CN113957522A - 用于金刚石单晶生长的mpcvd装置 - Google Patents

用于金刚石单晶生长的mpcvd装置 Download PDF

Info

Publication number
CN113957522A
CN113957522A CN202111000448.XA CN202111000448A CN113957522A CN 113957522 A CN113957522 A CN 113957522A CN 202111000448 A CN202111000448 A CN 202111000448A CN 113957522 A CN113957522 A CN 113957522A
Authority
CN
China
Prior art keywords
cavity
microwave
water cooling
coaxial
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111000448.XA
Other languages
English (en)
Inventor
朱嘉琦
郝晓斌
李一村
代兵
刘雪冬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202111000448.XA priority Critical patent/CN113957522A/zh
Publication of CN113957522A publication Critical patent/CN113957522A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/08Reaction chambers; Selection of materials therefor
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

用于金刚石单晶生长的MPCVD装置,本发明属于微波等离子体辅助化学气相沉积领域,它要解决现有MPCVD装备沉积面积小、沉积速率低、难以长时稳定生长的问题。本发明MPCVD装置中微波谐振腔下方设置有矩形波导和同轴波导,矩形波导的一端连接有微波产生系统,同轴波导的下部与矩形波导管相连通,同轴波导的上端与微波谐振腔相通,同轴天线与水冷台一体化结构同轴套设在同轴波导内,同轴天线与水冷台一体化结构由天线组件和升降水冷件同轴套设组成,在微波谐振腔的顶部开有匀气腔。本发明微波等离子体化学气相沉积装置,最大程度优化了多模等离子体谐振腔,有效增加了沉积面积,提高了功率密度和沉积速率。

Description

用于金刚石单晶生长的MPCVD装置
技术领域
本发明属于微波等离子体辅助化学气相沉积领域,具体涉及一种用于金刚石单晶大面积、高速率、长时间生长的微波等离子体辅助化学气相沉积装置。
背景技术
微波等离子体辅助化学气相沉积(MPCVD)法是当前最为流行,也是最有前景的大尺寸高品质金刚石单晶外延生长方法。该方法是通过将微波发生器产生的微波经过波导管导入特殊设计的反应腔体中发生谐振,产生频率和强度分布的电磁场,以此将反应腔体内的气体原料(通常为H2和CH4混合气体)进行激发,在样品台上产生均匀且稳定的等离子体。离化后的气体分子在衬底材料上进行沉积,从而实现金刚石的外延生长。相比于早期的热丝CVD法(HFCVD)和直流电弧等离子体喷射CVD法(DC Arc Jet CVD),MPCVD法具有设备可靠性高、工作稳定性强、控制精确且操作简便等优点,可以实现长达百小时的连续稳定运行。同时,该方法的气体离化率高、沉积温度和气体流速较低、生长工艺条件温和且可控性强,能够实现在极低的掺杂浓度下(ppb级别)进行高速沉积生长。
MPCVD设备整体是一个相当复杂的系统,为实现需要的功能,现有的CVD设备不仅结构复杂,体积庞大而且出错率高,稳定运行时间短。目前普遍应用的单模直筒上馈式MPCVD设备需要模式转换天线才能在谐振腔中产生需要的电场模式,作为一种单模谐振腔,谐振腔内的微波分布模式极大程度地限制了微波等离子体的体积,2.45GHz的频率下能够耦合进谐振腔内的功率水平已经接近于极限值,进一步提高金刚石沉积面积和沉积速率的需求受到限制。同时,在沉积生长过程中,制备的金刚石单晶厚度不断增加,开始出现边缘效应和二次形核,极大地影响了金刚石的品质,此时必须中断生长过程并对样品进行一定处理才能继续生长。
综上所述,兼具大面积、高速率,能够长时间稳定生长的高集成度微波等离子体辅助化学气相沉积装置对于金刚石单晶生长具有十分重要的意义。
发明内容
本发明的目的是为了解决现有MPCVD装备沉积面积小、沉积速率低、难以长时稳定生长的问题,而提供一种用于金刚石单晶生长的微波等离子体辅助化学气相沉积装置。
本发明用于金刚石单晶生长的MPCVD装置包括微波产生系统、矩形波导、同轴波导、同轴天线与水冷台一体化结构、支撑环、微波谐振腔、匀气腔、环形进气间隙和抽气缓冲腔;
微波谐振腔下方设置有矩形波导和同轴波导,矩形波导水平设置,矩形波导的一端连接有微波产生系统,同轴波导竖直设置,同轴波导的下部与矩形波导管相连通,同轴波导的上端与微波谐振腔相通,支撑环设置在微波谐振腔的底板上;
同轴天线与水冷台一体化结构同轴套设在同轴波导内,同轴天线与水冷台一体化结构由天线组件和升降水冷件同轴套设组成,其中天线组件是在固定水冷台的下部连接有天线杆体,升降水冷件是在可升降水冷台的下部连接有连杆,固定水冷台搭设在支撑环的上沿,天线杆体从矩形波导穿出;
在微波谐振腔的顶部开有匀气腔,匀气腔内通过连接杆连接有圆形平板,圆形平板与匀气腔的腔壁之间留有环形进气间隙;
微波谐振腔底部的中空结构为抽气缓冲腔,微波谐振腔的底部板面上开有排气孔并与抽气缓冲腔相通。
本发明用于金刚石单晶生长的MPCVD装置主要包括谐振腔体、配气系统、真空系统、水冷系统、微波系统和电控系统六大部分。其中谐振腔是整个设备的核心,微波在腔体内谐振,并在衬底上激发等离子体;配气系统提供等离子体激发和金刚石生长所需的气体源,主要为氢气、甲烷等;真空系统可控地保证腔体内部合适的真空度;水冷系统为整套装置进行散热,包括谐振腔夹层中的冷却水通路和同轴天线与样品台内部的冷却水通路;微波系统作为能量源,通过矩形波导和同轴波导将微波能量馈入谐振腔,同轴波导末端进入谐振腔并连接有一体化设计的样品台,等离子体将在此处被激发使金刚石沉积生长;电控系统是人机交互的窗口,使操作简单高效。
所述MPCVD装置为下馈式微波输入方式,同轴天线与水冷采用一体化结构,中心位置的水冷台与腔体内壁共同充当微波输入天线,最大程度地简化设备结构,减小体积,同时对样品台、同轴天线、支撑环进行有效冷却,并能够通过调节可升降水冷台的轴向高度实现金刚石单晶长时间生长。经过下馈式微波输入方式、同轴天线及凸型谐振腔协同设计使得多种模式的微波在腔体内叠加谐振,提高了微波耦合效率,减少了次生等离子体的产生,有效扩大了沉积面积,在2.45GHz微波频率下,目标域平均电场强度达105~106V/m量级,等离子体密度达1017m-3量级,极大提高了金刚石单晶生长速率,可沉积2-3英寸金刚石薄膜。
本发明微波等离子体化学气相沉积装置,最大程度优化了多模等离子体谐振腔,有效增加了沉积面积,提高了功率密度和沉积速率,在保证系统功能地前提下更加紧凑、可靠、高效。
附图说明
图1是本发明用于金刚石单晶生长的MPCVD装置的整体结构示意图;
图2是利用本发明用于金刚石单晶生长的MPCVD装置进行金刚石单晶生长过程状态图;
图3是利用本发明用于金刚石单晶生长的MPCVD装置生长的金刚石单晶拉曼测试图。
具体实施方式
具体实施方式一:本实施方式用于金刚石单晶生长的MPCVD装置包括微波产生系统1、矩形波导2、同轴波导3、同轴天线与水冷台一体化结构4、支撑环5、微波谐振腔6、匀气腔7、环形进气间隙8和抽气缓冲腔9;
微波谐振腔6下方设置有矩形波导2和同轴波导3,矩形波导2水平设置,矩形波导2的一端连接有微波产生系统1,同轴波导3竖直设置,同轴波导3的下部与矩形波导管2相连通,同轴波导3的上端与微波谐振腔6相通,支撑环5设置在微波谐振腔6的底板上;
同轴天线与水冷台一体化结构4同轴套设在同轴波导3内,同轴天线与水冷台一体化结构4由天线组件和升降水冷件同轴套设组成,其中天线组件是在固定水冷台4-1的下部连接有天线杆体4-3,升降水冷件是在可升降水冷台4-2的下部连接有连杆4-4,固定水冷台4-1搭设在支撑环5的上沿,天线杆体4-3从矩形波导2穿出;
在微波谐振腔6的顶部开有匀气腔7,匀气腔7内通过连接杆连接有圆形平板,圆形平板与匀气腔7的腔壁之间留有环形进气间隙8;
微波谐振腔6底部的中空结构为抽气缓冲腔9,微波谐振腔6的底部板面上开有排气孔10并与抽气缓冲腔9相通。
具体实施方式二:本实施方式与具体实施方式一不同的是支撑环5的材质为石英。
具体实施方式三:本实施方式与具体实施方式一或二不同的是微波谐振腔6的腔体呈凸字形。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是微波谐振腔体6的底部板面均布4个排气孔10。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是抽气缓冲腔9通过管路与真空系统相连通。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是天线杆体4-3从矩形波导2穿出,在矩形波导2与同轴波导3之间设置有微波堵头11。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是固定水冷台4-1台面与天线杆体4-3之间采用锥形或半球形过渡。
本实施方式通过圆弧过渡以减少微波传输损耗。
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是衬底12放置在升降水冷台4-2上。
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是升降水冷台4-2能沿轴线上下调节高度。
具体实施方式十:本实施方式与具体实施方式一至九之一不同的是升降水冷件的内部为液冷空腔。
实施例:本实施例用于金刚石单晶生长的MPCVD装置包括微波产生系统1、矩形波导2、同轴波导3、同轴天线与水冷台一体化结构4、支撑环5、微波谐振腔6、匀气腔7、环形进气间隙8、抽气缓冲腔9和微波堵头11,微波谐振腔体6内外腔壁与底部有相互配合的法兰,通过这种装配方式进行限位,提高装配精度与相互之间的同轴度和平行度,从而提高谐振舱体的电场耦合效率,减少次生等离子体的形成;
微波谐振腔6下方设置有矩形波导2和同轴波导3,矩形波导2水平设置,矩形波导2的一端连接有微波产生系统1,矩形波导2用于从微波产生系统1导入微波并将微波能量耦合至同轴波导3,同轴波导3竖直设置,同轴波导3的下部与矩形波导管2相连通,同轴波导3的上端与微波谐振腔6相通,支撑环5设置在微波谐振腔6的底板上,以维持谐振腔内低气压工作环境,同时兼具耐高温和透微波的功能;
同轴天线与水冷台一体化结构4同轴套设在同轴波导3内,同轴天线与水冷台一体化结构4由天线组件和升降水冷件同轴套设组成,其中天线组件是在固定水冷台4-1的下部连接有天线杆体4-3,升降水冷件是在可升降水冷台4-2的下部连接有连杆4-4,固定水冷台4-1搭设在支撑环5的上沿,天线杆体4-3从矩形波导2穿出;
在微波谐振腔6的顶部开有匀气腔7,匀气腔7内通过连接杆连接有圆形平板,圆形平板与匀气腔7的腔壁之间留有环形进气间隙8;
微波谐振腔6底部的中空结构为抽气缓冲腔9,微波谐振腔6的底部板面上开有排气孔10并与抽气缓冲腔9相通。
本实施例微波谐振腔体6的水冷系统为贯通式。本实施例用于金刚石单晶生长的MPCVD装置简化了结构,提高冷却效率及设备运行的可靠性。同轴天线与水冷台一体化结构4同时还作为模式转换天线,即采用了微波天线与水冷一体化结构,同轴天线与水冷台一体化结构4在冷却上方衬底的同时还能通过调节可升降水冷台4-2的轴向高度实现金刚石单晶长时间生长。金刚石生长一定时间后,由于厚度增加,温度会明显升高,超过最佳生长温度区间,此时可通过降低水冷台增加生长表面与等离子体核心的距离,使得生长表面温度保持在合适范围内,达到长时间生长的目的。
应用本实施例用于金刚石单晶生长的MPCVD装置能实现面积为2~3英寸的金刚石单晶快速沉积,沉积速率可达到50~150μm/h。
本实施例提供的一种用于金刚石单晶生长的MPCVD装置,实现多种模式同时存在于等离子体谐振腔,在保证系统功能的前提下进行合理优化,解决了现有MPCVD设备沉积面积小、沉积速率低、难以长时稳定生长的问题。

Claims (10)

1.用于金刚石单晶生长的MPCVD装置,其特征在于该用于金刚石单晶生长的MPCVD装置包括微波产生系统(1)、矩形波导(2)、同轴波导(3)、同轴天线与水冷台一体化结构(4)、支撑环(5)、微波谐振腔(6)、匀气腔(7)、环形进气间隙(8)和抽气缓冲腔(9);
微波谐振腔(6)下方设置有矩形波导(2)和同轴波导(3),矩形波导(2)水平设置,矩形波导(2)的一端连接有微波产生系统(1),同轴波导(3)竖直设置,同轴波导(3)的下部与矩形波导管(2)相连通,同轴波导(3)的上端与微波谐振腔(6)相通,支撑环(5)设置在微波谐振腔(6)的底板上;
同轴天线与水冷台一体化结构(4)同轴套设在同轴波导(3)内,同轴天线与水冷台一体化结构(4)由天线组件和升降水冷件同轴套设组成,其中天线组件是在固定水冷台(4-1)的下部连接有天线杆体(4-3),升降水冷件是在可升降水冷台(4-2)的下部连接有连杆(4-4),固定水冷台(4-1)搭设在支撑环(5)的上沿,天线杆体(4-3)从矩形波导(2)穿出;
在微波谐振腔(6)的顶部开有匀气腔(7),匀气腔(7)内通过连接杆连接有圆形平板,圆形平板与匀气腔(7)的腔壁之间留有环形进气间隙(8);
微波谐振腔(6)底部的中空结构为抽气缓冲腔(9),微波谐振腔(6)的底部板面上开有排气孔(10)并与抽气缓冲腔(9)相通。
2.根据权利要求1所述的用于金刚石单晶生长的MPCVD装置,其特征在于支撑环(5)的材质为石英。
3.根据权利要求1所述的用于金刚石单晶生长的MPCVD装置,其特征在于微波谐振腔(6)的腔体呈凸字形。
4.根据权利要求1所述的用于金刚石单晶生长的MPCVD装置,其特征在于微波谐振腔体(6)的底部板面均布4个排气孔10。
5.根据权利要求1所述的用于金刚石单晶生长的MPCVD装置,其特征在于抽气缓冲腔(9)通过管路与真空系统相连通。
6.根据权利要求1所述的用于金刚石单晶生长的MPCVD装置,其特征在于天线杆体(4-3)从矩形波导(2)穿出,在矩形波导(2)与同轴波导(3)之间设置有微波堵头(11)。
7.根据权利要求1所述的用于金刚石单晶生长的MPCVD装置,其特征在于固定水冷台(4-1)台面与天线杆体(4-3)之间采用锥形或半球形过渡。
8.根据权利要求1所述的用于金刚石单晶生长的MPCVD装置,其特征在于衬底(12)放置在升降水冷台(4-2)上。
9.根据权利要求1所述的用于金刚石单晶生长的MPCVD装置,其特征在于升降水冷台(4-2)能沿轴线上下调节高度。
10.根据权利要求1所述的用于金刚石单晶生长的MPCVD装置,其特征在于升降水冷件的内部为液冷空腔。
CN202111000448.XA 2021-08-27 2021-08-27 用于金刚石单晶生长的mpcvd装置 Pending CN113957522A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111000448.XA CN113957522A (zh) 2021-08-27 2021-08-27 用于金刚石单晶生长的mpcvd装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111000448.XA CN113957522A (zh) 2021-08-27 2021-08-27 用于金刚石单晶生长的mpcvd装置

Publications (1)

Publication Number Publication Date
CN113957522A true CN113957522A (zh) 2022-01-21

Family

ID=79460678

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111000448.XA Pending CN113957522A (zh) 2021-08-27 2021-08-27 用于金刚石单晶生长的mpcvd装置

Country Status (1)

Country Link
CN (1) CN113957522A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114540790A (zh) * 2022-01-28 2022-05-27 徐州景澜新材料科技有限公司 Mpcvd法单晶金刚石制造装置及其制造方法
CN114845455A (zh) * 2022-05-07 2022-08-02 季华实验室 微波等离子体化学气相沉积装置及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122067A (ja) * 2011-12-09 2013-06-20 Cornes Technologies Ltd マイクロ波プラズマ処理装置
CN103526187A (zh) * 2013-10-12 2014-01-22 武汉工程大学 一种大面积微波等离子体化学气相沉积系统
CN103668121A (zh) * 2013-12-18 2014-03-26 王宏兴 一种微波等离子体化学气相沉积装置
CN103695867A (zh) * 2013-12-18 2014-04-02 王宏兴 一种微波等离子体化学气相沉积装置
CN108624870A (zh) * 2018-07-05 2018-10-09 成都纽曼和瑞微波技术有限公司 一种可调谐圆抛腔式高功率微波等离子体化学气相沉积装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122067A (ja) * 2011-12-09 2013-06-20 Cornes Technologies Ltd マイクロ波プラズマ処理装置
CN103526187A (zh) * 2013-10-12 2014-01-22 武汉工程大学 一种大面积微波等离子体化学气相沉积系统
CN103668121A (zh) * 2013-12-18 2014-03-26 王宏兴 一种微波等离子体化学气相沉积装置
CN103695867A (zh) * 2013-12-18 2014-04-02 王宏兴 一种微波等离子体化学气相沉积装置
CN108624870A (zh) * 2018-07-05 2018-10-09 成都纽曼和瑞微波技术有限公司 一种可调谐圆抛腔式高功率微波等离子体化学气相沉积装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114540790A (zh) * 2022-01-28 2022-05-27 徐州景澜新材料科技有限公司 Mpcvd法单晶金刚石制造装置及其制造方法
CN114845455A (zh) * 2022-05-07 2022-08-02 季华实验室 微波等离子体化学气相沉积装置及系统

Similar Documents

Publication Publication Date Title
CN113957522A (zh) 用于金刚石单晶生长的mpcvd装置
RU2666135C2 (ru) Свч-плазменный реактор для изготовления синтетического алмазного материала
CN104726850B (zh) 一种微波等离子体化学气相沉积设备
CN103668127B (zh) 一种圆顶式微波等离子体化学气相沉积金刚石膜装置
CN104388910B (zh) 用于化学气相沉积金刚石膜的高功率微波等离子体反应装置
CN108315816B (zh) 单晶金刚石生长方法和装置
CN108588819B (zh) 微波等离子体化学气相沉积装置和合成金刚石的方法
CN112663029B (zh) 一种微波等离子体化学气相沉积装置及其真空反应室
CN108315817B (zh) 高效大尺寸单晶金刚石的生长方法和装置
CN108468086A (zh) 微波等离子体化学气相沉积装置及其应用
US20040134431A1 (en) Diamond film depositing apparatus using microwaves and plasma
CN115132561B (zh) 一种环形阶梯同轴天线式微波等离子体化学气相沉积装置
CN103695868A (zh) 远程磁镜场约束线形等离子体增强化学气相沉积系统
CN114438473A (zh) 一种高功率微波等离子体金刚石膜沉积装置
CN108315818A (zh) 单晶金刚石合成装置和方法
CN103628048A (zh) 一种微波等离子体化学气相沉积装置
CN112410751A (zh) 一种卵圆形微波等离子体金刚石膜沉积装置
CN208167149U (zh) 微波等离子体化学气相沉积装置
US20230260756A1 (en) Multi-port Phase Compensation Nested Microwave-plasma Apparatus for Diamond Film Deposition
CN208167155U (zh) 单晶金刚石合成装置
CN203602711U (zh) 一种微波等离子体化学气相沉积装置
CN215404507U (zh) 一种用于金刚石合成的微波等离子体反应器
CN108588820A (zh) 微波等离子体化学气相沉积装置和金刚石的合成方法
CN207016850U (zh) 一种微波等离子体化学气相沉积装置
CN113388885B (zh) 一种基于微波等离子体反应器合成金刚石的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220121

RJ01 Rejection of invention patent application after publication