CN113913438A - 植物biaf基因的应用 - Google Patents

植物biaf基因的应用 Download PDF

Info

Publication number
CN113913438A
CN113913438A CN202111185723.XA CN202111185723A CN113913438A CN 113913438 A CN113913438 A CN 113913438A CN 202111185723 A CN202111185723 A CN 202111185723A CN 113913438 A CN113913438 A CN 113913438A
Authority
CN
China
Prior art keywords
biaf
gene
tomato
ser
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111185723.XA
Other languages
English (en)
Other versions
CN113913438B (zh
Inventor
刘浩然
汪俏梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Tea Research Institute Chinese Academy of Agricultural Sciences
Original Assignee
Zhejiang University ZJU
Tea Research Institute Chinese Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU, Tea Research Institute Chinese Academy of Agricultural Sciences filed Critical Zhejiang University ZJU
Priority to CN202111185723.XA priority Critical patent/CN113913438B/zh
Publication of CN113913438A publication Critical patent/CN113913438A/zh
Application granted granted Critical
Publication of CN113913438B publication Critical patent/CN113913438B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明属于生物技术领域,具体涉及番茄BIAF基因在提高果实硬度中的应用。本发明公开了BIAF基因的用途:调控果实(番茄)的硬度;当BIAF基因过表达时,提高番茄果实的硬度;当BIAF基因沉默时,降低番茄果实的硬度。

Description

植物BIAF基因的应用
技术领域
本发明属于生物技术领域;具体涉及番茄BIAF基因在提高果实硬度中的应用。
背景技术
番茄原产于南美洲,是全世界栽培最广泛的蔬菜作物之一,我国的番茄种植面积和产量都位居世界前列。随着番茄产量的提高,番茄采后货架期损失成为制约番茄产业发展的重要问题。如何提高番茄果实品质从而延长番茄贮藏时间,正日益受到番茄销售者和科研工作者的关注。番茄果实硬度是影响番茄果实货架期的首要因素,提高果实硬度能显著延长番茄果实货架期;延长果实货架期减少采后损失,有效避免番茄销售者因这些损失造成的经济利益流失。
BIAF(Solyc01g108080)是脱落酸(abscisic acid,ABA)信号转导途径的脱落酸响应转录因子的番茄同源基因之一。过往研究只关注脱落酸响应转录因子在拟南芥中抵抗逆境的功能,而其同源基因BIAF调控番茄果实硬度的功能未见报道。
发明内容
本发明要解决的技术问题是提供BIAF基因在提高果实硬度中的应用。
为了解决上述技术问题,本发明提供BIAF基因的用途:调控果实硬度,BIAF基因的核苷酸序列如SEQ ID NO:1所述。
作为本发明BIAF基因的用途的改进:所述果实为番茄。
BIAF基因用于构建转基因番茄,所述转基因番茄的硬度显著提高。当BIAF基因过表达时,提高番茄果实的硬度;当BIAF基因沉默时,降低番茄果实的硬度。
BIAF基因编码的蛋白质的氨基酸序列如SEQ ID NO:2所示。
本发明首次构建了番茄BIAF基因过表达和基因沉默植株,并进行功能研究。通过测定果实硬度,发现BIAF基因在提高果实硬度中起到正向调控作用。
附图说明
为了使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明的具体实施方式作进一步详细说明。
图1是BIAF基因过表达载体pGWB5-BIAF载体图谱。
图2是BIAF基因沉默载体pBIN19::BIAF载体图谱。
图3是BIAF基因过表达和基因沉默果实中BIAF基因的表达量;
绿熟期(Mature green,MG),破色期(Breaker,B),红熟期(Red ripe,R)。星号代表株系与对照具有显著差异(p<0.05)。
图4是BIAF基因过表达果实和基因沉默果实的果实硬度;
绿熟期(Mature green,MG),破色期(Breaker,B),粉色期(Pink,P),红熟期(Redripe,R)。不同字母代表不同组之间具有显著差异(p<0.05)。
具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:
一、获得植物BIAF基因全长序列:
用Primer Premier 6.0设计全基因扩增引物,取种植在浙江省杭州市华家池温室的野生型番茄Ailsa Craig(AC)叶片cDNA为模版(cDNA的提取方式为常规技术,例如可参照CN 104561025 A),设计特异性引物BIAF-F和BIAF-R,用PrimerSTAR高保真酶PCR扩增BIAF片段。
引物序列为:BIAF-F:5’-ATGGGATCCTACATGAACTTCAAGA-3’
BIAF-R:5’-CTACCAAGGTCCTGTCAGTGTCCTT-3’
PCR扩增反应体系:2xPrimerSTAR buffer 25ul、dNTP Mixture 5ul、PrimerSTARDNA polymerase 1ul、ddH2O 16ul、cDNA1ul、上下游引物各1ul,共50ul。PCR反应程序为:94℃预变性90秒;94℃变性30秒,57℃退火45秒,72℃延伸1分钟,35个循环;最后72℃终延伸5分钟,将获得的PCR产物用1%琼脂糖凝胶电泳鉴定,然后将扩增条带用Axygen DNA凝胶试剂盒回收纯化,将回收产物构建到pQB-V3载体上,将上述重组质粒送到擎科公司测序确认。
所得基因BIAF的核苷酸序列如SEQ ID No:1所示;该基因编码的蛋白质的氨基酸序列如SEQ ID No:2所示。
二、BIAF基因过表达载体的构建
BIAF过表达载体的构建,以pGWB5为终载体,构建具有CaMV35S重组型过表达启动子的pGWB5-BIAF载体。
利用LR反应将目的片段(即SEQ ID No:1所述序列)从pQB-V3初始载体中转移到带有pGWB5终载体上。使用
Figure BDA0003299119230000021
LR
Figure BDA0003299119230000022
II Enzyme mix(Thermo Fisher)试剂盒,方法参照试剂盒中说明书。
反应后将pGWB5-BIAF质粒转入大肠杆菌DH5α感受态中。涂布法筛选,并用菌落PCR筛选出带有目的片段的pGWB5重组质粒,测序鉴定。用DNAMAN软件分析测序结果。正确转化子命名pGWB5-BIAF(图1)。
三、BIAF基因沉默载体的构建
RNAi干扰载体以pHANNIBAL为原始载体,通过PCR和酶切重组,构建CaMV 35S启动子驱动下的BIAF发卡沉默单元。选取BIAF基因全长片段中约255bp的片段,确定该片段的序列没有编码其它基因,以该序列作为RNA干扰的片段。最终利用原始载体pHANNIBAL和中间载体pBIN19共同的酶切位点SacⅠ&SpeⅠ酶切位点最终整合到植物双元载体pBIN19上,最终得到基因沉默载体pBIN19::BIAF(图2)。
基因沉默用到的255bp的发卡沉默单元片段为:
GTGTAGTTAGAGAAGATATGCAATCTACTTCAAACTCAAGTGGTATTACATTTAACAATGGTTTAAGTCAACAGAACAACAACAATGGTTTCAACATAGCATTTCAGCAACCAACTCAAAACAATGGACTGTTGATTAATCAAATAGCAGCCAATAACATGTTGAATGTGGTTGGTGCCACGGCCTCACAGCAACAACAACCTCAGCAGCAACAGCCTCTTTTCCCCAAGCAAACAACAGTGGCGTTTGCATCTC
四、转基因材料的构建与检测:
将过表达载体pGWB5-BIAF或基因沉默载体pBIN19::BIAF结合转移至农杆菌LBA4404,并进行番茄子叶侵染,通过诱导愈伤,抗性诱导分化以及生根培养,获得组培苗,利用PCR和RT-PCR验证阳性转基因植株。将T2代种子播在卡那霉素(50mg/L)的培养基上发芽,得到5个过表达转基因株系和6个基因沉默株系。
说明:满足种子在卡那霉素(50mg/L)的培养基上长侧根与未长侧根的分离比符合3:1且绿熟期整体果实(整果果皮液氮研磨成粉末取样检测)基因表达量升高条件的属于过表达,基因表达量降低一倍以上的属于基因沉默。选取基因转录水平较高的2个过表达株系OE-1、OE-2和基因转录水平较低的2个基因沉默株系RNAi-1、RNAi-2作为研究对象(图3)。
五、转基因番茄果实硬度研究
野生型和转基因材料种植在浙江大学华家池蔬菜基地同一温室中,待番茄植株长出四穗花序进行花期标记,每个花序疏花至只有四个果实,花后35天不再继续膨大全部绿色果实为绿熟期(Mature green,MG),绿熟期3d后果实顶端变红为破色期(Breaker,B),破色期10d后为红熟期(Red ripe,R)。
图3和图4中,AC代表未转基因的野生型番茄,OE-1和OE-2代表BIAF的两个过表达株系,RNAi-1和RNAi-2代表BIAF的两个基因沉默株系。
采用RT-PCR方法对AC、OE-1、OE-2、RNAi-1、RNAi-2于绿熟期、破色期、红熟期的整果果皮部位进行基因表达量检测,所得结果如图3所述。
摘取野生型和转基因材料同一结位的无明显机械损伤的选特定时期果实,每个果实使用仪器TA-XT2i(Godalming,UK)在果实赤道部分均分测定四点,每次测定二十五个左右的生物学重复,每个测定点用直径7.5mm塑胶探头,测定深度为10mm,测定速度为1mm/s(以扎透果皮为标准)。以果实能承受的最大力作为衡量果实硬度的指标,单位为牛顿(N)。
所得结果为:BIAF的两个番茄过表达株系OE-1和OE-2的果实硬度显著升高,BIAF的两个番茄基因沉默株系RNAi-1和RNAi-2果实硬度显著降低(图4);因此证明:提高BIAF基因表达量能显著提高果实硬度,BIAF基因可以正向调控果实硬度。
最后,还需要注意的是,以上列举的仅是本发明的若干个具体实施例。显然,本发明不限于以上实施例,还可以有许多变形。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。
序列表
<110> 中国农业科学院茶叶研究所
浙江大学
<120> 植物BIAF基因的应用
<160> 2
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1245
<212> DNA
<213> 番茄(Lycopersicon esculentum)
<400> 1
atgggatcct acatgaactt caagaacatt actgacaagc cacaggcgga gagcaacggg 60
gggaagtcag ttggtaatgg tgatatccct ttggctaggc aatcttccat atactcgttg 120
acgtttgatg agcttcaaac tacatttagt ggacttggaa aagattttgg atcaataaac 180
atggaggaac tgttgaaaag catttggaca gctgaagagt ctcaagctgc gacatcttct 240
actgggggag gagaagatgg gattgcacct gtaggaaatc tacagaggca aggttctttg 300
acattacctc ggacactaag tcagaaaact gttgatgaag tatggagaaa ctttcaaaaa 360
gaaactacgg tatgtacccc agacggaagt gaaactggga aatcaaactt tgggcagagg 420
caatctacct tgggagaaat gacattggag gagtttctgg tgaaagcagg tgtagttaga 480
gaagatatgc aatctacttc aaactcaagt ggtattacat ttaacaatgg tttaagtcaa 540
cagaacaaca acaatggttt caacatagca tttcagcaac caactcaaaa caatggactg 600
ttgattaatc aaatagcagc caataacatg ttgaatgtgg ttggtgccac ggcctcacag 660
caacaacaac ctcagcagca acagcctctt ttccccaagc aaacaacagt ggcgtttgca 720
tctcctatgc agttatcaaa taatggtcac ctggctagcc cacgaacaag ggctcctgct 780
gttggaatgt ccagtccttc tgtaaatgct agtatggctc aaggcggagt tatggggaag 840
acaggatttc ataatggagt ttcaccagca aaagtaggat cccctggaaa cgattttatt 900
gcaaggagca atgtggatac atcgtctctt tcaccttccc cctatgcatt tagtgaaggt 960
ggaaggggaa ggagatctgg tagttctttg gaaaaagttg tggagcgaag gcgtaggagg 1020
atgattaaga acagagaatc tgcagctaga tcaagggctc ggaagcaggc ctatacttta 1080
gagttggaag ctgaagtggc aaagctaaaa gaaattaatg aagagttgcg gaagaaacag 1140
gctgaaatta ttgagaagca gaaaaatcag ctaaccgata aaaggaatat gacatgtgga 1200
tataaattaa gatgcttgag aaggacactg acaggacctt ggtag 1245
<210> 2
<211> 414
<212> PRT
<213> 番茄(Lycopersicon esculentum)
<400> 2
Met Gly Ser Tyr Met Asn Phe Lys Asn Ile Thr Asp Lys Pro Gln Ala
1 5 10 15
Glu Ser Asn Gly Gly Lys Ser Val Gly Asn Gly Asp Ile Pro Leu Ala
20 25 30
Arg Gln Ser Ser Ile Tyr Ser Leu Thr Phe Asp Glu Leu Gln Thr Thr
35 40 45
Phe Ser Gly Leu Gly Lys Asp Phe Gly Ser Ile Asn Met Glu Glu Leu
50 55 60
Leu Lys Ser Ile Trp Thr Ala Glu Glu Ser Gln Ala Ala Thr Ser Ser
65 70 75 80
Thr Gly Gly Gly Glu Asp Gly Ile Ala Pro Val Gly Asn Leu Gln Arg
85 90 95
Gln Gly Ser Leu Thr Leu Pro Arg Thr Leu Ser Gln Lys Thr Val Asp
100 105 110
Glu Val Trp Arg Asn Phe Gln Lys Glu Thr Thr Val Cys Thr Pro Asp
115 120 125
Gly Ser Glu Thr Gly Lys Ser Asn Phe Gly Gln Arg Gln Ser Thr Leu
130 135 140
Gly Glu Met Thr Leu Glu Glu Phe Leu Val Lys Ala Gly Val Val Arg
145 150 155 160
Glu Asp Met Gln Ser Thr Ser Asn Ser Ser Gly Ile Thr Phe Asn Asn
165 170 175
Gly Leu Ser Gln Gln Asn Asn Asn Asn Gly Phe Asn Ile Ala Phe Gln
180 185 190
Gln Pro Thr Gln Asn Asn Gly Leu Leu Ile Asn Gln Ile Ala Ala Asn
195 200 205
Asn Met Leu Asn Val Val Gly Ala Thr Ala Ser Gln Gln Gln Gln Pro
210 215 220
Gln Gln Gln Gln Pro Leu Phe Pro Lys Gln Thr Thr Val Ala Phe Ala
225 230 235 240
Ser Pro Met Gln Leu Ser Asn Asn Gly His Leu Ala Ser Pro Arg Thr
245 250 255
Arg Ala Pro Ala Val Gly Met Ser Ser Pro Ser Val Asn Ala Ser Met
260 265 270
Ala Gln Gly Gly Val Met Gly Lys Thr Gly Phe His Asn Gly Val Ser
275 280 285
Pro Ala Lys Val Gly Ser Pro Gly Asn Asp Phe Ile Ala Arg Ser Asn
290 295 300
Val Asp Thr Ser Ser Leu Ser Pro Ser Pro Tyr Ala Phe Ser Glu Gly
305 310 315 320
Gly Arg Gly Arg Arg Ser Gly Ser Ser Leu Glu Lys Val Val Glu Arg
325 330 335
Arg Arg Arg Arg Met Ile Lys Asn Arg Glu Ser Ala Ala Arg Ser Arg
340 345 350
Ala Arg Lys Gln Ala Tyr Thr Leu Glu Leu Glu Ala Glu Val Ala Lys
355 360 365
Leu Lys Glu Ile Asn Glu Glu Leu Arg Lys Lys Gln Ala Glu Ile Ile
370 375 380
Glu Lys Gln Lys Asn Gln Leu Thr Asp Lys Arg Asn Met Thr Cys Gly
385 390 395 400
Tyr Lys Leu Arg Cys Leu Arg Arg Thr Leu Thr Gly Pro Trp
405 410

Claims (3)

1.BIAF基因的用途,其特征是:调控果实硬度,所述BIAF基因的核苷酸序列如SEQ IDNO:1所述。
2.根据权利要求1所述的BIAF基因的用途,其特征是:所述果实为番茄。
3.根据权利要求2所述的BIAF基因的用途,其特征是:
当BIAF基因过表达时,提高番茄果实的硬度;
当BIAF基因沉默时,降低番茄果实的硬度。
CN202111185723.XA 2021-10-12 2021-10-12 植物biaf基因的应用 Active CN113913438B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111185723.XA CN113913438B (zh) 2021-10-12 2021-10-12 植物biaf基因的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111185723.XA CN113913438B (zh) 2021-10-12 2021-10-12 植物biaf基因的应用

Publications (2)

Publication Number Publication Date
CN113913438A true CN113913438A (zh) 2022-01-11
CN113913438B CN113913438B (zh) 2023-11-14

Family

ID=79239405

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111185723.XA Active CN113913438B (zh) 2021-10-12 2021-10-12 植物biaf基因的应用

Country Status (1)

Country Link
CN (1) CN113913438B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020012734A1 (en) * 2000-04-17 2002-01-31 Lipton, Division Of Conopco, Inc. Process for preparation of vegetable and fruit pieces
CN1903014A (zh) * 2006-07-31 2007-01-31 西北农林科技大学 一种抗南方根结线虫的番茄亲本纯系选育方法
CN102477435A (zh) * 2010-11-22 2012-05-30 华中农业大学 利用枳转录因子基因PtrABF提高植物抗旱能力
CN102787124A (zh) * 2012-08-21 2012-11-21 昆明理工大学 一个番茄果实成熟基因SlNAC3及其应用
CN107058337A (zh) * 2017-03-20 2017-08-18 中国农业科学院茶叶研究所 茶树开花基因CsFT及其编码蛋白
CN107746846A (zh) * 2017-10-26 2018-03-02 江苏省农业科学院 编码甘薯bZIP转录因子的IbABF4基因及应用
AU2021293427A1 (en) * 2020-06-17 2023-02-09 Ajinomoto Co., Inc. Method for inducing environmental stress tolerance in plants

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020012734A1 (en) * 2000-04-17 2002-01-31 Lipton, Division Of Conopco, Inc. Process for preparation of vegetable and fruit pieces
CN1903014A (zh) * 2006-07-31 2007-01-31 西北农林科技大学 一种抗南方根结线虫的番茄亲本纯系选育方法
CN102477435A (zh) * 2010-11-22 2012-05-30 华中农业大学 利用枳转录因子基因PtrABF提高植物抗旱能力
CN102787124A (zh) * 2012-08-21 2012-11-21 昆明理工大学 一个番茄果实成熟基因SlNAC3及其应用
CN107058337A (zh) * 2017-03-20 2017-08-18 中国农业科学院茶叶研究所 茶树开花基因CsFT及其编码蛋白
CN107746846A (zh) * 2017-10-26 2018-03-02 江苏省农业科学院 编码甘薯bZIP转录因子的IbABF4基因及应用
AU2021293427A1 (en) * 2020-06-17 2023-02-09 Ajinomoto Co., Inc. Method for inducing environmental stress tolerance in plants

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
NCBI: "ABSCISIC ACID-INSENSITIVE 5-like protein 7 [Solanum lycopersicum]", GENBANK DATABASE, pages 004230778 *
SUPING ZHOU等: "Proteome Modification in Tomato Plants upon Long-term Aluminum Treatment", JOURNAL OF PROTEOME, vol. 15, no. 5, pages 1640 - 1684 *
YANEZ, M等: "An abiotic stress-responsive bZIP transcription factor from wild and cultivated tomatoes regulates stress-related genes", PLANT CELL REPORTS, vol. 28, no. 10, pages 1497 - 1507, XP019758413, DOI: 10.1007/s00299-009-0749-4 *
YANYAN JIA等: "The Protein Kinase SmSnRK2.6 Positively Regulates Phenolic Acid Biosynthesis in Salvia miltiorrhiza by Interacting with SmAREB1", FRONT. PLANT SCI., vol. 8 *
杨生保: "番茄果实硬度QTLs定位、候选基因筛选及果肉组织特征分析", 中国优秀硕士学位论文全文数据库 *

Also Published As

Publication number Publication date
CN113913438B (zh) 2023-11-14

Similar Documents

Publication Publication Date Title
CN107164347B (zh) 控制水稻茎秆粗度、分蘖数、穗粒数、千粒重和产量的理想株型基因npt1及其应用
CN110628808B (zh) 拟南芥AtTCP5基因及其在调控株高上的应用
CN110724183B (zh) GmXTH91蛋白在调控植物抗逆性和株高中的应用
US11952404B2 (en) Tomato mSIBZR1L gene and use thereof
RU2665804C2 (ru) Рнк-интерференция гена phya1 хлопчатника, повышающая качество волокон, удлинение корня, цветение, созревание и потенциал урожайности у хлопчатника мохнатого (gossypium hirsutum l.)
CN108707623B (zh) 一种草莓顶端分生组织相关基因FvMYB17及其应用
CN111333707A (zh) 一种植物粒型相关蛋白及其编码基因与应用
CN114350684B (zh) 一种苹果MdERF-073基因、蛋白及应用
CN114106129B (zh) 油菜sweet15糖转运蛋白基因在提高油菜产量中的应用
CN112899302B (zh) 油菜α-6微管蛋白基因在提高油菜产量中的应用
CN102250226A (zh) 一种与水稻产量相关蛋白及其编码基因与应用
CN111154771B (zh) 番茄SlBZR1L基因的应用
CN117089550A (zh) 苹果MhMYB4基因及在提高植物抗旱性中的应用
CN107253980A (zh) OsGRF7基因在水稻株型调控中的应用
CN110684088B (zh) 蛋白ZmbZIPa3及其编码基因在调控植物生长发育与耐逆性中的应用
CN115960953A (zh) SlEIN4基因在调控番茄果实性状中的应用、载体及载体的应用
CN114836436B (zh) 大豆基因GmRGS1与葡糖糖共同促进豆科植物根瘤产生中的应用
WO2012039159A1 (ja) 塊茎生産能または匍匐枝形成能が野生株に比して向上している匍匐枝形成植物の作製方法、当該方法によって作製された匍匐枝形成植物
CN113913438B (zh) 植物biaf基因的应用
CN111440231B (zh) 蛋白质GmFULa在调控大豆株型和产量中的应用
CN112029775B (zh) 芥蓝BoWRKY33基因及其应用
CN110407922B (zh) 水稻耐冷基因qSCT11及其应用
CN108690847B (zh) 蛋白质nog1在调控植物产量和穗粒数中的应用
CN114438096B (zh) 一种苹果抗性相关基因MdERF-049、蛋白及用途
CN114703200B (zh) 一种苹果耐旱负调控基因MdbHLH108及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant