CN113968978A - 一种新型纳米木质素及其制备方法 - Google Patents

一种新型纳米木质素及其制备方法 Download PDF

Info

Publication number
CN113968978A
CN113968978A CN202111245146.9A CN202111245146A CN113968978A CN 113968978 A CN113968978 A CN 113968978A CN 202111245146 A CN202111245146 A CN 202111245146A CN 113968978 A CN113968978 A CN 113968978A
Authority
CN
China
Prior art keywords
lignin
novel nano
sodium hydroxide
industrial
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111245146.9A
Other languages
English (en)
Other versions
CN113968978B (zh
Inventor
李小保
沈丽明
王尔玉
张莹莹
马小琳
叶菊娣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Forestry University
Nanjing Tech University
Original Assignee
Nanjing Forestry University
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Forestry University, Nanjing Tech University filed Critical Nanjing Forestry University
Publication of CN113968978A publication Critical patent/CN113968978A/zh
Application granted granted Critical
Publication of CN113968978B publication Critical patent/CN113968978B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H6/00Macromolecular compounds derived from lignin, e.g. tannins, humic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compounds Of Unknown Constitution (AREA)

Abstract

本发明公开了一种新型纳米木质素及其制备方法,所述新型纳米木质素具有高含量羟基、中等分子量,其平均粒径为306~1121nm,羟基含量为8.7~20mmol/g,重均分子量为2035~3428g/mol。本发明的新型纳米木质素的制备方法中,以工业木质素为原料,氢氧化钠为催化剂,通过化学水解、超声处理和冷冻干燥制备出上述新型纳米木质素。相对物理法来说,本发明采用化学水解法制备的纳米木质素,具有显著提高木质素羟基含量、适度降低木质素分子量的优点,尤其适合取代石油基多元醇制备木质素基有机高分子聚合物。

Description

一种新型纳米木质素及其制备方法
技术领域
本发明属于木质素新材料技术领域,具体涉及到一种新型纳米木质素及其制备方法。
背景技术
木质素来源广泛,是储量仅次于纤维素的第二大可再生、易降解的天然高分子材料。由于具有丰富的芳香结构及羟基等活性基团,其在高分子材料等领域具有潜在的应用。然而,其来源广泛、分离方法多,致使木质素结构极为复杂并且分子量分布较宽,因此90%以上的工业木质素被当作廉价燃料或填充物使用,造成资源的极大浪费。为实现木质素的高值化利用,将木质素制备成生物基燃油、小分子化学品和纳米材料等成为当前的热点。其中木质素纳米材料拥有较大的比表面积,更多的可及活性官能团以及自身的抗菌性、无细胞毒性以及紫外吸收性,使得纳米化为木质素的高值化利用提供了新途径。
现有的木质素纳米材料主要有纳米木质素、纳米木质素衍生物以及木质素纳米复合材料,其中纳米木质素是一种简单的也是最直接的高值化利用的木质素纳米材料。现有的纳米木质素主要采用物理法制备,有机械处理法、沉淀法、自组装法、反溶剂法以及蒸发法等。物理法所制备的纳米木质素,其羟基含量和分子量基本没有变化,主要用作抗氧化剂、抗菌剂、紫外阻隔剂、药物载体、抗腐蚀剂等功能材料,其效果优于非纳米化的木质素,其原因是纳米木质素具有纳米材料的大比表面积、高活性等优点。
为拓展纳米木质素的新应用,特别是取代石油基多元醇制备木质素基高分子聚合物材料,目前仍未见报道。现有的非纳米化木质素一般为固体,与液体多元醇相容性较差,且难以分散在溶剂中;另外,大颗粒木质素固体具有较小的反应界面。因此制备的生物基聚合物均一性较差,主要性能也下降,限制了木质素基高分子材料的发展。纳米木质素具有颗粒小、易分散、反应界面大等优点,然而现有纳米木质素羟基含量低、反应活性也低。因此,提高纳米木质素羟基含量不仅可以提高反应活性,而且也有助于提高纳米木质素与多元醇的相容性以及在溶剂中的分散性。
发明内容
发明目的:本发明所要解决的技术问题是针对现有技术的不足,提供一种新型纳米木质素。
本发明还要解决的技术问题是提供上述新型纳米木质素的制备方法。
为了解决上述第一个技术问题,本发明公开了一种具有高含量羟基、中等分子量的新型纳米木质素,其平均粒径为306~1121nm,羟基含量为8.7~20mmol/g,重均分子量为2035~3428g/mol。
为了解决上述第二个技术问题,本发明公开了上述新型纳米木质素的制备方法,以工业木质素为原料,氢氧化钠为催化剂,通过化学水解反应、超声处理和冷冻干燥,即可制备出新型纳米木质素。
其中,上述新型纳米木质素的制备方法具体包括以下步骤:
(1)将工业木质素与NaOH溶液于水热釜中进行化学水解反应,反应结束后,冷却;
(2)用2mol/L的硫酸水溶液将上述反应液的pH调到1~3,离心过滤、水洗直至反应液为中性,得到解聚木质素颗粒。
(3)将步骤(2)所得解聚木质素颗粒放入有机溶剂中,经超声处理和冷冻干燥,得到所述新型纳米木质素;其中,所述有机溶剂为甲醇、乙醇、正丙醇、异丙醇、四氢呋喃和乙酸丁酯中的任意一种或几种组合。
其中,所述工业木质素包括但不局限于碱木质素和/或硫酸盐木质素。若为木质素磺酸盐、有机溶剂木质素和酶解木质素中的任意一种或几种组合时,所得纳米木质素的羟基含量和平均分子量有可能不在本发明的范围内,但羟基含量都会提高,平均分子量都会降低。
其中,所述工业木质素与氢氧化钠溶液的混合溶液中,工业木质素的浓度为5~15wt%。
其中,所述工业木质素与氢氧化钠溶液的混合溶液中,NaOH的浓度为5~20wt%。
其中,所述工业木质素与氢氧化钠溶液的混合溶液的溶剂为水,或水与醇的组合物;其中,所述醇包括但不限于甲醇、乙醇、丙醇、丙二醇等。
其中,所述工业木质素与氢氧化钠溶液的混合溶液中,醇的浓度为0~60wt%。
其中,所述工业木质素与氢氧化钠溶液的混合溶液中,除工业木质素、NaOH和醇外,其余为水。
其中,所述化学水解反应的温度为水热反应的温度为180~220℃。
其中,所述化学水解反应的温度为水热反应的时间为4~8小时。
步骤(1)中,所述冷却为冷却至室温,如将水热釜置于室温水中快速冷却到室温。
步骤(2)中,用酸将反应液的pH调节到1~3;优选地,用硫酸将反应液的pH调节到1~3;进一步优选地,用1~3mol/L的硫酸将反应液的pH调节到1~3;更进一步优选地,用2mol/L的硫酸将反应液的pH调节到1~3。
步骤(2)中,优选地,将步骤(1)所得反应液的pH调到2。
其中,本发明中上述新型纳米木质素可以取代石油基多元醇,用于制备木质素基有机高分子聚合物中。
有益效果:与现有技术相比,本发明具有如下优势:
(1)本发明提供一种具有高含量羟基、中等分子量的新型纳米木质素,其羟基含量为8.7~20mmol/g,较未纳米化木质素的羟基含量提高了约100%;其分子量为2035~3428g/mol,较未纳米化木质素的分子量降低了约30%。
(2)相对物理法来说,本发明所提供的新型纳米木质素的制备方法中,以工业木质素为原料,氢氧化钠为催化剂,通过化学水解、超声处理和冷冻干燥制备得到新型纳米木质素,其具有显著提高木质素羟基含量、适度降低木质素分子量的优点,在取代石油基多元醇制备木质素基有机聚合物等领域具有重要意义。
附图说明
下面结合附图和具体实施方式对本发明做更进一步的具体说明,本发明的上述和/或其他方面的优点将会变得更加清楚。
图1为碱木质素在介质中的分散情况。
图2为碱木质素超声处理后在介质中的分散情况。
图3为解聚木质素在介质中的分散情况。
图4为解聚木质素超声处理后在介质中的分散情况。
图5为纳米木质素的粒径分布(a:甲醇;b:乙醇;c:正丙醇;d:异丙醇;e:四氢呋喃;f:乙酸丁酯)。
图6为碱木质素和水解不同时间所得解聚木质素经超声处理后在甲醇中的分散情况。
图7为碱木质素和水解不同时间所得解聚木质素经超声处理后所得木质素的微观形貌(NL-0,-2,-4,-6,-8分别是未水解的碱木质素和水解2,4,6,8h的木质素)。
图8为纳米木质素的粒径分布(a,b,c分别表示水解时间为4,6,8h得到的纳米木质素)。
图9为碱木质素和水解不同时间所得解聚木质素经超声处理后所得木质素的13PNMR谱图。
图10为碱木质素和水解不同时间所得解聚木质素经超声处理后所得木质素的GPC谱图。
具体实施方式
下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。
下述实施例中所述碱木质素的羟基含量为9~10mmol/g,平均重均分子量为3300~3800g/mol。
下述实施例中所述硫酸盐木质素的羟基含量为8~10mmol/g,平均重均分子量为3000~4000g/mol。
下述实施例中所述甲醇用量为解聚木质素的100倍(质量比)。
下述实施例中所述超声设备为KQ-250DE型数控超声波清洗器,超声功率250W,超声时间为10分钟。
下述实施例中所述NaOH水溶液中NaOH的质量百分比指的是NaOH占碱木质素和NaOH水溶液总质量的百分比;所述NaOH水溶液中醇的质量百分比指的是醇占碱木质素和NaOH水溶液总质量的百分比。
实施例1
为考察化学水解、超声以及介质对制备纳米木质素的影响,分别单独采用化学水解或超声方法制备了木质素颗粒分散体系,结果如图1~4所示。
(1)将碱木质素直接分散于各介质中,结果如图1所示,碱木质素在水、甲醇、乙醇、正丙醇、异丙醇、1,3-丙二醇、四氢呋喃以及乙酸丁酯中不能很好的分散,碱木质素颗粒沉淀在底部,说明采用上述介质均不能制备出纳米木质素。
(2)将碱木质素直接分散于各介质中,经超声处理后,结果图2所示,碱木质素在水、异丙醇、1,3-丙二醇、四氢呋喃以及乙酸丁酯中很难分散,在甲醇、乙醇以及正丙醇中部分分散。因此,仅采用超声处理很难得到纳米木质素。
(3)将碱木质素进行化学水解(碱木质素浓度为5wt%,氢氧化钠浓度为15wt%,水解温度为190℃,水解时间6小时),制备解聚木质素,所得解聚木质素直接分散于各介质中,结果如图3所示,解聚木质素在水、甲醇、乙醇、正丙醇、异丙醇、1,3-丙二醇、四氢呋喃以及乙酸丁酯中不能很好的分散,说明仅采用水解处理很难得到纳米木质素。
(4)将步骤(3)所得解聚木质素分散于各介质中,经超声处理后,结果如图4所示,解聚木质素经超声处理后,在水和1,3-丙二醇中很难分散,得不到纳米木质素。解聚木质素经超声处理后在甲醇、乙醇、正丙醇、异丙醇、四氢呋喃以及乙酸丁酯中能很好的分散,可得到纳米木质素,其粒径分布如图5所示。
实施例2
为了确定适宜的化学水解条件:水解温度、水解时间、木质素浓度、氢氧化钠浓度等,在此以水解时间为例,给出制备纳米木质素的实验结果。
取碱木质素和NaOH水溶液(碱木质素浓度为5wt%,氢氧化钠浓度为15wt%,其余为水)在水热釜中反应(水解温度为190℃,水解时间为0~8h),反应结束后,将水热釜置于室温水中快速冷却到室温。用2mol/L的硫酸水溶液将上述反应液的pH调到2,离心过滤、水洗直至反应液为中性,得到解聚木质素颗粒。将解聚木质素颗粒放入甲醇中,经超声处理和冷冻干燥,得到新型纳米木质素。
由图6可知,未水解的碱木质素和水解2h的木质素在甲醇中分散性不好,均沉淀在底部;水解4,6,8h的木质素可以很好地分散在甲醇中。
由图7可知,未水解的碱木质素在甲醇介质中分散后,得到的木质素是团聚的大颗粒,水解2h得到的木质素也是团聚严重的颗粒,水解4,6和8h得到的木质素是纳米颗粒。
由于碱木质素和水解2h的木质素均出现沉淀,不能采用激光粒度仪测量。水解4,6和8h得到的新型纳米木质素的粒径分布见图8,其平均粒径分别为983,340,707nm。
图9为碱木质素和水解不同时间所得解聚木质素经超声处理后所得木质素的13PNMR谱图,由该结果可计算出羟基含量,碱木质素和水解2、4、6、8h所得解聚木质素经超声处理后所得木质素的羟基含量分别为9.6,9.9,10.3,13.6,8.7mmol/g。碱木质素和水解不同时间所得解聚木质素经超声处理后所得木质素分子量的测定结果见图10,其平均重均分子量分别为3389.45,3297.16,3051.28,2514.64,3084.32g/mol。
实施例3
取6g碱木质素和74gNaOH水溶液(15wt%NaOH,60wt%甲醇),在水热釜中反应7小时,反应温度为190℃;反应结束后,将水热釜置于室温水中快速冷却到室温。用2mol/L的硫酸水溶液将上述反应液的pH调到2,离心过滤、水洗直至反应液为中性,得到解聚木质素颗粒。将解聚木质素颗粒放入甲醇中,经超声处理和冷冻干燥,得到新型纳米木质素,平均粒径为306nm,羟基含量为20mmol/g,平均重均分子量2216g/mol。
实施例4
取8g碱木质素和72gNaOH水溶液(20wt%NaOH,40wt%乙醇),在水热釜中反应4小时,反应温度为220℃;反应结束后,将水热釜置于室温水中快速冷却到室温。用2mol/L的硫酸水溶液将上述反应液的pH调到2,离心过滤、水洗直至反应液为中性,得到解聚木质素颗粒。将解聚木质素颗粒放入甲醇中,经超声处理和冷冻干燥,得到新型纳米木质素,平均粒径为413nm,羟基含量为19mmol/g,平均重均分子量2307g/mol。
实施例5
取4g碱木质素和76gNaOH水溶液(5wt%NaOH,20wt%乙二醇),在水热釜中反应8小时,反应温度为220℃;反应结束后,将水热釜置于室温水中快速冷却到室温。用2mol/L的硫酸水溶液将上述反应液的pH调到2,离心过滤、水洗直至反应液为中性,得到解聚木质素颗粒。将解聚木质素颗粒放入甲醇中,经超声处理和冷冻干燥,得到新型纳米木质素,平均粒径为468nm,羟基含量为18mmol/g,平均重均分子量2500g/mol。
实施例6
取6g硫酸盐木质素和74gNaOH水溶液(10wt%NaOH,20wt%正丙醇),在水热釜中反应6小时,反应温度为180℃;反应结束后,将水热釜置于室温水中快速冷却到室温。用2mol/L的硫酸水溶液将上述反应液的pH调到2,离心过滤、水洗直至反应液为中性,得到解聚木质素颗粒。将解聚木质素颗粒放入甲醇中,经超声处理和冷冻干燥,得到新型纳米木质素,平均粒径为382nm,羟基含量为19mmol/g,平均重均分子量2347g/mol。
实施例7
取4g硫酸盐木质素和76gNaOH水溶液(20wt%NaOH),在水热釜中反应8小时,反应温度为220℃;反应结束后,将水热釜置于室温水中快速冷却到室温。用2mol/L的硫酸水溶液将上述反应液的pH调到2,离心过滤、水洗直至反应液为中性,得到解聚木质素颗粒。将解聚木质素颗粒放入甲醇中,经超声处理和冷冻干燥,得到新型纳米木质素,平均粒径为538nm,羟基含量为18mmol/g,平均重均分子量3428g/mol。
本发明提供了一种新型纳米木质素及其制备方法与应用的思路及方法,具体实现该技术方案的方法和途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。

Claims (9)

1.一种新型纳米木质素,其特征在于,所述新型纳米木质素的平均粒径为306~1121nm,羟基含量为8.7~20mmol/g,重均分子量为2035~3428g/mol。
2.权利要求1所述新型纳米木质素的制备方法,其特征在于,以工业木质素为原料,氢氧化钠为催化剂,通过化学水解反应、超声处理和冷冻干燥,得到纳米木质素。
3.根据权利要求2所述的新型纳米木质素的制备方法,其特征在于,包括以下步骤:
(1)将工业木质素与氢氧化钠溶液进行化学水解反应,反应结束后,冷却;
(2)将步骤(1)所得反应液的pH调到1~3,离心过滤、洗涤至反应液为中性,得到解聚木质素颗粒;
(3)将步骤(2)所得解聚木质素颗粒放入有机溶剂中,经超声处理和冷冻干燥,得到所述新型纳米木质素;其中,所述有机溶剂为甲醇、乙醇、正丙醇、异丙醇、四氢呋喃和乙酸丁酯中的任意一种或几种组合。
4.根据权利要求2或3所述的新型纳米木质素的制备方法,其特征在于,所述工业木质素为碱木质素和/或硫酸盐木质素。
5.根据权利要求2或3所述的新型纳米木质素的制备方法,其特征在于,所述工业木质素与氢氧化钠溶液的混合溶液中,工业木质素的浓度为5~10wt%。
6.根据权利要求2或3所述的新型纳米木质素的制备方法,其特征在于,所述工业木质素与氢氧化钠溶液的混合溶液中,氢氧化钠的浓度为5~20wt%。
7.根据权利要求2或3所述的新型纳米木质素的制备方法,其特征在于,所述工业木质素与氢氧化钠溶液的混合溶液的溶剂为水,或水与醇的组合物;所述工业木质素与氢氧化钠溶液的混合溶液中,醇的浓度为0~60wt%。
8.根据权利要求2或3所述的新型纳米木质素的制备方法,其特征在于,所述化学水解反应的温度为180~220℃。
9.根据权利要求2或3所述的新型纳米木质素的制备方法,其特征在于,所述化学水解反应的时间为4~8小时。
CN202111245146.9A 2021-10-12 2021-10-26 一种纳米木质素及其制备方法 Active CN113968978B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2021111858586 2021-10-12
CN202111185858 2021-10-12

Publications (2)

Publication Number Publication Date
CN113968978A true CN113968978A (zh) 2022-01-25
CN113968978B CN113968978B (zh) 2023-07-07

Family

ID=79588525

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111245146.9A Active CN113968978B (zh) 2021-10-12 2021-10-26 一种纳米木质素及其制备方法

Country Status (1)

Country Link
CN (1) CN113968978B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115093841A (zh) * 2022-08-04 2022-09-23 南京林业大学 一种高稳定性Pickering乳液型钻井液及其制备方法
CN116333516A (zh) * 2023-02-27 2023-06-27 吉林大学 一种木质素基纳米炭黑的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103145999A (zh) * 2013-03-26 2013-06-12 东北林业大学 一种粒径可控纳米木质素的制备方法
CN104497322A (zh) * 2014-12-19 2015-04-08 中国林业科学研究院林产化学工业研究所 一种利用液相沉积技术制备纳米木质素的方法
CN107699985A (zh) * 2017-10-26 2018-02-16 青岛大学 一种木质素基多孔纳米碳纤维的制备方法
CN107973916A (zh) * 2016-10-24 2018-05-01 中国林业科学研究院林产化学工业研究所 一种酸碱预处理辅助超声波处理制备纳米木质素的方法
CN112646195A (zh) * 2020-12-18 2021-04-13 安徽工业大学 一种提高有机溶剂酸沉降纳米木质素稳定性的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103145999A (zh) * 2013-03-26 2013-06-12 东北林业大学 一种粒径可控纳米木质素的制备方法
CN104497322A (zh) * 2014-12-19 2015-04-08 中国林业科学研究院林产化学工业研究所 一种利用液相沉积技术制备纳米木质素的方法
CN107973916A (zh) * 2016-10-24 2018-05-01 中国林业科学研究院林产化学工业研究所 一种酸碱预处理辅助超声波处理制备纳米木质素的方法
CN107699985A (zh) * 2017-10-26 2018-02-16 青岛大学 一种木质素基多孔纳米碳纤维的制备方法
CN112646195A (zh) * 2020-12-18 2021-04-13 安徽工业大学 一种提高有机溶剂酸沉降纳米木质素稳定性的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
熊福全等: "纳米木质素的制备及应用研究现状", 《高分子材料科学与工程》 *
黎锡流等主编: "《甘蔗糖厂综合利用》", 30 April 2000, 中国轻工业出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115093841A (zh) * 2022-08-04 2022-09-23 南京林业大学 一种高稳定性Pickering乳液型钻井液及其制备方法
CN116333516A (zh) * 2023-02-27 2023-06-27 吉林大学 一种木质素基纳米炭黑的制备方法
CN116333516B (zh) * 2023-02-27 2024-03-08 吉林大学 一种木质素基纳米炭黑的制备方法

Also Published As

Publication number Publication date
CN113968978B (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
CN113968978A (zh) 一种新型纳米木质素及其制备方法
JP2019151681A (ja) リグニン粘土複合膜およびその製造方法
Jiang et al. The aggregation structure regulation of lignin by chemical modification and its effect on the property of lignin/styrene–butadiene rubber composites
CN108948614B (zh) 一种木质素/聚乙烯醇复合材料及其制备方法
CN110041552B (zh) 基于磺化芳醚型聚苯并咪唑与磺化聚倍半硅氧烷的复合型高温质子交换膜及其制备方法
NL2030025B1 (en) Method for preparing phenolated lignin-phenolic resin nanospere and application thereof
CN109912804B (zh) 一种磷氮改性木质素基膨胀性阻燃剂的制备方法
CN114479179B (zh) 一种氮掺杂纳米二氧化硅/炭黑杂化材料及其制备方法
CN103408750A (zh) 一种三聚氰胺氰尿酸盐阻燃聚酰胺材料的制备方法
CN111204737A (zh) 一种碳量子点的制备方法
CN114031859A (zh) 一种用于生鲜产品储运的高耐寒抗uv智慧周转框的高分子改性材料
WO2019104815A1 (zh) 木质素酚醛树脂胶黏剂的制备方法
CN111454544A (zh) 一种天然蛋白质协效阻燃复合材料及其制备方法
US9598452B2 (en) Cellulose hydrolysis via modified lignosulfonate catalysts
Shen et al. Effect of microstructure-scale features on lignin fluorescence for preparation of high fluorescence efficiency lignin-based nanomaterials
CN113621124B (zh) 生物基绿色环保阻燃记忆绵及其制备方法
CN112210629B (zh) 生物基环糊精包合二茂铁改性类水滑石/花椒籽油环保型阻燃皮革加脂剂及制备方法
CN111484587A (zh) 一种制备木质素基酚醛树脂的方法
CN110804268B (zh) 一种六方氮化硼/聚乙烯醇/木质素纳米颗粒/纳米纤维素导热复合膜材料及其制备方法
CN111187507A (zh) 一种石墨烯基杂化阻燃剂/自修复聚氨酯阻燃复合材料的制备方法
Zhang et al. Poly (vinyl alcohol)/nanocellulose film integrated with phenolic waste-based carbon dots for ultraviolet-blocking and flame retardant applications
CN110105626B (zh) 超分子组装改性聚磷酸铵及其制备方法
CN114854055A (zh) 一种基于温度诱导分级自组装的木质素胶体球纳米颗粒及其制备方法
CN114276624A (zh) 一种高耐寒抗uv智慧物流卡板的高分子改性材料
CN108912524A (zh) 一种哌嗪改性木质素包覆红磷阻燃剂及其在ps树脂中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant