所述的一种反应热压烧结法低温制备碳氮化物-硅化物固溶体复相陶瓷的方法,其特征在于,步骤1中所述碳化物粉体为碳化钛粉体、碳化锆粉体或碳化铪粉体。
3.根据权利要求1所述的一种反应热压烧结法低温制备碳氮化物-硅化物固溶体复相陶瓷的方法,其特征在于,步骤1中所述碳氮化物粉体为碳氮化钛粉体、碳氮化锆粉体或碳氮化铪粉体。
4.根据权利要求1所述的一种反应热压烧结法低温制备碳氮化物-硅化物固溶体复相陶瓷的方法,其特征在于,步骤1中所述碳化物粉体的粒径为0.10μm~0.35μm。
5.根据权利要求1所述的一种反应热压烧结法低温制备碳氮化物-硅化物固溶体复相陶瓷的方法,其特征在于,步骤1中所述碳氮化物粉体的粒径为0.10μm~0.30μm。
6.根据权利要求1所述的一种反应热压烧结法低温制备碳氮化物-硅化物固溶体复相陶瓷的方法,其特征在于,步骤1中所述硅粉体的粒径为2.0μm~5.0μm。
7.根据权利要求1所述的一种反应热压烧结法低温制备碳氮化物-硅化物固溶体复相陶瓷的方法,其特征在于,步骤1中所述球磨的磨球为硬质合金,球料比为(5~50):1,球磨转速为200rpm~300rpm,球磨时间为5h~30h。
8.根据权利要求1所述的一种反应热压烧结法低温制备碳氮化物-硅化物固溶体复相陶瓷的方法,其特征在于,步骤1中所述复合粉体中碳化物粉体的摩尔质量分数为45%~91%,碳氮化物粉体的摩尔质量分数为4%~48%,硅粉体的摩尔质量分数为5%~20%。
9.根据权利要求1所述的一种反应热压烧结法低温制备碳氮化物-硅化物固溶体复相陶瓷的方法,其特征在于,步骤2中所述烧结的具体过程为:在真空条件下,以20℃/min的升温速率匀速升温,当温度达到1300℃时以3MPa/min的速度进行加压,当温度达到1500℃,压力达到30MPa后停止升温和加压,并在该温度和压力下保温保压60min。
10.根据权利要求1所述的一种反应热压烧结法低温制备碳氮化物-硅化物固溶体复相陶瓷的方法,其特征在于,步骤2中所述烧结的具体过程为:在真空条件下,以20℃/min的升温速率匀速升温,当温度达到1400℃时以3MPa/min的速度进行加压,当温度达到1600℃,压力达到30MPa后停止升温和加压,并在该温度和压力下保温保压60min。
CN202111293798.XA 2021-11-03 2021-11-03 一种反应热压烧结法低温制备碳氮化物-硅化物固溶体复相陶瓷的方法 Pending CN113999013A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111293798.XA CN113999013A (zh) 2021-11-03 2021-11-03 一种反应热压烧结法低温制备碳氮化物-硅化物固溶体复相陶瓷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111293798.XA CN113999013A (zh) 2021-11-03 2021-11-03 一种反应热压烧结法低温制备碳氮化物-硅化物固溶体复相陶瓷的方法

Publications (1)

Publication Number Publication Date
CN113999013A true CN113999013A (zh) 2022-02-01

Family

ID=79926874

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111293798.XA Pending CN113999013A (zh) 2021-11-03 2021-11-03 一种反应热压烧结法低温制备碳氮化物-硅化物固溶体复相陶瓷的方法

Country Status (1)

Country Link
CN (1) CN113999013A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1093121A (zh) * 1993-03-23 1994-10-05 克鲁伯·韦狄亚有限公司 金属陶瓷及其制备方法
US20100273637A1 (en) * 2006-06-21 2010-10-28 Snu R&Db Foundation Ceramic and Cermet Having The Second Phase To Improve Toughness Via Phase Separation From Complete Solid-Solution Phase And The Method For Preparing Them
CN102383019A (zh) * 2011-10-18 2012-03-21 李海坤 一种超细晶Ti(C,N)基金属陶瓷及其制备方法
CN104844214A (zh) * 2014-02-17 2015-08-19 中国科学院上海硅酸盐研究所 致密化高强度碳化锆和碳化铪陶瓷材料及其低温制备方法
CN111850373A (zh) * 2020-07-31 2020-10-30 中南大学 一种高熵环相结构的Ti(C,N)基金属陶瓷及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1093121A (zh) * 1993-03-23 1994-10-05 克鲁伯·韦狄亚有限公司 金属陶瓷及其制备方法
US20100273637A1 (en) * 2006-06-21 2010-10-28 Snu R&Db Foundation Ceramic and Cermet Having The Second Phase To Improve Toughness Via Phase Separation From Complete Solid-Solution Phase And The Method For Preparing Them
CN102383019A (zh) * 2011-10-18 2012-03-21 李海坤 一种超细晶Ti(C,N)基金属陶瓷及其制备方法
CN104844214A (zh) * 2014-02-17 2015-08-19 中国科学院上海硅酸盐研究所 致密化高强度碳化锆和碳化铪陶瓷材料及其低温制备方法
CN111850373A (zh) * 2020-07-31 2020-10-30 中南大学 一种高熵环相结构的Ti(C,N)基金属陶瓷及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YING LI等: "Preparation of ZrCN−TiCN solid solutions by spark plasma sintering", 《CERAMICS INTERNATIONAL》 *
王诚训等编著: "《耐火浇注料及其技术发展》", 30 April 2015, 冶金工业出版社 *

Similar Documents

Publication Publication Date Title
CN110483085B (zh) 一种晶须增强氧化铝复合陶瓷及其制备方法与应用
JP5485999B2 (ja) 立方晶窒化ホウ素セラミック複合体およびその製造方法
WO2003016238A2 (en) Silicon carbide ceramic composition and method of making
CN105734390B (zh) 一种高熵合金结合的立方氮化硼聚晶复合材料的制备方法
CN111635234B (zh) 一种聚晶立方氮化硼复合片及其制备方法和应用
JP2003034581A (ja) 窒化けい素製耐摩耗性部材およびその製造方法
CN106904977B (zh) 一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法
JP2008133160A (ja) 炭化硼素質焼結体およびその製造方法
CN1064260A (zh) 用无压或低压气体烧结法制备的致密自增强氮化硅陶瓷
CN110655408B (zh) 一种单相碳硼化物固溶体陶瓷材料的制备方法
CN110903091A (zh) 一种SiC-Ti3SiC2复合材料及其制备方法
CN113024257A (zh) 一种液相烧结注浆成型SiC陶瓷阀件材料及其制备方法
CN110818395B (zh) SiC晶须协同氮化硅颗粒增韧氧化铝基陶瓷刀具材料及其制备工艺
CN113416077B (zh) 一种双复合结构的高温陶瓷刀具材料及其制备方法与应用
CN101551012A (zh) 含碳的碳化硅密封环及其制备方法
CN113880557A (zh) AL2O3-cBN基陶瓷刀具材料及其制备方法
CN110922195B (zh) 原位反应制备镁铝尖晶石-碳化硅复合材料的方法
CN113999013A (zh) 一种反应热压烧结法低温制备碳氮化物-硅化物固溶体复相陶瓷的方法
JP2810922B2 (ja) アルミナージルコニア複合焼結体及びその製造方法
US20030054939A1 (en) Silicon carbide ceramic composition and method of making
CN114394837A (zh) 一种抗氧化性的二硼化物-碳化物固溶体陶瓷的制备方法和应用
CN113582673A (zh) 一种氧化铝/钛硅碳层状复合材料及其原位制备方法
Wang et al. Microstructure and mechanical properties of SiC joint with an in-situ formed SiC-TiB2 composite interlayer
CN115198157B (zh) 一种晶粒生长诱导无压烧结超细晶Ti(C,N)基金属陶瓷致密化的方法
Shabalala et al. Hard and tough boron suboxide based composites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination