CN113913791B - 一种多层非晶硅薄膜的制备方法及太阳能电池 - Google Patents

一种多层非晶硅薄膜的制备方法及太阳能电池 Download PDF

Info

Publication number
CN113913791B
CN113913791B CN202111152795.4A CN202111152795A CN113913791B CN 113913791 B CN113913791 B CN 113913791B CN 202111152795 A CN202111152795 A CN 202111152795A CN 113913791 B CN113913791 B CN 113913791B
Authority
CN
China
Prior art keywords
amorphous silicon
silicon film
sccm
film
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111152795.4A
Other languages
English (en)
Other versions
CN113913791A (zh
Inventor
许烁烁
彭宜昌
杨彬
徐伟
李涛
吴易龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Red Sun Photoelectricity Science and Technology Co Ltd
Original Assignee
Hunan Red Sun Photoelectricity Science and Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Red Sun Photoelectricity Science and Technology Co Ltd filed Critical Hunan Red Sun Photoelectricity Science and Technology Co Ltd
Priority to CN202111152795.4A priority Critical patent/CN113913791B/zh
Publication of CN113913791A publication Critical patent/CN113913791A/zh
Application granted granted Critical
Publication of CN113913791B publication Critical patent/CN113913791B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明公开了一种多层非晶硅薄膜的制备方法及太阳能电池,该制备方法包括:在低射频功率和低加热温度、高的射频功率和加热温度、更高射频频率的条件下,利用PECVD工艺依次在硅片表面沉积三层非晶硅薄膜。本发明多层非晶硅薄膜的制备方法,通过在硅片表面沉积功能不同的多层非晶硅薄膜,不仅能够减少硅片表面或硅片表面超薄氧化硅薄膜的损伤,有利于提高硅片的少子寿命以及电池的转化效率,而且能够显著提高非晶硅薄膜的沉积速率,减少镀膜时间,有利于提高设备产能,具有产能高、生产工序少、生产能耗低等优点,同时本发明制备方法还具有工艺简单、操作方便、易于控制等优点,能够直接利用现有设备进行制备,适合性强,便于工业化利用。

Description

一种多层非晶硅薄膜的制备方法及太阳能电池
技术领域
本发明属于太阳能电池片领域,涉及一种多层非晶硅薄膜的制备方法及太阳能电池。
背景技术
光伏产业技术发展迅速,尤其是隧穿氧化钝化接触(TOPCon)电池,采用超薄二氧化硅隧道层和掺杂非晶硅钝化硅片背面,经过退火工艺使非晶硅重新结晶为多晶硅,加强了钝化效果。相比PERC电池,避免了在钝化膜上激光开槽,能有效提高硅片少子寿命,提高电池的开路电压和填充因子,从而提高电池效率。但是采用平行极板产生等离子体的方法,在低加热温度、低射频功率的工艺条件时,沉积的非晶硅中氢含量偏高,在后续的高温退火过程中易产生氢溢出,导致薄膜脱落产生粉尘;在高加热温度、高射频功率的工艺条件时,沉积的非晶硅折射率偏高,沉积过程中对氧化硅的损伤大;在后续高温退火的过程中,薄膜由于折射率变化导致体积膨胀,也会对氧化硅薄膜造成损伤,这导致采用平行极板沉积的非晶硅薄膜,在高温退火后,硅片少子寿命偏低,电池转换效率偏低。
发明内容
本发明要解决的技术问题是克服现有技术的不足,提供一种能够有效保护超薄氧化硅薄膜的多层非晶硅薄膜的制备方法及太阳能电池。
为解决上述技术问题,本发明采用以下技术方案:
一种多层非晶硅薄膜的制备方法,包括以下步骤:
(1)在低射频功率和低加热温度的条件下,利用PECVD工艺在硅片表面沉积第一层非晶硅薄膜;
(2)提高射频功率和加热温度,继续利用PECVD工艺在第一层非晶硅薄膜表面沉积第二层非晶硅薄膜;
(3)进一步提高射频功率,继续利用PECVD工艺在第二层非晶硅薄膜表面沉积第三层非晶硅薄膜,完成对多层非晶硅薄膜的制备。
上述的制备方法,进一步改进的,步骤(1)中,所述PECVD工艺的工艺参数为:温度为200℃~500℃,平行极板间的间距为30mm~120mm,工艺腔压力为15Pa~200Pa,射频的功率为25W~1200W,沉积的时间为5s~100s,硅烷的流量为25sccm~2400sccm,掺杂气体的流量为0sccm~1200sccm,氩气的流量为0sccm~20000sccm;所述掺杂气体为磷烷、硼烷、乙硼烷中的至少一种。
上述的制备方法,进一步改进的,步骤(1)中,所述第一层非晶硅薄膜的厚度为5nm~40nm;所述第一层非晶硅薄膜的折射率为3.5~4.0。
上述的制备方法,进一步改进的,步骤(2)中,所述PECVD工艺的工艺参数为:温度为250℃~600℃,平行极板间的间距为20mm~60mm,工艺腔压力为15Pa~200Pa,射频的功率为50W~1200W,沉积的时间为100s~600s,硅烷的流量为25sccm~2400sccm,掺杂气体的流量为0sccm~1200sccm,氩气的流量为0sccm~20000sccm,氢气的流量为0sccm~20000sccm;所述掺杂气体为磷烷、硼烷、乙硼烷中的至少一种。
上述的制备方法,进一步改进的,步骤(2)中,所述第二层非晶硅薄膜的厚度为50nm~120nm;所述第二层非晶硅薄膜的折射率为4.0~4.5。
上述的制备方法,进一步改进的,步骤(3)中,所述PECVD工艺的工艺参数为:温度为250℃~700℃,平行极板间的间距为30mm~120mm,工艺腔压力为15Pa~200Pa,射频的功率为100W~1200W,沉积的时间为5s~100s,硅烷的流量为50sccm~2400sccm,掺杂气体的流量为0sccm~1200sccm,氩气的流量为0sccm~20000sccm;所述掺杂气体为磷烷、硼烷、乙硼烷中的至少一种。
上述的制备方法,进一步改进的,步骤(3)中,所述第三层非晶硅薄膜的厚度为5nm~120nm;所述第三层非晶硅薄膜的折射率为3.5~4.5。
上述的制备方法,进一步改进的,还包括以下步骤:对沉积有三层非晶硅薄膜的硅片进行退火,得到多晶硅;所述退火的温度为800℃~950℃;所述退火的时间为30min~60min。
作为一个总的技术构思,本发明还提供了一种太阳能电池,所述太阳能电池是基于上述的多层非晶硅薄膜的制备方法制备而得。
上述的太阳能电池,进一步改进的,所述太阳能电池为TOPCon电池、HJT电池、HBC电池的其中一种。
与现有技术相比,本发明的优点在于:
(1)本发明提供了一种多层非晶硅薄膜的制备方法,先在低射频功率和低加热温度的条件下,利用PECVD工艺在硅片表面沉积第一层非晶硅薄膜,其中第一层非晶硅薄膜是一层较为疏松的薄膜,其折射率与高温退火后生成的多晶硅折射率相接近或相同,因而能够避免由于折射率变化导致体积膨胀而损伤氧化硅薄膜,对超薄氧化硅膜层起保护作用,而且在低射频功率和低加热温度的条件下进行沉积,也能减少等离子体对超薄氧化硅膜层的损伤,与此同时,第一层非晶硅薄膜的存在也能避免后续沉积工艺中产生的等离子体对超薄氧化硅膜层的造成损伤,也能保护超薄氧化硅膜层;然后,通过提高射频功率和加热温度,在高射频功率、高加热温度、大氩气流量的方式,继续利用PECVD工艺在第一层非晶硅薄膜表面沉积第二层非晶硅薄膜,其中第二层非晶硅薄膜是一层氢含量低、致密性好、折射率高的薄膜,避免后续的高温退火过程中因氢原子在非晶硅薄膜中聚集形成氢气泡,进而氢气泡溢出导致非晶硅薄膜破裂,造成局部多晶硅薄膜脱落形成粉尘的现象;进而,通过进一步提高射频功率,在高射频功率、高加热温度、高硅烷流量的工艺条件下,继续利用PECVD工艺在第二层非晶硅薄膜表面沉积第三层非晶硅薄膜,实现非晶硅薄膜的快速沉积,完成对多层非晶硅薄膜的制备。与现有常规制备方法相比,本发明多层非晶硅薄膜的制备方法,通过在硅片表面沉积功能不同的多层非晶硅薄膜,不仅能够减少高温退火对硅片表面或硅片表面超薄氧化硅薄膜的损伤,从而在确保非晶硅有效转化成多晶硅的同时也能显著提升硅片的钝化效果,有利于提高硅片的少子寿命以及电池的转化效率,而且能够显著提高非晶硅薄膜的沉积速率,减少镀膜时间,有利于提高设备产能,具有产能高、生产工序少、生产能耗低等优点,同时本发明制备方法还具有工艺简单、操作方便、易于控制等优点,能够直接利用现有设备进行制备,适合性强,便于工业化利用。
(2)本发明还提供了一种太阳能电池,该太阳能电池是基于本发明多层非晶硅薄膜的制备方法制备而得,通过在硅片表面沉积功能不同的多层非晶硅薄膜,不仅能够减少高温退火对硅片表面或硅片表面超薄氧化硅的损伤,从而在高温退火过程中,非晶硅有效转化成多晶硅,增强了硅片的钝化效果,有利于提高硅片的少子寿命以及电池的转化效率,相比常规单层非晶硅薄膜沉积相比,少子寿命从1000μs上升到4000μs,转换效率从23.5%上升到24%以上。
附图说明
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述。
图1为本发明实施例1中采用的PECVD设备的结构示意图。
图2为本发明实施例1中在硅片表面沉积的多层非晶硅薄膜的示意图。
图例说明:
1、硅片;2、第一层非晶硅薄膜;3、第二层非晶硅薄膜;4、第三层非晶硅薄膜。
具体实施方式
以下结合说明书附图和具体优选的实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。
以下实施例中,所涉及的PECVD设备和高温退火炉为湖南红太阳光电科技有限公司多腔体PECVD镀膜设备和高温退火炉。
实施例1
一种多层非晶硅薄膜的制备方法,具体为采用多腔体PECVD镀膜设备高温退火炉制备多层非晶硅薄膜,如图1所示,采用多腔体PECVD镀膜设备包括自动上下料装置、装载腔、PECVD工艺腔1、PECVD工艺腔2、PECVD工艺腔3及卸载腔,包括以下步骤:
(1)在低射频功率和低加热温度的条件下,利用PECVD工艺在硅片表面沉积第一层非晶硅薄膜,具体为,在自动上下料装置完成硅片装载后,载板通过滚轮传输至可抽真空的装载腔,进行红外加热,然后传输至PECVD工艺腔1,在PECVD工艺腔1内沉积一层保护超薄氧化膜层的非晶硅薄膜,其中PECVD工艺腔1的工艺条件(低功率、大极板间距、低加热温度、低掺杂气体流量)如下:加热温度设置350℃;平行极板间的间距为45mm;气体流量设置为:硅烷的流量为300sccm,磷烷的流量为100sccm,氩气的流量为2000sccm;工艺压力为133Pa;射频的功率为400W;沉积的时间为50s。
步骤(1)中,在硅片表面沉积的第一层非晶硅薄膜的厚度为20nm,折射率为3.6。
步骤(1)中,采用低功率、大极板间距、低加热温度、低掺杂气体流量等工艺条件,避免等离子体对超薄氧化硅膜层的损伤,对超薄氧化硅膜层起保护作用,这是由于等离子体对超薄氧化硅有轰击作用,这会对氧化硅薄膜造成损伤;在后续的高温退火中,由于非晶硅晶格发生变化,当非晶硅折射率与退火后形成的多晶硅折射率偏差过大时,在退火过程中的晶格变化过程,也会对氧化硅薄膜造成损伤,最终造成硅片少子寿命下降,TOPCon电池转换效率降低。
(2)在步骤(1)的基础上,提高射频功率和加热温度,在较高的射频功率和较高加热温度的工艺条件下,利用PECVD工艺在第一层非晶硅薄膜表面沉积第二层非晶硅薄膜,具体为,将载板输送至PECVD工艺腔2中,在PECVD工艺腔2中沉积一层低氢含量、致密、折射率高的非晶硅薄膜,其中PECVD工艺腔2具体的工艺条件(高功率、高加热温度、大氩气流量)如下:加热温度设置550℃;平行极板间的间距为40mm;气体流量设置为:硅烷的流量为300sccm,磷烷的流量为150sccm,氩气的流量为4000sccm,氢气的流量为2000sccm。工艺压力为133Pa;射频的功率为500W;沉积的时间为80s。
步骤(2)中,在第一层非晶硅薄膜表面沉积的第二层非晶硅薄膜的厚度为50nm,折射率为4.4。
(3)在步骤(2)的基础上,进一步提高射频功率,在高功率、高加热温度、高硅烷流量的工艺条件下,利用PECVD工艺在第二层非晶硅薄膜表面沉积第三层非晶硅薄膜,具体为,将载板输送至PECVD工艺腔3,在PECVD工艺腔3内快速沉积非晶硅薄膜,其中PECVD工艺腔3具体的工艺条件如下:加热温度设置550℃;平行极板间的间距为35mm;硅烷的流量为450sccm,磷烷的流量为225sccm,氩气的流量为4000sccm;工艺压力为133Pa;射频的功率为600W;沉积的时间为60s。
步骤(3)中,在第二层非晶硅薄膜表面沉积的第三层非晶硅薄膜的厚度为50nm,折射率为4.21。
如图2所示,本实施例中,硅片1表面沉积有三层非晶硅薄膜,由上而下依次为第一层非晶硅薄膜2、第二层非晶硅薄膜3、第三层非晶硅薄膜4,其中硅片表面沉积的非晶硅薄膜的总膜厚为120nm,折射率为4.20。
(4)对步骤(3)中沉积有三层非晶硅薄膜的硅片进行退火,具体为,将沉积有三层非晶硅薄膜的硅片的硅片转移至高温退火炉中,在920℃下高温退火30min,将多层非晶硅薄膜转化成多晶硅,并进一步制成TOPCon电池。
测试结果表明:
第一、经920℃高温退火30min后,多层非晶硅薄膜的厚度为122nm,折射率为3.73。
第二、测试硅片的少子寿命和IVoc,其中,退火后的硅片的平均少子寿命为2181.96μs,IVoc为0.7202V;在硅片双面沉积氮化硅后,经过高温烧结炉进行烧结,所得硅片的平均少子寿命为4263.24μs,IVoc为0.7449V;最终制得的TOPCon电池的平均转换效率>24%。而常规的单层非晶硅薄膜,经920℃高温退火30min后,硅片的平均少子寿命为516.32μs,IVoc为0.6895V;在硅片双面沉积氮化硅后,经过高温烧结炉进行烧结,所得硅片的平均少子寿命1271.94μs,IVoc为0.7132V;最终制得的TOPCon电池的平均转换效率>23.5%。
本实施例中,还考察了不同PECVD工艺参数对硅片平均少子寿命、Ivoc和电池的平均转换效率的影响,结果如表1所示。
表1不同PECVD工艺参数对硅片平均少子寿命、Ivoc和电池的平均转换效率的影响
由表1可知,本发明中,通过在硅片表面沉积功能不同的多层非晶硅薄膜,在后续的退火过程中,不仅能够减少对硅片表面或硅片表面超薄氧化硅的损伤,从而有利于提高硅片的勺子寿命以及电池的转化效率,而且能够显著提高非晶硅薄膜的沉积速率,减少镀膜时间,有利于提高设备产能,具有产能高、生产工序少、生产能耗低等优点,同时本发明制备方法还具有工艺简单、操作方便、易于控制等优点,能够直接利用现有设备进行制备,适合性强,便于工业化利用。同时,相比常规太阳能电池,基于本发明多层非晶硅薄膜的制备方法制备而得的太阳能电池的转化效率更高,与常规的单层非晶硅薄膜沉积相比,少子寿命从1000μs上升到4000μs,转换效率从23.5%上升到24%以上。
以上实施例仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例。凡属于本发明思路下的技术方案均属于本发明的保护范围。应该指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下的改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

1.一种多晶硅薄膜的制备方法,其特征在于,包括以下步骤:
(1)在低射频功率和低加热温度的条件下,利用PECVD工艺在硅片表面沉积第一层非晶硅薄膜;所述射频功率为25W~1200W,所述加热温度为200℃~500℃;所述第一层非晶硅薄膜的折射率为3.5~3.83;
(2)提高射频功率和加热温度,继续利用PECVD工艺在第一层非晶硅薄膜表面沉积第二层非晶硅薄膜;所述射频功率为50W~1200W,所述加热温度为250℃~600℃;所述第二层非晶硅薄膜的沉积过程中,氩气的流量为4000sccm~20000sccm,氢气的流量为0sccm~2000sccm;所述第二层非晶硅薄膜的折射率为4.0~4.5;
(3)进一步提高射频功率,继续利用PECVD工艺在第二层非晶硅薄膜表面沉积第三层非晶硅薄膜,完成对多层非晶硅薄膜的制备;所述射频功率为100W~1200W;所述第三层非晶硅薄膜的折射率为3.5~4.5;
还包括以下步骤:对沉积有三层非晶硅薄膜的硅片进行退火,得到多晶硅;所述退火的温度为800℃~950℃;所述退火的时间为30min~60min。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述PECVD工艺的工艺参数为:平行极板间的间距为30mm~120mm,工艺腔压力为15Pa~200Pa,沉积的时间为5s~100s,硅烷的流量为25sccm~2400sccm,掺杂气体的流量为0sccm~1200sccm,氩气的流量为0sccm~20000sccm;所述掺杂气体为磷烷、硼烷、乙硼烷中的至少一种。
3.根据权利要求2所述的制备方法,其特征在于,步骤(1)中,所述第一层非晶硅薄膜的厚度为5nm~40nm。
4.根据权利要求1~3中任一项所述的制备方法,其特征在于,步骤(2)中,所述PECVD工艺的工艺参数为:平行极板间的间距为20mm~60mm,工艺腔压力为15Pa~200Pa,沉积的时间为100s~600s,硅烷的流量为25sccm~2400sccm,掺杂气体的流量为0sccm~1200sccm;所述掺杂气体为磷烷、硼烷、乙硼烷中的至少一种。
5.根据权利要求4所述的制备方法,其特征在于,步骤(2)中,所述第二层非晶硅薄膜的厚度为50nm~120nm。
6.根据权利要求1~3中任一项所述的制备方法,其特征在于,步骤(3)中,所述PECVD工艺的工艺参数为:温度为250℃~700℃,平行极板间的间距为30mm~120mm,工艺腔压力为15Pa~200Pa,沉积的时间为5s~100s,硅烷的流量为50sccm~2400sccm,掺杂气体的流量为0sccm~1200sccm,氩气的流量为0sccm~20000sccm;所述掺杂气体为磷烷、硼烷、乙硼烷中的至少一种。
7.根据权利要求6所述的制备方法,其特征在于,步骤(3)中,所述第三层非晶硅薄膜的厚度为5nm~120nm。
8.一种太阳能电池,其特征在于,所述太阳能电池是基于权利要求1~7中任一项所述的多晶硅薄膜的制备方法制备而得。
9.根据权利要求8所述的太阳能电池,其特征在于,所述太阳能电池为TOPCon电池、HJT电池、HBC电池的其中一种。
CN202111152795.4A 2021-09-29 2021-09-29 一种多层非晶硅薄膜的制备方法及太阳能电池 Active CN113913791B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111152795.4A CN113913791B (zh) 2021-09-29 2021-09-29 一种多层非晶硅薄膜的制备方法及太阳能电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111152795.4A CN113913791B (zh) 2021-09-29 2021-09-29 一种多层非晶硅薄膜的制备方法及太阳能电池

Publications (2)

Publication Number Publication Date
CN113913791A CN113913791A (zh) 2022-01-11
CN113913791B true CN113913791B (zh) 2024-03-01

Family

ID=79237155

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111152795.4A Active CN113913791B (zh) 2021-09-29 2021-09-29 一种多层非晶硅薄膜的制备方法及太阳能电池

Country Status (1)

Country Link
CN (1) CN113913791B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115188835B (zh) * 2022-05-07 2024-04-19 天合光能股份有限公司 钝化接触的多层多晶硅电池及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0478984A1 (en) * 1990-10-05 1992-04-08 International Business Machines Corporation Plasma enhanced chemical vapor processing system using hollow cathode effect
US5470619A (en) * 1993-09-07 1995-11-28 Korea Advanced Institute Of Science And Technology Method of the production of polycrystalline silicon thin films
KR20060018533A (ko) * 2004-08-24 2006-03-02 삼성에스디아이 주식회사 박막트랜지스터 제조 방법
KR20080036502A (ko) * 2006-10-23 2008-04-28 실리콘 디스플레이 (주) 다결정 실리콘 박막 및 그 제조방법
CN202616239U (zh) * 2012-02-28 2012-12-19 常州天合光能有限公司 一种低损伤高钝化的太阳能电池
CN102931293A (zh) * 2011-08-11 2013-02-13 吉富新能源科技(上海)有限公司 取代非晶硅薄膜太阳电池的背反射层金属氧化物
CN106847675A (zh) * 2017-04-21 2017-06-13 京东方科技集团股份有限公司 低温多晶硅薄膜及其制备方法、薄膜晶体管和显示面板
KR20200058735A (ko) * 2018-11-20 2020-05-28 성균관대학교산학협력단 광 특성이 조절 가능한 후면 에미터 결정질 실리콘 태양전지의 제조 방법
CN112713212A (zh) * 2021-01-28 2021-04-27 湖南红太阳光电科技有限公司 一种基于双层透明导电氧化物薄膜的hjt电池及其制备方法
CN114038928A (zh) * 2021-11-25 2022-02-11 浙江晶科能源有限公司 太阳能电池及其制备方法、光伏组件

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7687334B2 (en) * 2006-03-23 2010-03-30 Board Of Trustees Of The University Of Arkansas Fabrication of large grain polycrystalline silicon film by nano aluminum-induced crystallization of amorphous silicon

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0478984A1 (en) * 1990-10-05 1992-04-08 International Business Machines Corporation Plasma enhanced chemical vapor processing system using hollow cathode effect
US5470619A (en) * 1993-09-07 1995-11-28 Korea Advanced Institute Of Science And Technology Method of the production of polycrystalline silicon thin films
KR20060018533A (ko) * 2004-08-24 2006-03-02 삼성에스디아이 주식회사 박막트랜지스터 제조 방법
KR20080036502A (ko) * 2006-10-23 2008-04-28 실리콘 디스플레이 (주) 다결정 실리콘 박막 및 그 제조방법
CN102931293A (zh) * 2011-08-11 2013-02-13 吉富新能源科技(上海)有限公司 取代非晶硅薄膜太阳电池的背反射层金属氧化物
CN202616239U (zh) * 2012-02-28 2012-12-19 常州天合光能有限公司 一种低损伤高钝化的太阳能电池
CN106847675A (zh) * 2017-04-21 2017-06-13 京东方科技集团股份有限公司 低温多晶硅薄膜及其制备方法、薄膜晶体管和显示面板
KR20200058735A (ko) * 2018-11-20 2020-05-28 성균관대학교산학협력단 광 특성이 조절 가능한 후면 에미터 결정질 실리콘 태양전지의 제조 방법
CN112713212A (zh) * 2021-01-28 2021-04-27 湖南红太阳光电科技有限公司 一种基于双层透明导电氧化物薄膜的hjt电池及其制备方法
CN114038928A (zh) * 2021-11-25 2022-02-11 浙江晶科能源有限公司 太阳能电池及其制备方法、光伏组件

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
戴达煌等.《现代材料表面技术科学》.,冶金工业出版社,2004,第315页. *
非晶硅薄膜厚度及特性对准分子激光晶化的影响;李小龙;黄鹏;张慧娟;李栋;田雪雁;李良坚;刘政;;表面技术(第04期);全文 *

Also Published As

Publication number Publication date
CN113913791A (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
CN101567400A (zh) 薄膜硅太阳能电池及其制造方法
WO2023124046A1 (zh) 一种隧穿氧化层、n型双面太阳能晶硅电池及制备方法
TW201128780A (en) Passivation layer for wafer based solar cells and method of manufacturing thereof
CN108695408B (zh) 一种管式pecvd沉积氮化硅叠层减反射膜工艺
CN101989623B (zh) 一种太阳能电池减反射膜及其制备方法
WO2024012147A1 (zh) 一种硼掺杂发射极的制备方法
CN113913791B (zh) 一种多层非晶硅薄膜的制备方法及太阳能电池
CN111952153A (zh) 隧穿氧化层的制备方法、太阳能电池及其制备方法
CN112510100A (zh) 一种perc电池的背面钝化膜结构及其制备方法和用途
CN115863480A (zh) 背面多种元素掺杂的N型TOPCon太阳能电池的制备方法
CN113621946A (zh) 一种叠层背膜及其制备方法
CN116190498B (zh) 制备隧穿氧化层和非晶硅薄膜的方法及TOPCon电池
US9559221B2 (en) Solar cell production method, and solar cell produced by same production method
TWI809987B (zh) 用於製造異質結太陽能電池的方法及異質結太陽能電池
CN115692533A (zh) 一种TOPCon电池及其制备方法
CN106601588A (zh) 一种氧化硅钝化层的制备方法
EP4307394A1 (en) Perc battery back passivation structure, and perc battery and preparation method therefor
CN111403492A (zh) 太阳能电池用钝化层的制备方法以及太阳能电池的制备方法
CN115995512A (zh) 太阳电池及其制备方法
CN112349792B (zh) 一种单晶硅钝化接触结构及其制备方法
CN114843175A (zh) 一种n型掺杂氧化微晶硅、异质结太阳能电池及两者的制备方法
CN115181958A (zh) 一种对pecvd设备进行预镀膜处理的方法和硅片的镀膜方法
CN112563342A (zh) 一种光伏电池的钝化层结构、其制备方法及光伏电池
CN115036388B (zh) 太阳能电池及其制作方法
CN114203832B (zh) 具有钝化接触层并叠加复合钝化层的铸造单晶硅钝化结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant