CN113910485A - 一种生物可降解聚合物珠粒、制备方法及设备 - Google Patents

一种生物可降解聚合物珠粒、制备方法及设备 Download PDF

Info

Publication number
CN113910485A
CN113910485A CN202111359232.2A CN202111359232A CN113910485A CN 113910485 A CN113910485 A CN 113910485A CN 202111359232 A CN202111359232 A CN 202111359232A CN 113910485 A CN113910485 A CN 113910485A
Authority
CN
China
Prior art keywords
extruder
polymer
screw extruder
master batch
beads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111359232.2A
Other languages
English (en)
Other versions
CN113910485B (zh
Inventor
陈志强
夏天
常峻峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Useon Nanjing Extrusion Machinery Co ltd
Original Assignee
Useon Nanjing Extrusion Machinery Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Useon Nanjing Extrusion Machinery Co ltd filed Critical Useon Nanjing Extrusion Machinery Co ltd
Priority to CN202111359232.2A priority Critical patent/CN113910485B/zh
Publication of CN113910485A publication Critical patent/CN113910485A/zh
Priority to PCT/KR2022/018111 priority patent/WO2023090857A1/ko
Priority to KR1020220153509A priority patent/KR20230071760A/ko
Application granted granted Critical
Publication of CN113910485B publication Critical patent/CN113910485B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • B29B9/065Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion under-water, e.g. underwater pelletizers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0012Combinations of extrusion moulding with other shaping operations combined with shaping by internal pressure generated in the material, e.g. foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable

Abstract

本发明公开了一种生物可降解聚合物珠粒,其利用一种设备制备而成,该设备包括挤出机和水下切粒系统;用于通过用至少一台挤出机对原料进行预混反应,及反应后进行挤出操作;以及将挤出物注入切粒系统中并控制切粒系统中工艺水的压力和挤出物中发泡剂的饱和蒸气压,得到可发泡/已发泡珠粒。本发明通过选择合适的生物可降解聚合物原料,调节聚合物体系的结晶性能和可发泡性能,以及选择合适的水下切粒工艺条件,调节可降解聚合物珠粒的含气量和发泡倍率等,连续、高效地生产生物可降解聚合物的发泡珠粒。

Description

一种生物可降解聚合物珠粒、制备方法及设备
领域
本发明涉及高分子材料技术领域,特别涉及一种生物可降解聚合物珠粒、制备方法及设备。
背景
在商业化的聚合物轻量化技术中,珠粒发泡技术由于其可制备高倍率、形状复杂的聚合物发泡制品而备受关注。发泡珠粒成型过程中,其通过相互粘结形成具有不规则几何形状和良好尺寸精确性的发泡制品。与此同时,发泡珠粒制品还具有与挤出发泡制品相当的密度和性质,如吸能性、隔热性、隔音性等。因此,珠粒发泡制品可广泛用于保温、包装、家具、玩具以及汽车零件等领域。
PLA的制备原料为玉米秸秆、甜菜等可再生资源,因具有良好的生物相容性和生物可降解性而受到广泛关注。PLA的力学性能优异、可加工性强,且价格相对低廉,主要应用于食品包装、农用薄膜、医疗以及纺织、3D打印等领域,经过改性的PLA可作为耐用品用于电子、汽车配件等领域。PLA已经成为最为重要的一种石油基聚合物材料的替代物。PBAT是另外一种应用广泛的、具有优异生物可降解性的聚合物材料,其由于良好的延展性、抗冲击性而得到广泛应用。
发明US 8283389和WO 2014/15801都采用间歇的釜压法制备生物可降解聚合物的发泡珠粒。其中,发明US 8283389将PLA珠粒置于液态CO2中静置,以得到CO2饱和的PLA珠粒。并将饱和的PLA珠粒保持在一定的温度、压力条件下,以阻止珠粒发泡,同时使得含浸的CO2浓度达到饱和后PLA总质量的5-18wt%。再将饱和后的PLA珠粒置于预发泡温度下进行预发泡。预发泡的珠粒立即或者储存一段时间后,再将其置于模具中进一步发泡、烧结。模具的温度高于预发泡的温度。发明WO 2014/15801是通过在发泡过程中制造双重熔融峰来得到所需三维结构的EPLA泡珠。本发明介绍的制备EPLA泡珠的方法包括以下几步:1.获得未发泡PLA颗粒,2.将未发泡PLA颗粒加热至退火温度,并被发泡剂饱和,3.保持退火温度一定时间,使得PLA颗粒被发泡剂饱和,4.泄压,并将步骤3中得到的被发泡剂饱和的PLA颗粒冷却至室温,得到EPLA泡珠。
发明US 2017/0100861提出了采用风冷切粒的方法连续制备生物可降解聚合物发泡珠粒。发泡过程可采用传统的熔融发泡工艺,如单螺杆和双螺杆挤出过程,并在挤出机模头处切断挤出物,随后冷却。挤出物在机头模面处被切断后仍继续发泡,形成闭合的泡孔结构和连续的表皮结构,即泡珠的表皮上无开孔结构。制得的可降解或者生物基泡珠的密度小于0.15g/cm3,以小于0.075g/cm3为佳,以小于0.05g/cm3为最佳。
现有的关于生物可降解聚合物的珠粒发泡技术中,都只涉及已发泡珠粒的制备。
概述
第一方面,本公开涉及一种生物可降解聚合物珠粒,其利用一种设备制备而成,该设备包括挤出机和水下切粒系统;用于通过用至少一台挤出机对原料进行预混反应,及反应后进行挤出操作;以及
将挤出物注入切粒系统中并控制切粒系统中工艺水的压力和挤出物中发泡剂的饱和蒸气压,得到可发泡/已发泡珠粒。
第二方面,本公开涉及制备生物可降解聚合物珠粒的方法,所述制备方法为在包括有挤出机和水下切粒系统的设备中制备的,所述制备方法包括:
将生物可降解聚合物、扩链剂母粒和成核剂母粒混合反应,制得第一混合物;
将发泡剂与所述第一混合物混合,得到第二混合物;以及
将所述第二混合物挤出、水下切粒,制得可发泡/已发泡珠粒。
第三方面,本公开涉及一种用于制备生物可降解聚合物珠粒的设备,包括按照物料通过顺序依次设置的原料仓、除湿干燥系统、上料系统、失重式喂料系统、串联式挤出机系统、发泡剂注入系统和水下切粒系统;
所述串联式挤出机包括上阶双螺杆挤出机和下阶单螺杆挤出机;
上料系统将各组分原料从原料仓输送至对应的除湿干燥系统后,热的、低露点的空气在除湿干燥系统内对各组分原料进行干燥;
失重式喂料系统将干燥后的生物可降解聚合物,以及扩链剂母粒和成核剂母粒以恒定的质量流量喂入串联式挤出机系统的上阶双螺杆挤出机,再通过发泡剂注入系统将发泡剂注入机筒内,与聚合物体系完成混合、扩散;
所述单螺杆挤出机出料端与模头之间设有三通阀,设置在出料端和模头之间的三通阀,以及设置在三通阀内的中间流道、出料流道和排料流道;
通过水下切粒机的旋转切割刀头在水腔内将模头挤出的条状聚合物切割成粒状,制得可发泡/已发泡珠粒。
附图简要说明
图1示出了本公开一实施例中用于制备生物可降解聚合物珠粒的设备的结构示意图;
图2示出了本公开一实施例中挤出系统中用于排料的设备示意图。
详述
在以下的说明中,包括某些具体的细节以对各个公开的实施方案提供全面的理解。然而,相关领域的技术人员会认识到,不采用一个或多个这些具体的细节,而采用其他方法、部件、材料等的情况下仍实现实施方案。
除非本公开中另有要求,在整体说明书和所附的权利要求中,词语“包括”、“包含”、“含有”和“具有”应解释为开放式的、含括式的意义,即“包括但不限于”。
在整体说明书中提到的“一实施方案”、“实施方案”、“在另一实施方案中”或“在某些实施方案中”意指在至少一实施方案中包括与该实施方案所述的相关的具体参考要素、结构或特征。因此,在整个说明书中不同位置出现的短语“在一实施方案中”或“在实施方案中”或“在另一实施方案中”或“在某些实施方案中”不必全部指同一实施方案,此外,具体要素、结构或特征可以任何适当的方式在一个或多个实施方案中结合。
定义
在本公开中,术语“PLA”系指聚乳酸,是指单个的乳酸分子中有一个羟基和一个羧基,多个乳酸分子在一起,-OH与别的分子的-COOH脱水缩合,-COOH与别的分子的-OH脱水缩合,就这样,它们手拉手形成的聚合物。
在本公开中,术语“PBAT”系指己二酸丁二醇酯和对苯二甲酸丁二醇酯的共聚物,属于热塑性生物降解塑料,PBAT是脂肪族和芳香族的共聚物,综合了脂肪族聚酯的优异降解性能和芳香族聚酯的良好力学性能,也有较好的耐热性和冲击性,是生物降解塑料研究中非常活跃和市场应用最好降解材料之一。
在本公开中,术语“PBS”系指聚丁二酸丁二醇酯,属热塑性树脂,具有良好可生物降解性能的聚合物,与聚乳酸、聚羟基烷酸酯、聚己内酯等可生物降解塑料相比,PBS价格相对较低,力学性能优异,耐热性能好,热变形温度接近100℃,是国内外在生物降解塑料研发方面的重点。
在本公开中,术语“PCL”系指聚己内酯,具有良好的生物降解性、生物相容性和无毒性,而被广泛应用于增塑剂、可降解塑料、纳米纤维纺丝、塑形材料的生产与加工领域,将PCL与PLA共混改性后,可得到力学性能优异、生物降解速率可控的共聚物。
在本公开中,术语“PHA”系指聚羟基脂肪酸酯,具有良好的生物相容性能、生物可降解性和塑料的热加工性能,同时可作为生物医用材料和生物可降解包装材料,因此已经成为近年来生物材料领域最为活跃的研究热点。
在本公开中,术语“发泡剂”系指使对象物质成孔的物质,它可分为化学发泡剂和物理发泡剂。化学发泡剂是那些经加热分解后能释放出二氧化碳和氮气等气体,并在聚合物组成中形成细孔的化合物;物理发泡剂就是泡沫细孔是通过某一种物质的物理形态的变化,即通过压缩气体的膨胀、液体的挥发或固体的溶解而形成的。本公开中的“发泡剂”选自戊烷和CO2,为物理发泡剂。
在本公开中,术语“扩链剂母粒”系指调整生物可降解聚合物的流变特性,通过提高分子量、拓宽分子量分布和引入长链支化,提高PLA/PBAT的熔体强度和熔融可发泡性的物质。
在本公开中,术语“成核剂母粒”系指通过引入无机填料颗粒与聚合物熔体之间的相界面,引入泡孔异相成核机理,提高泡孔成核点数量、降低泡孔成核能垒,从而达到提高泡孔密度、降低泡孔尺寸的目的的物质。
在本公开中,术语“双螺杆挤出机”系指借由两根相互啮合的螺杆组成,适用于聚合物加工生产率较高、适用范围特别广且变化能力较强的一种成型加工设备。
在本公开中,术语“单螺杆挤出机”系指依靠物料与料筒之间相互作用所产生的摩擦力挤出成型,是一种常见的挤出机设备,用于塑料加工行业。
在本公开中,术语“水下切粒机(系统)”系指通过水下切粒机的旋转切割刀头在水腔内将模头挤出的条状聚合物切割成粒状的设备。
具体实施方式
第一方面,本公开涉及一种生物可降解聚合物珠粒,其利用一种设备制备而成,该设备包括挤出机和水下切粒系统;用于通过用至少一台挤出机对原料进行预混反应,及反应后进行挤出操作;以及
将挤出物注入切粒系统中并控制切粒系统中工艺水的压力和挤出物中发泡剂的饱和蒸气压,得到可发泡/已发泡珠粒。
第二方面,本公开涉及制备生物可降解聚合物珠粒的方法,所述制备方法为在包括有挤出机和水下切粒系统的设备中制备的,所述制备方法包括:
将生物可降解聚合物、扩链剂母粒和成核剂母粒混合反应,制得第一混合物;
将发泡剂与所述第一混合物混合,得到第二混合物;以及
将所述第二混合物挤出、水下切粒,制得可发泡/已发泡珠粒。
在某些实施方案中,通过用串联式挤出机系统对原料进行预混反应,所述串联式挤出机系统包括上阶双螺杆挤出机和下阶单螺杆挤出机,所述单螺杆挤出机与双螺杆挤出机的出料端垂直或平行连接;及反应后进行挤出操作;具体为:
将生物可降解聚合物、扩链剂母粒和成核剂母粒喂入串联式挤出机系统的上阶双螺杆挤出机,并在双螺杆挤出机中完成塑化、混合、扩链反应,制得所述第一混合物;加入发泡剂,与所述第一混合物完成混合、扩散,得到所述第二混合物;以及
将所述第二混合物在单螺杆挤出机中进行均化、冷却。
通过该设计,能够提高体系的熔体强度和可发泡性能。
在某些实施方案中,单螺杆挤出机出料端与模头之间设有三通阀,以及设置在三通阀内的中间流道、出料流道和排料流道;
所述中间流道能够与单螺杆挤出机相通,所述出料流道与中间流道同轴设置并与所述模头相流通;以及与中间流道垂直设置并与外界相通的排料流道。
在某些实施方案中,通过控制液压驱动系统,能够自由切换三通阀的中间流道与出料流道相通,实现发泡体系生产状态的设置;或切换三通阀与排料流道相通,实现发泡体系排料状态的设置;能够保证挤出机在不停机的情况下,实现发泡体系排料和正常生产两种状态的切换,进而便于将水下切粒机安装到模头上。
其中,通过三通阀的设计,能够实现发泡体系排料和正常生产两种状态的切换,方便将水下切粒机安装到模头上,从而更加高效的生产生物可降解聚合物的发泡珠粒。
在某些实施方案中,所述制备方法为:
将三通阀切换至排料状态,将生物可降解聚合物、扩链剂母粒和成核剂经过建立稳定的扩链反应状态,制得所述第一混合物后,再加入发泡剂,制得所述第二混合物;待从排料状态得到稳定的第二混合物后,将三通阀切换至生产状态;
将所述第二混合物从模头中挤出;
通过水下切粒机的旋转切割刀头在水腔内将模头挤出的条状聚合物切割成粒状,制得可发泡/已发泡珠粒。
其中:工艺水从水腔流过,携带聚合物珠粒流过相应的水路管线,确保珠粒连续输送至干燥设备。工艺水的压力最高可达1.5MPa,水压可通过控制水泵的工作频率调节。工艺水的温度由电加热和冷水机双向调节。
在某些实施方案中,三通阀从排位状态切换到生产状态后,控制其机头压力的变化ΔP小于3-5MPa。
在某些实施方案中,控制其机头压力的变化ΔP小于1-3MPa。
在某些实施方案中,控制其机头压力的变化ΔP小于1MPa。
其中:挤出机出口处的压力是影响聚合物/发泡剂体系在挤出机机筒内温度分布和停留时间分布的重要因素,从而影响扩链反应的状态和体系的可发泡性能。通过控制机头压力的变化ΔP,使得发泡珠粒的发泡倍率均匀,降低了珠粒的不合格产品率,提高了每批次生产的产量。
在某些实施方案中,在水下切粒法制备生物可降解聚合物珠粒的过程中,当切粒系统中工艺水压力高于发泡剂的饱和蒸气压时,挤出物在离开模头、进入水腔内后,发泡剂在聚合物固化过程中仍保留在聚合物基体内,得到可发泡珠粒;当切粒系统中工艺水压力较低或者为常压时,挤出物在离开模头、进入水腔内后,溶解在聚合物基体内的发泡剂即可开始成核、发泡,得到已发泡珠粒。
在某些实施方案中,挤出机出口压力调整至10-20MPa。
在某些实施方案中,挤出机出口压力调整至12-18MPa。
在某些实施方案中,挤出机出口压力调整至15-18MPa。
在某些实施方案中,水下切粒系统的水压调节至0.2-1.0MPa。
在某些实施方案中,水下切粒系统的水压调节至0.2-0.6MPa。
在某些实施方案中,水下切粒系统的水压调节至0.2-0.4MPa。
在某些实施方案中,水下切粒系统的工艺水的温度调节至10-90℃。
在某些实施方案中,水下切粒系统的工艺水的温度调节至30-80℃。
在某些实施方案中,水下切粒系统的工艺水的温度调节至30-50℃。
在某些实施方案中,还包括排料管,所述排料管设于排料流道的外侧,排料管远离三通阀的一端伸出阀体;以及伸出阀体外的排料管外表面设有加热装置,通过该设置,在整个生物可降解聚合物珠粒发泡系统停机再开机后,排料管外的加热装置可以确保凝固在排料流道内的物料重新熔融,避免堵塞;并在所述加热装置的外表面设置隔热装置,可有效防止操作人员误操作导致灼伤。
在某些实施方案中,阀体外排料流道的直径D为0.5-5mm。
在某些实施方案中,阀体外排料流道的直径D为1-3mm。
在某些实施方案中,阀体外排料流道的直径D为2-3mm。
在某些实施方案中,排料流道的长径比L/D为5-50。
在某些实施方案中,排料流道的长径比L/D为10-35。
在某些实施方案中,排料流道的长径比L/D为20-30。
其中:通过选择合适的阀体外排料流道的尺寸,可使得三通阀从排料位切换至生产位后,机头压力的变化保持在特定的范围内,从而提高发泡珠粒生产的效率和稳定性。
在某些实施方案中,还包括将各组分混料混合前的干燥步骤,上料系统将各组分原料从原料仓输送至对应的除湿干燥系统后,热的、低露点的空气在除湿干燥系统内对各组分原料进行干燥,干燥后的各组分的水含量降低到50-200ppm。
在某些实施方案中,还包括将各组分混料混合前的干燥步骤,上料系统将各组分原料从原料仓输送至对应的除湿干燥系统后,热的、低露点的空气在除湿干燥系统内对各组分原料进行干燥,干燥后的各组分的水含量降低到50-100ppm。
其中:除湿干燥系统用于对生物可降解聚合物,以及扩链剂母粒和成核剂母粒的除湿干燥。除湿干燥系统包括有除湿机、干燥风机和干燥料斗,除湿机通过分子筛或蜂巢转轮除湿源将除湿系统内的空气干燥至露点低于-45℃后,通过干燥风机分别输送至各组分的干燥料斗。
在某些实施方案中,低露点空气进入干燥料斗前,经过加热器加热。
在某些实施方案中,低露点空气经过加热器加热至50-120℃。
在某些实施方案中,低露点空气经过加热器加热至50-100℃。
在某些实施方案中,低露点空气经过加热器加热至50-80℃。
在某些实施方案中,生物可降解聚合物选自PLA、PBAT、PBS、PCL、PHA或其混合物。
在某些实施方案中,所述扩链剂母粒由聚合物载体和扩链剂制得。
在某些实施方案中,PLA在扩链剂母粒中的浓度为70wt%;扩链剂选自环氧基扩链剂,环氧基扩链剂选自苯乙烯-丙烯酸酯齐聚物类的环氧基扩链剂,并且该扩链剂在扩链剂母粒中的浓度为30wt%。
在某些实施方案中,PLA在扩链剂母粒中的浓度为90wt%;所述扩链剂选自环氧基扩链剂,所述环氧基扩链剂选自苯乙烯-丙烯酸酯齐聚物类的环氧基扩链剂,并且该扩链剂在扩链剂母粒中的浓度为10wt%。该扩链剂的平均官能度大于4。
在某些实施方案中,所述扩链剂母粒浓度为0.5-5wt%。
在某些实施方案中,所述扩链剂母粒浓度为0.8-2.5wt%。
在某些实施方案中,所述扩链剂母粒浓度为1-2wt%。
在某些实施方案中,成核剂母粒由聚合物载体和成核剂通过双螺杆挤出机进行熔融共混制得,所述聚合物载体为PLA,所述成核剂选自滑石粉、碳酸钙、二氧化硅、纳米黏土等无机添加剂中的一种或多种。其中:载体聚合物的浓度可以根据需要设置为不同的数值。
在某些实施方案中,成核剂母粒浓度为1-4wt%。
在某些实施方案中,成核剂母粒浓度为1.5-2.5wt%。
在某些实施方案中,发泡剂选自戊烷或CO2
在某些实施方案中,发泡剂的注入量为2-15wt%。
在某些实施方案中,发泡剂的注入量为5-10wt%。
在某些实施方案中,发泡剂的注入量为5-8wt%。
其中:发泡剂的注入量决定了可发泡珠粒内部的含气量和已发泡珠粒的最终发泡倍率。
在结晶性聚合物中,晶区的存在导致其无法在固态时储存发泡剂,故只能制成已发泡珠粒。在制备生物可降解聚合物的可发泡珠粒时,需要选择无定型PLA作为原料。PLA中存在两种不同光学异构单体,即L单体和D单体。当D单体的含量低于7%时,分子链才可进行规整排列,为结晶型PLA。而当D单体含量较高时,PLA为完全无定型聚合物,如Nature Works公司的牌号为4060D的PLA,D单体含量12%,以及牌号为8302D的PLA,D单体含量为10%。
更进一步地,通过控制发泡剂的注入量和工艺水的压力,可以制备不同密度、不同发泡倍率的PLA/PBAT已发泡珠粒。制备已发泡珠粒的PLA和PBAT的结晶性能无特殊要求。PLA和PBAT可通过熔融共混制备PLA/PBAT复合物,复合物中PBAT的质量分数为25-75wt%,优选为25-50wt%,再作为原料制备生物可降解聚合物已发泡珠粒。PLA和PBAT亦可在发泡珠粒制备过程中分别喂入挤出机内,在挤出发泡的同时,完成二者的复合。而且,本发明所述苯乙烯-丙烯酸酯齐聚物类的环氧基扩链剂可以起到PLA/PBAT相容剂的作用,无须额外添加相容剂。
可发泡珠粒制备过程的工艺条件是:当采用无定型PLA作为原料时,采用戊烷作为物理发泡剂,戊烷的注入量为聚合物喂料量的2-15wt%,优选为5-10wt%,更优选为5-8wt%。通过调节扩链剂母粒的浓度,以及主机转速等工艺条件,挤出机出口压力调整至10-20MPa,优选为10-15MPa,更优选为12-15MPa。水下切粒系统的水压调节至0.5-1.5MPa,优选为0.6-1.3MPa,更优选为0.8-1.2MPa。工艺水的温度调节至10-75℃,优选为20-50℃,更优选为30-35℃。
第三方面,本公开涉及一种用于制备生物可降解聚合物珠粒的设备,包括按照物料通过顺序依次设置的原料仓、除湿干燥系统、上料系统、失重式喂料系统、串联式挤出机系统、发泡剂注入系统和水下切粒系统;
所述串联式挤出机包括上阶双螺杆挤出机和下阶单螺杆挤出机;
上料系统将各组分原料从原料仓输送至对应的除湿干燥系统后,热的、低露点的空气在除湿干燥系统内对各组分原料进行干燥;
失重式喂料系统将干燥后的生物可降解聚合物,以及扩链剂母粒和成核剂母粒以恒定的质量流量喂入串联式挤出机系统的上阶双螺杆挤出机,再通过发泡剂注入系统将发泡剂注入机筒内,与聚合物体系完成混合、扩散;
所述单螺杆挤出机出料端与模头之间设有三通阀,以及设置在三通阀内的中间流道、出料流道和排料流道;
通过水下切粒机的旋转切割刀头在水腔内将模头挤出的条状聚合物切割成粒状,制得可发泡/已发泡珠粒。
其中:与传统的釜压法制备珠粒相比,本发明采用的串连式挤出机系统和水下切粒系统,克服了釜压法间歇制备珠粒的缺陷,本发明能够做到连续制备产品。本发明的水下切粒法是在挤出机中完成的,具体通过控制切粒系统中工艺水的压力和发泡剂的饱和蒸气压的大小,来制备可/已发泡珠粒。
有益效果:本发明通过对用于制备生物可降解聚合物珠粒的设备选择合适的三通阀体外排料流道的尺寸,可使得三通阀从排料状态切换到生产状态,机头压力变化较小,从而提高PLA/PBAT发泡珠粒生产的效率和稳定性;与已发泡珠粒相比,可发泡珠粒的运输过程以及密度控制过程更具优势,在已有的生物可降解聚合物的珠粒发泡技术中,都只涉及已发泡珠粒的制备;与风冷切粒技术相比,本发明的水下切粒制备发泡珠粒技术制备出的发泡珠粒的产量更高;本发明通过选择合适的添加剂,保留了最终产品的生物可降解性。
下面通过实施方式对本发明进行进一步详细的说明。
实施例1
选择无定型PLA作为生物可降解聚合物原料,Clariant CESA OMAN698493作为扩链剂母粒,添加量2wt%。成核剂母粒选择PLA作为载体聚合物,1200目滑石粉作为成核剂,成核剂母粒中滑石粉的浓度为25wt%,二者通过双螺杆挤出机熔融共混。发泡体系中,成核剂母粒的添加量为2.5wt%。采用戊烷作为发泡剂,戊烷的注入量为聚合物的6wt%。
采用串联挤出机组进行PET挤出发泡,上阶双螺杆挤出机直径D=40mm,长径比L/D=40,下阶单螺杆直径D=65mm,长径比L/D=24。挤出机产量60kg/hr,挤出机出口压力为12MPa,工艺水的压力1.0MPa,温度30℃。制得的可发泡PLA珠粒含气量6wt%。
挤出机的温度设置如下表所示:
Figure BDA0003356821280000111
如图1所示,为用于制备生物可降解聚合物珠粒的设备,包括按照物料通过顺序依次设置的原料仓1、除湿干燥系统7、上料系统、失重式喂料系统2、双螺杆挤出机4、单螺杆挤出机5、发泡剂注入系统3和水下切粒系统6;
所述串联式挤出机包括上阶双螺杆挤出机4和下阶单螺杆挤出机5;
上料系统将各组分原料从原料仓1输送至对应的除湿干燥系统7后,热的、低露点的空气在除湿干燥系统7内对各组分原料进行干燥;
失重式喂料系统2将干燥后的PLA,以及扩链剂母粒和成核剂母粒以恒定的质量流量喂入串联式挤出机系统的上阶双螺杆挤出机4,再通过发泡剂注入系统3将发泡剂注入机筒内,与聚合物体系完成混合、扩散;
单螺杆挤出机5的出料端和模头之间设置有三通阀51,以及设置在三通阀51内的中间流道52、出料流道53和排料流道54;
通过水下切粒机的旋转切割刀头在水腔内将模头挤出的条状聚合物切割成粒状,制得可发泡/已发泡珠粒。
如图2所示,为挤出系统中用于排料的设备示意图,包括单螺杆挤出机5、三通阀51、中间流道52、出料流道53、排料流道54、排料管55和加热装置56;具体为:
单螺杆挤出机5的出料端和模头之间设置三通阀51,以及设置在三通阀51内的中间流道52、出料流道53和排料流道54;
中间流道52能够与单螺杆挤出机5相通,出料流道53与中间流道52同轴设置并与模头相流通;以及与中间流道52垂直设置并与外界相通的排料流道54。
排料管55设于排料流道54的外侧,排料管55远离三通阀51的一端伸出阀体;以及伸出阀体外的排料管55外表面设有加热装置56,并在加热装置56的外表面设置隔热装置。
具体制备步骤为:
使用除湿干燥系统7对PLA、PBAT以及二者复合物,以及扩链剂母粒和成核剂母粒进行除湿干燥。除湿机通过分子筛或蜂巢转轮除湿源将除湿系统内的空气干燥至露点低于-45℃后,通过干燥风机分别输送至各组分的干燥料斗。低露点空气进入干燥料斗前,经过加热器加热至50-120℃,优选为50-100℃,更优选为50-80℃。上料系统将各组分原料从原料仓1输送至对应的干燥料斗后,热的、低露点的空气在干燥料斗内对各组分原料分别进行干燥,将各组分的水含量降低至50-200ppm,优选为50-100ppm;
三通阀51切换至排料状态,使用失重式喂料系统2将干燥后的生物可降解聚合物、扩链剂母粒和成核剂母粒以恒定的质量流量喂入串联式挤出机系统的上阶双螺杆挤出机4,并在双螺杆挤出机4中完成塑化、混合、扩链反应,制得所述第一混合物;与此同时,发泡剂通过增压泵的增压、输送,在挤出机上定量注入机筒内,与第一混合物完成混合、扩散,得到第二混合物;待从排料状态得到稳定的第二混合物后,将三通阀51切换至生产状态;将第二混合物在单螺杆挤出机5中进行均化、冷却,并从模头中挤出;
通过水下切粒机6的旋转切割刀头在水腔内将模头挤出的条状聚合物切割成粒状。该过程中,控制切粒系统6中工艺水压力高于发泡剂的饱和蒸气压时,挤出物在离开模头、进入水腔内后,发泡剂在聚合物固化过程中仍保留在聚合物基体内,得到可发泡珠粒。
其中:三通阀从排位状态切换到生产状态后,控制其机头压力的变化ΔP小于3-5MPa,优选为小于1-3MPa,更优选为小于1MPa。
实施例2
选择PBAT作为生物可降解聚合物原料,Clariant CESA extend 10069N作为扩链剂母粒,添加量为2.5wt%。成核剂母粒选择PLA作为载体聚合物,Southern Clay公司的Cloisite 30B纳米黏土作为成核剂,成核剂母粒中纳米黏土的浓度为10wt%,二者通过双螺杆挤出机熔融共混。发泡体系中,成核剂母粒的添加量为1.0wt%。采用超临界CO2作为发泡剂,CO2的注入量为聚合物的10wt%。
采用实例1的挤出机,并采用相同的温度设置。挤出机产量65kg/hr,挤出机出口压力为15MPa,工艺水的压力0.2MPa,温度35℃。制得的可发泡PBAT珠粒的发泡倍率为35倍。
实施例3
选择PLA和PBAT作为生物可降解聚合物原料,二者通过失重秤分别喂入双螺杆挤出机中,二者的比例为75/25(w/w)。Clariant CESA OMAN698493作为扩链剂母粒,添加量为1.5wt%。成核剂母粒与实施例1相同,添加量为2.0wt%。采用超临界CO2作为发泡剂,CO2的注入量为聚合物的12wt%。
采用实例1的挤出机,并采用相同的温度设置。挤出机产量60kg/hr,挤出机出口压力为12MPa,工艺水的压力0.2MPa,温度30℃。制得的可发泡珠粒的发泡倍率为38倍。
实施例4
选择PLA和PBS作为生物可降解聚合物原料,二者通过失重秤分别喂入双螺杆挤出机中,二者的比例为75/25(w/w)。扩链剂母粒与实施例1相同,添加量为0.8wt%,成核剂母粒与实施例1相同,添加量为1.5wt%,碳酸钙作为成核剂,成核剂母粒中碳酸钙的浓度为8wt%,二者通过双螺杆挤出机熔融共混。采用戊烷作为发泡剂,戊烷的注入量为聚合物的2wt%。
采用实例1的挤出机,并采用相同的温度设置。挤出机产量60kg/hr,挤出机出口压力为10MPa,工艺水的压力0.2MPa,温度20℃。制得的可发泡珠粒的发泡倍率为35倍。
实施例5
选择PLA和PHA作为生物可降解聚合物原料,二者通过失重秤分别喂入双螺杆挤出机中,二者的比例为75/25(w/w)。扩链剂母粒与实施例1相同,添加量为3wt%。成核剂母粒与实施例1相同,二氧化硅作为成核剂,成核剂母粒中二氧化硅的浓度为30wt%,二者通过双螺杆挤出机熔融共混。发泡体系中,成核剂母粒的添加量为3wt%。采用超临界CO2作为发泡剂,超临界CO2的注入量为聚合物的12wt%。
采用实例1的挤出机,并采用相同的温度设置。挤出机产量65kg/hr,挤出机出口压力为20MPa,工艺水的压力1.0MPa,温度50℃。制得的可发泡珠粒的发泡倍率为40倍。
实施例6
选择PLA和PBS作为生物可降解聚合物原料,二者通过失重秤分别喂入双螺杆挤出机中,二者的比例为75/25(w/w)。扩链剂母粒与实施例1相同,添加量为5wt%。成核剂母粒、成核剂与实施例1相同,成核剂母粒中滑石粉的浓度为40wt%,二者通过双螺杆挤出机熔融共混。发泡体系中,成核剂母粒的添加量为4wt%。采用戊烷作为发泡剂,戊烷的注入量为聚合物的15wt%。
采用实例1的挤出机,并采用相同的温度设置。挤出机产量65kg/hr,挤出机出口压力为18MPa,工艺水的压力0.6MPa,温度80℃。制得的可发泡珠粒的发泡倍率为38倍。
实施例7
选择PLA和PCL作为生物可降解聚合物原料,二者通过失重秤分别喂入双螺杆挤出机中,二者的比例为75/25(w/w)。Clariant CESA OMAN698493作为扩链剂母粒,添加量为1.5wt%。成核剂母粒与实施例1相同,添加量为2.0wt%。采用超临界CO2作为发泡剂,CO2的注入量为聚合物的12wt%。
采用实例1的挤出机,并采用相同的温度设置。挤出机产量60kg/hr,挤出机出口压力为12MPa,工艺水的压力0.2MPa,温度30℃。制得的可发泡珠粒的发泡倍率为36倍。
综上所述:本发明通过选择合适的生物可降解聚合物原料,调节聚合物体系的结晶性能和可发泡性能,以及选择合适的水下切粒工艺条件,调节可降解聚合物珠粒的含气量和发泡倍率等;同时通过排料系统的设置,通过调节三通阀,能够实现发泡体系排料和正常生产两种状态的切换,方便将水下切粒机安装到模头上,从而连续、高效地生产生物可降解聚合物的发泡珠粒,适合工业化生产。
从前述中可以理解,尽管为了示例性说明的目的描述了本公开的具体实施方案,但是在不偏离本公开的精神和范围的条件下,本领域所述技术人员可以作出各种变形或改进、这些变形或修改都应落入本公开所附权利要求的范围。

Claims (10)

1.一种生物可降解聚合物珠粒,其利用一种设备制备而成,该设备包括挤出机和水下切粒系统;其特征在于,用于通过用至少一台挤出机对原料进行预混反应,及反应后进行挤出操作;以及
将挤出物注入切粒系统中并控制切粒系统中工艺水的压力和挤出物中发泡剂的饱和蒸气压,得到可发泡/已发泡珠粒。
2.制备根据权利要求1所述的生物可降解聚合物珠粒的方法,所述制备方法为在包括有挤出机和水下切粒系统的设备中制备的,其特征在于,所述制备方法包括:
将生物可降解聚合物、扩链剂母粒和成核剂母粒混合反应,制得第一混合物;
将发泡剂与所述第一混合物混合,得到第二混合物;以及
将所述第二混合物挤出、水下切粒,制得可发泡/已发泡珠粒。
3.根据权利要求2所述的制备方法,其特征在于,通过用串联式挤出机系统对原料进行预混反应,所述串联式挤出机系统包括上阶双螺杆挤出机和下阶单螺杆挤出机,所述单螺杆挤出机与双螺杆挤出机的出料端垂直或平行连接;及反应后进行挤出操作;具体为:
将生物可降解聚合物、扩链剂母粒和成核剂母粒喂入串联式挤出机系统的上阶双螺杆挤出机,并在双螺杆挤出机中完成塑化、混合、扩链反应,制得所述第一混合物;加入发泡剂,与所述第一混合物完成混合、扩散,得到所述第二混合物;以及
将所述第二混合物在单螺杆挤出机中进行均化、冷却。
4.根据权利要求3所述的制备方法,其特征在于,所述单螺杆挤出机出料端与模头之间设有三通阀,以及设置在三通阀内的中间流道、出料流道和排料流道;
所述中间流道能够与单螺杆挤出机相通,所述出料流道与中间流道同轴设置并与所述模头相流通;以及与中间流道垂直设置并与外界相通的排料流道。
5.根据权利要求4所述的制备方法,其特征在于,通过控制液压驱动系统,能够自由切换三通阀的中间流道与出料流道相通,实现发泡体系生产状态的设置;或切换三通阀与排料流道相通,实现发泡体系排料状态的设置;能够保证挤出机在不停机的情况下,实现发泡体系排料和正常生产两种状态的切换,进而便于将水下切粒机安装到模头上。
6.根据权利要求5所述的制备方法,其特征在于,所述制备方法为:
将三通阀切换至排料状态,将生物可降解聚合物、扩链剂母粒和成核剂经过建立稳定的扩链反应状态,制得所述第一混合物后,再加入发泡剂,制得所述第二混合物;待从排料状态得到稳定的第二混合物后,将三通阀切换至生产状态;
将所述第二混合物从模头中挤出;
通过水下切粒机的旋转切割刀头在水腔内将模头挤出的条状聚合物切割成粒状,制得可发泡/已发泡珠粒;
其中:三通阀从排位状态切换到生产状态后,控制其机头压力的变化ΔP小于3-5MPa,优选为小于1-3MPa,更优选为小于1MPa。
7.根据权利要求2所述的制备方法,其特征在于,在水下切粒法制备生物可降解聚合物珠粒的过程中,当切粒系统中工艺水压力高于发泡剂的饱和蒸气压时,挤出物在离开模头、进入水腔内后,发泡剂在聚合物固化过程中仍保留在聚合物基体内,得到可发泡珠粒;当切粒系统中工艺水压力较低或者为常压时,挤出物在离开模头、进入水腔内后,溶解在聚合物基体内的发泡剂即可开始成核、发泡,得到已发泡珠粒;
其中:挤出机出口压力调整至10-20MPa,优选为12-18MPa,更优选为15-18MPa;水下切粒系统的水压调节至0.2-1.0MPa,优选为0.2-0.6MPa,更优选为0.2-0.4MPa;工艺水的温度调节至10-90℃,优选为30-80℃,更优选为30-50℃。
8.根据权利要求4所述的制备方法,其特征在于,还包括排料管,所述排料管设于排料流道的外侧,排料管远离三通阀的一端伸出阀体;以及伸出阀体外的排料管外表面设有加热装置,并在所述加热装置的外表面设置隔热装置;
其中:阀体外排料流道的直径D为0.5-5mm,优选为1-3mm,更优选为2-3mm;排料流道的长径比L/D为5-50,优选为10-35,更优选为20-30。
9.根据权利要求2所述的制备方法,其特征在于,所述生物可降解聚合物选自PLA、PBAT、PBS、PCL、PHA或其混合物;所述扩链剂母粒由聚合物载体和扩链剂制得,所述聚合物载体为PLA,所述扩链剂选自环氧基扩链剂,优选所述环氧基扩链剂选自苯乙烯-丙烯酸酯齐聚物类的环氧基扩链剂,所述扩链剂母粒浓度为0.5-5wt%,优选为0.8-2.5wt%,更优选为1-2wt%;所述成核剂母粒由聚合物载体和成核剂通过双螺杆挤出机进行熔融共混制得,所述聚合物载体为PLA,所述成核剂选自滑石粉、碳酸钙、二氧化硅、纳米黏土中的一种或多种,所述成核剂母粒浓度为1-4wt%,优选为1.5-2.5wt%;所述发泡剂选自戊烷或CO2,所述发泡剂的注入量为2-15wt%。
10.一种用于制备权利要求1所述的生物可降解聚合物珠粒的设备,其特征在于,包括按照物料通过顺序依次设置的原料仓、除湿干燥系统、上料系统、失重式喂料系统、串联式挤出机系统、发泡剂注入系统和水下切粒系统;
所述串联式挤出机包括上阶双螺杆挤出机和下阶单螺杆挤出机;
上料系统将各组分原料从原料仓输送至对应的除湿干燥系统后,热的、低露点的空气在除湿干燥系统内对各组分原料进行干燥;
失重式喂料系统将干燥后的生物可降解聚合物,以及扩链剂母粒和成核剂母粒以恒定的质量流量喂入串联式挤出机系统的上阶双螺杆挤出机,再通过发泡剂注入系统将发泡剂注入机筒内,与聚合物体系完成混合、扩散;
所述单螺杆挤出机出料端与模头之间设有三通阀,以及设置在三通阀内的中间流道、出料流道和排料流道;
通过水下切粒机的旋转切割刀头在水腔内将模头挤出的条状聚合物切割成粒状,制得可发泡/已发泡珠粒。
CN202111359232.2A 2021-11-16 2021-11-16 一种生物可降解聚合物珠粒、制备方法及设备 Active CN113910485B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202111359232.2A CN113910485B (zh) 2021-11-16 2021-11-16 一种生物可降解聚合物珠粒、制备方法及设备
PCT/KR2022/018111 WO2023090857A1 (ko) 2021-11-16 2022-11-16 생분해성 고분자 비드, 제조 방법 및 기기
KR1020220153509A KR20230071760A (ko) 2021-11-16 2022-11-16 생분해성 고분자 비드, 제조 방법 및 기기

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111359232.2A CN113910485B (zh) 2021-11-16 2021-11-16 一种生物可降解聚合物珠粒、制备方法及设备

Publications (2)

Publication Number Publication Date
CN113910485A true CN113910485A (zh) 2022-01-11
CN113910485B CN113910485B (zh) 2023-10-13

Family

ID=79246729

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111359232.2A Active CN113910485B (zh) 2021-11-16 2021-11-16 一种生物可降解聚合物珠粒、制备方法及设备

Country Status (3)

Country Link
KR (1) KR20230071760A (zh)
CN (1) CN113910485B (zh)
WO (1) WO2023090857A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115181320A (zh) * 2022-08-15 2022-10-14 中国科学院宁波材料技术与工程研究所 一种可降解pla/pbat的挤出发泡珠粒及其制备方法
CN116284954A (zh) * 2023-03-06 2023-06-23 江苏越升科技股份有限公司 一种可蒸汽模压成型的生物可降解聚合物发泡珠粒

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996010600A1 (en) * 1994-09-30 1996-04-11 Knaus Dennis A Moldable thermoplastic polymer foam beads
CN102837377A (zh) * 2012-08-07 2012-12-26 合肥会通中科材料有限公司 一种用于聚合物挤出发泡的水下造粒装置
CN106280046A (zh) * 2015-05-29 2017-01-04 广东奔迪新材料科技有限公司 预发泡epo珠粒、其制备方法及设备
CN109852037A (zh) * 2018-12-29 2019-06-07 中粮集团有限公司 聚乳酸发泡片材及其制备方法
CN111253677A (zh) * 2020-02-28 2020-06-09 山东大学 一种低密度聚丙烯珠粒泡沫、其制备方法及应用
CN212288259U (zh) * 2020-05-27 2021-01-05 潍坊誉博新材料有限公司 一种连续制备发泡热塑性聚氨酯弹性体珠粒的装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04126733A (ja) * 1990-09-17 1992-04-27 Furukawa Electric Co Ltd:The 架橋発泡体の製造方法
EP1944333A4 (en) * 2005-11-04 2009-12-02 Unitika Ltd FOAM PANEL OF BIODEGRADABLE RESIN, FOAM MATERIAL OF BIODEGRADABLE RESIN AND SHAPED CONTAINER OF BIODEGRADABLE RESIN
JP4436435B1 (ja) * 2009-07-02 2010-03-24 Wpcコーポレーション株式会社 押出発泡成形用の成形材料及びその製造方法,並びに前記成形材料を使用して製造した木質発泡成形体,前記木質発泡成形体の製造方法並びに製造装置
KR102056838B1 (ko) * 2016-09-12 2019-12-17 (주)엘지하우시스 생분해성 고분자 발포체 및 그 제조 방법
KR101915785B1 (ko) * 2018-07-03 2018-11-06 주식회사 현진피오피 생분해 발포시트, 이의 제조방법 및 이를 이용한 식품포장용 트레이

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996010600A1 (en) * 1994-09-30 1996-04-11 Knaus Dennis A Moldable thermoplastic polymer foam beads
CN1160411A (zh) * 1994-09-30 1997-09-24 丹尼斯·A·克瑙斯 可模塑的热塑性聚合物珠粒
CN102837377A (zh) * 2012-08-07 2012-12-26 合肥会通中科材料有限公司 一种用于聚合物挤出发泡的水下造粒装置
CN106280046A (zh) * 2015-05-29 2017-01-04 广东奔迪新材料科技有限公司 预发泡epo珠粒、其制备方法及设备
CN109852037A (zh) * 2018-12-29 2019-06-07 中粮集团有限公司 聚乳酸发泡片材及其制备方法
CN111253677A (zh) * 2020-02-28 2020-06-09 山东大学 一种低密度聚丙烯珠粒泡沫、其制备方法及应用
CN212288259U (zh) * 2020-05-27 2021-01-05 潍坊誉博新材料有限公司 一种连续制备发泡热塑性聚氨酯弹性体珠粒的装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115181320A (zh) * 2022-08-15 2022-10-14 中国科学院宁波材料技术与工程研究所 一种可降解pla/pbat的挤出发泡珠粒及其制备方法
CN116284954A (zh) * 2023-03-06 2023-06-23 江苏越升科技股份有限公司 一种可蒸汽模压成型的生物可降解聚合物发泡珠粒

Also Published As

Publication number Publication date
WO2023090857A1 (ko) 2023-05-25
KR20230071760A (ko) 2023-05-23
CN113910485B (zh) 2023-10-13

Similar Documents

Publication Publication Date Title
US10518444B2 (en) Compostable or biobased foams
KR100363291B1 (ko) 열가소성폴리에스테르계수지발포체의연속적제조방법및제조장치
KR100726534B1 (ko) 열가소성 수지 발포성 입자의 제조 방법
KR101669449B1 (ko) 폴리에스터 발포 공정용 사슬연장성 농축물의 제조 및 적용
CN111253677B (zh) 一种低密度聚丙烯珠粒泡沫、其制备方法及应用
CN113910485B (zh) 一种生物可降解聚合物珠粒、制备方法及设备
CN113736129B (zh) 一种含木质素高结晶速率的可生物降解聚酯复合物珠粒发泡材料及其制备方法
CN114230989A (zh) 环保生物降解pbat发泡材料的制备方法
CN103819885A (zh) 一种聚乳酸发泡材料及其制备方法
CN103890066A (zh) 可堆肥的或基于生物的发泡物、制造和使用方法
US20080200572A1 (en) Process For The Production of Extruded Sheets Of Expanded Polystyrene
US20170182696A1 (en) Particle foam distributed manufacturing apparatus and method and particle foam articles
US8962706B2 (en) Process for enabling secondary expansion of expandable beads
EP2543489A2 (en) Process for enabling secondary expansion of expandable beads
US20050035499A1 (en) Method for producing foamed structural parts that are mixed with vegetable carrier materials
JP3086392B2 (ja) 熱可塑性ポリエステル系樹脂発泡体の製造方法
CA2778641A1 (en) Method of producing compostable or biobased foams
CN111136825B (zh) 细泡孔、高发泡倍率的聚乳酸颗粒的制备方法
Sorrentino et al. 11 Foaming Technologies for Thermoplastics
CN116284954A (zh) 一种可蒸汽模压成型的生物可降解聚合物发泡珠粒
JP2023549018A (ja) 再利用可能、生分解性かつ工業的に堆肥化可能な押し出し発泡体、およびその製造方法
CN117487336A (zh) 一种生物可降解聚乳酸/pbat/热塑性淀粉复合发泡材料及其制备方法
CN114957948A (zh) 一种3d打印用发泡线材及其制备方法和应用
CA2778582A1 (en) Compostable or biobased foams
CA2770956A1 (en) Process for enabling secondary expansion of expandable beads

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 210000, Building G, No. 33 Dongqi Road, Jiangning District, Nanjing City, Jiangsu Province, China, 1002 and 1003

Applicant after: Jiangsu Yuesheng Technology Co.,Ltd.

Address before: No. 31, Yuantai Road, Dongshan street, Jiangning District, Nanjing, Jiangsu 210000

Applicant before: Useon (Nanjing) Extrusion Machinery Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant