CN113906154A - 锆合金产品上溅射耐锈蚀薄膜保护层的离子等离子体方法 - Google Patents

锆合金产品上溅射耐锈蚀薄膜保护层的离子等离子体方法 Download PDF

Info

Publication number
CN113906154A
CN113906154A CN202080039272.6A CN202080039272A CN113906154A CN 113906154 A CN113906154 A CN 113906154A CN 202080039272 A CN202080039272 A CN 202080039272A CN 113906154 A CN113906154 A CN 113906154A
Authority
CN
China
Prior art keywords
product
protective layer
sputtering
zirconium alloy
magnetron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202080039272.6A
Other languages
English (en)
Other versions
CN113906154B (zh
Inventor
弗拉迪斯拉夫·康斯坦丁诺维奇·奥尔洛夫
亚历山大·奥列戈维奇·季托夫
米哈伊尔·尤尔耶维奇·科尔尼延科
尼古拉·尼古拉耶维奇·克拉斯诺巴耶夫
亚历山大·亚历山德罗维奇·马斯洛夫
弗拉基米尔·弗拉基米罗维奇·诺维科夫
丹尼斯·谢尔盖耶维奇·萨恩科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tvel JSC
Original Assignee
Tvel JSC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tvel JSC filed Critical Tvel JSC
Publication of CN113906154A publication Critical patent/CN113906154A/zh
Application granted granted Critical
Publication of CN113906154B publication Critical patent/CN113906154B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/354Introduction of auxiliary energy into the plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/46Sputtering by ion beam produced by an external ion source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32403Treating multiple sides of workpieces, e.g. 3D workpieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • H01J37/32752Means for moving the material to be treated for moving the material across the discharge
    • H01J37/32761Continuous moving
    • H01J37/32779Continuous moving of batches of workpieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3417Arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种使用离子等离子体方法在锆合金产品上溅射耐锈蚀薄膜保护层,该方法包括将产品放置到行星立式机械里,用水冷非平衡磁控管对产品进行加热,离子浸蚀处理和表面活化,用气离子发生器对产品表层进行补充活化,处理期间的加速电压5000V以内,产品被给偏电压,溅射保护层时同时使用剩余磁场强度0.03至0.1T的平衡磁控管和非平衡磁控管,同时溅射保护层的产品以竖直的方式放置行星立式机械中,溅射保护层时产品被加热到150℃~600℃,同时加热器位于产品全长。该方法在锆合金产品外层表层上获得均匀厚度耐锈蚀薄膜保护层,通过产品的全长均匀加热提高所制作的薄膜保护层质量,同时通过增加磁控管电击功率密度提高产能。

Description

锆合金产品上溅射耐锈蚀薄膜保护层的离子等离子体方法
技术领域
本发明所属的领域是用离子等离子体磁控溅射方式成形不同的保护层,该方式下将汽相材料通过电击以原子形式或离子形式沉淀在底层层面上。该发明可以使用在电器、电子技术、原子能、光学等工业里。
背景技术
离子等离子体磁控溅射方法是制造薄膜保护层最有效的方法之一。这个方法允许在成本较低的条件下获得与底层联结力较强的并与其在分子层面发生联结的各种保护层。目前这个技术在科学和工业研究当中获得了广发使用,便于创造新一代耐锈蚀耐用产品。
目前已知的是用封闭式磁场通过离子等离子体方式制造多组分保护层的方法以及由Teer Coatings LTD公司创造的进行相关实现装置(Patent US No.5556519,1996年发布)。这个方法基于外磁极和内磁极形式的磁控管,其磁极方向相反,其中至少一个磁控管是非平衡性的,隔壁磁控管安装方式尽量保持相反极性,同时底层所放置的沉淀区主要由相邻磁控管外磁极产生的磁场的封闭式磁力线围绕,同时底层电位有所偏移,底层即为吸引正电荷离子的阴极。
它缺点是,在施加含有明显不同雾化系数的复合型保护层时,已知的方法及实施它的装置无法为制作较厚的保护层作出足够高的生产效率。原因是,由于等离子体浓度在非平衡磁场阴极附近的地方降低,导致电击功率密度在以上所述的流程当中难以保障足够高的水平(40W/cm2以上)。
在电击比功率较低的条件下发生以上所述的技术限制,降低了不同用途产品制造工艺的功能能力。因此,已知的方法不能随时用到制作厚度较大的复合成分保护层。已知的装置无法保障保护层受到足够程度的活化,因为这种情况下需要用独立离子束对保护层进行轰击,或给底层共给高频率交流电位。
根据与其最接近的方法(专利RU 2379378,МПКС23С14/35,2010年发布),为制作保护层需要做到以下操作:准备均匀靶标的非平衡磁控管,准备平衡磁控管,将产品安装在行星立式机械中,将装置进入工作状态,用非平衡磁控管按5到40W/cm2电击功率密度对产品进行离子浸蚀处理和活化处理,用氩气等气离子发生器按5000V以内的加速电压对产品进行补充活化处理,用加热器将产品加热到250至1200℃,同时使用电击功率密度5到40W/cm2非平衡磁控管和电击功率密度40到500W/cm2平衡磁控管以及0.03到0.1T剩余磁场强度制作出保护层的主层面。
本方法缺点是:无法在整个长度上保障同等的加热效果,可能引起保护层的破坏;实施流程的温度较高,导致产品过热,对最终获得的薄膜保护层品质产生负面作用。
发明内容
所提供的发明针对的目标是,研发出在长形薄壁锆合金产品上溅射耐锈蚀薄膜保护层的方法和提升制作薄膜保护层工艺的效率。
技术效果是在锆合金产品外层表层上获得均匀厚度耐锈蚀薄膜保护层,通过产品的整个表面均匀加热提高所做的薄膜保护层质量,同时通过增加磁控管电击功率密度提升产能。
达到技术效果的方式是使用离子等离子体方法在锆合金产品上溅射耐锈蚀薄膜保护层,该方法包括将产品放置到行星立式机械中,用水冷非平衡磁控管对产品进行加热,离子浸蚀处理和表面活化,用气离子发生器对产品表层进行补充活化,处理期间的加速电压5000V以内,产品被给偏电压,溅射保护层时同时使用剩余磁场强度0.03至0.1T的平衡磁控管和非平衡磁控管,同时被溅射保护层的产品以竖直的方式放置行星立式机械中,溅射保护层时产品被加热到150℃~600℃,同时加热器位于产品整个长度。
每一个非平衡磁控管电击功率密度为5到80W/cm2
每一个平衡磁控管电击功率密度为40到600W/cm2
并且进行镀铬处理。
镀铬处理使用铬合金,具体含有Сг:0–75%、Аl:0–2.1%、Fe:0–22%、Ni:0–2.5%。
产品在溅射保护层时以竖直的方式放置行星立式机械里,由于避免产品变形(弯曲)和保护层的破坏(开裂,脱层)导致可以获得更高品质的保护层。
溅射保护层期间升温到150℃~600℃,允许因保障产品和所成形的表层受到必要的热处理而避免其在溅射保护层期间被破坏,因而获得更高品质的保护层。
加热器位于产品全长使得其收到更均匀加热效果,因而提升了所溅射出的保护层的品质(保护层粘接力,产品外层均匀厚度,高密度)并增加了其耐锈蚀性能。
溅射保护层期间产品加热温度达不到150℃的,溅射保护层的效率及其与产品的联结粘接力会降低。
溅射保护层期间产品加热温度超出600℃的,产品可能会发生过热,产品和被成形的保护层被破坏,同时也耗出更多能量。
溅射保护层的工艺期间每一个非平衡磁控管电击功率密度达不到5W/cm2的,会导致溅射保护层效率及其品质降低(产品外层厚度不均匀,保护层联结粘接力降低)。
溅射保护层的工艺期间每一个非平衡磁控管电击功率密度超出80W/cm2的,可能会导致产品过热,产品和保护层被破坏。
溅射保护层的工艺期间每一个平衡磁控管电击功率密度达不到40W/cm2的,会导致溅射保护层效率及其品质降低(产品外层厚度不均匀,保护层联结粘接力降低)。
溅射保护层的工艺期间每一个平衡磁控管电击功率密度超出600W/cm2的,可能会导致产品过热,产品和保护层被破坏。
附图说明
本次提供的发明通过下列的图进行阐明:
图1–真空装置结构图,图中1、2为水冷溅射靶标非平衡磁控管;3–真空室;4–行星立式机械;5–锆合金产品;6、7–平衡磁控管;8–产品固定件;9–离子发生器;10–溅射靶标。
图2–加热器分布图,图中4–旋转式行星机械;5–锆合金产品;11–加热器。
图3–无保护层锆合金样品和带有离子等离子体方法溅射上保护层锆合金样品在过热蒸汽测试时间的加重变化比较图。
图4–锆合金产品横向断口微观组织剖面照片,其中12–镀铬层,5–锆合金产品。
具体实施方式
用离子等离子体方式将薄膜保护层溅射在锆合金产品上的方法是,将产品5,即外径6~15mm长度5m以内的Э110号锆合金无缝冷轧管,固定在行星立式机械4旋转位置上,将真空室3抽空到(4~5х10-3Pa,开启行星立式机械4转动并将产品5温度用加热器11升温到150~600℃。进一步清洁锆合金产品表层,使用水冷非平衡磁控管对于表面进行离子浸蚀处理和表面活化处理,按5000V内加速电压采用气离子发生器9对表面进行补充活化,用氩气离子进行锆合金产品表面活化时在产品5上采取6~10A电击和100~200V偏电压。之后同时使用非平衡磁控管1、2和平衡磁控管6、7通过离子等离子体方法溅射靶标10,磁控管采用铬靶标或铬合金靶标,铬合金成分为Сг:0–75%、Al:0–2.1%、Fe:0–22%、Ni:0–2.5%,剩余磁场强度为0.03T到0.1T,同时使用真空装置基础上的设备(图1)。厚度5~25μm铬或铬合金保护层12(图4)用2~5小时时间在(1~3x10-1Pa工作压力下进行溅射。之后锆合金产品5和真空室3一起进行冷却,给真空室放气,之后将产品5从真空室3里拿出。
制作铬或其合金的保护层时采取模式:预抽真空<10-3Pa;工作真空Р=0.01~0.05Pa;启动电压U=600~800V;工作电压U=350~700V;电击功率密度5~600W/cm2
发明实施例
示例1
作为特例,将铬保护层放上锆合金产品5,即外径9.1和9.5mm、长度4m以内的Э110锆合金无缝冷轧管。
磁控管溅射系统采用铬靶标10。
首先将锆合金产品5固定在行星立式机械4旋转位置上,将真空室3抽空到4х10- 3Pa,开启行星立式机械4转动并将产品5温度用加热器11升温到250℃。进一步清洁锆合金产品表层,使用水冷非平衡磁控管1、2对于表面进行离子浸蚀处理和表面活化处理,按3000V内加速电压采用气离子发生器9对表面进行补充活化,产品5表面活化用氩气离子并采取1.5A电击和100V偏电压。
之后同时使用非平衡磁控管1、2和平衡磁控管6、7通过离子等离子体方法溅射铬靶标10,剩余磁场强度为0.05T,同时使用真空装置基础上的设备(图1)。厚度7和15μm的铬保护层分别用2和4小时时间2x10-1Pa工作压力下进行溅射。
之后在1.5-2小时期间按剩余压力4х10-3Pa将产品5冷却在真空室3里,再对真空室3进行放气,之后将产品5从真空室3拿出来检查质量是否合格。
耐锈蚀铬制保护层12的结构和形态用扫描电子显微术在锆合金产品5铬制保护层横向断口剖面上进行研究(图4)。断口表面比较平等和均匀。未发现气孔,无材料和脱层等现象。保护层厚度均匀,厚度为8.748μm。铬层与Э110合金底层的粘接很紧密。
为检查保护层的锈蚀性能,对于带有铬保护层和不带保护层的样品进行了高温腐蚀比较测试。
用离子等离子体方法溅射保护层技术制作的Э110合金产品比较腐蚀测试采取下列参数:介质—蒸汽,压力—大气压,测试类型—双边氧化,测试温度—1000~1200℃,蒸汽消耗量—25~90g/h(约1,5~5.5mg/cm2/s),加热速度50°一秒钟,冷却速度至少20°一秒钟,样品长度—30mm,测试时间—4000s。
图3是无保护层锆合金样品和带有离子等离子体方法溅射保护层锆合金样品在过热蒸汽测试时间的加重变化比较图。样品加重是保护层在超设计故障当中失去载热体情况下(LOCA)的腐蚀性能描述。
无保护层的Э110合金原样产品在770℃以上进行蒸汽氧化时发生氧化层的脱层。
带铬合金保护层的Э110合金样品氧化速度慢于Э110合金原样产品。
根据1000~1200℃蒸汽中的高温比较测试,带有铬保护层样品氧化速度与无保护层原样产品相比低5倍。
以上数据表明,铬保护层保障锆合金产品在超热蒸汽中具有极高的耐锈蚀性能。
示例2
另一个特例中,溅射铬合金保护层的锆合金产品5是外径9.1和9.5mm、长度4m以内的Э110锆合金制的无缝冷轧管。
磁控管溅射系统采用铬合金靶标10,成分为Сг:0–75%、Аl:0–2.1%、Fe:0–22%、Ni:0–2.5%。
首先将产品5固定在行星立式机械4旋转位置上,将真空室3抽空到4х10-3Pa,开启行星立式机械4转动并将产品5温度用加热器11升温到150℃。进一步清洁锆合金产品表层,使用水冷非平衡磁控管1、2对于表面进行离子浸蚀处理,按2000V内加速电压采用气离子发生器9对表面进行补充活化,用氩气离子进行锆合金产品表面活化时在产品5上采取1.2A范围内的电击和150V偏电压。
之后同时使用非平衡磁控管1、2和平衡磁控管6、7通过离子等离子体方法进行靶标10的溅射,剩余磁场强度约0.05T,同时使用真空装置基础上的设备(图1)。厚度7和15μm铬合金保护层分别用2.5和4.5小时的时间进行溅射,工作压力为2x10-1Pa。
之后将锆合金产品5在剩余压力4x10-3Pa下在真空室3里进行冷却1.5~2小时,再给真空室3放气,将产品5从真空室3拿出来观察是否质量合格。
锆合金产品5横向断口剖面上的成分为Сг:0–75%、Аl:0–2.1%、Fe:0–22%、Ni:0–2.5%的铬合金耐锈蚀保护层的断口结构平稳和均匀。不存在针孔和脱层。表层厚度均匀,厚度为8.5μm,与Э110合金底层的联结紧密。
为检查表层耐锈蚀性能,对于带有铬合金保护层和无保护层的样品进行了高温腐蚀比较测试。
进行腐蚀测试的参数为:介质—蒸汽,压力—大气压,测试类型—双边氧化,测试温度—1000~1200℃,蒸汽消耗量—25~90g/h(约1,5~5,5mg/cm2/s),加热速度约50°,冷却速度不低于20°一秒钟,样品长—30mm,测试时间—4000s。
无保护层锆合金样品和带有离子等离子体方法溅射的铬合金保护层锆合金样品在超热蒸汽中的测试时间加重分别为30天后的24mg/dm2和11mg/dm2和60天后的30mg/dm2和14mg/dm2。样品加重是保护层在超设计故障当中失去载热体情况下(LOCA)的腐蚀性能描述。
无保护层的Э110合金原样产品在770℃以上进行蒸汽氧化时发生氧化层的脱层。
带铬合金保护层的Э110合金样品氧化速度慢于Э110合金原样产品。
工业可使用性
根据1000~1200℃蒸汽中的高温比较测试,带有铬保护层样品氧化速度与无保护层原样产品相比低5倍。
以上数据表明,铬保护层保障锆合金产品在超热蒸汽中具有极高的耐锈蚀性能。
因此,所提供的发明允许在锆合金产品外表面上成形均匀厚度的耐锈蚀薄膜保护层,通过产品整个表面均匀加热提升保护层的品质,同时通过增加磁控管电击功率密度提高生产能力。

Claims (5)

1.一种在锆合金产品上溅射耐锈蚀保护层的方法,包括将产品放置行星立式机械中,将产品加热,用水冷非平衡磁控管对产品进行离子浸蚀处理和表面活化处理,在加速电压在5000V内以及向产品给偏电压条件下用气离子发生器对于表面进行补充活化,采用剩余磁场强度0.03至0.1T通过使用非平衡磁控管和平衡磁控管同时用于溅射保护层,该方法的特征在于,被溅射保护层的产品以竖直方式放置在行星立式机械中并在溅射过程当中受到加热到150°С~600°С,同时加热器布置在产品的整个长度上。
2.根据权利要求1所述的方法,其特征在于,每一个非平衡磁控管电击功率密度为5至80W/cm2
3.根据权利要求1所述的方法,其特征在于,每一个平衡磁控管电击功率密度为40至600W/cm2
4.根据权利要求1所述的方法,其特征在于,溅射的保护层是铬制的。
5.根据权利要求1所述的方法,其特征在于,溅射的保护层是铬合金制的,成分为Сг:0–75%、Аl:0–2.1%、Fe:0–22%、Ni:0–2.5%。
CN202080039272.6A 2020-04-20 2020-04-20 锆合金产品上溅射耐锈蚀薄膜保护层的离子等离子体方法 Active CN113906154B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2020/000204 WO2021215953A1 (ru) 2020-04-20 2020-04-20 Способ ионно-плазменного нанесения коррозионностойких пленочных покрытий на изделия из циркониевых сплавов

Publications (2)

Publication Number Publication Date
CN113906154A true CN113906154A (zh) 2022-01-07
CN113906154B CN113906154B (zh) 2024-02-20

Family

ID=78269709

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080039272.6A Active CN113906154B (zh) 2020-04-20 2020-04-20 锆合金产品上溅射耐锈蚀薄膜保护层的离子等离子体方法

Country Status (7)

Country Link
US (1) US20230032964A1 (zh)
EP (1) EP3960896B1 (zh)
CN (1) CN113906154B (zh)
FI (1) FI3960896T3 (zh)
HU (1) HUE065388T2 (zh)
WO (1) WO2021215953A1 (zh)
ZA (1) ZA202109640B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114134456B (zh) * 2021-11-04 2023-12-22 苏州热工研究院有限公司 锆合金包壳Cr涂层磁控溅射制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07305166A (ja) * 1993-09-03 1995-11-21 Inst Of Physics Of Acad Of Sciences Of Czecho Republic マグネトロンスパッタリング方法
RU2199607C2 (ru) * 2000-07-07 2003-02-27 Государственное унитарное дочернее предприятие "Свердловский филиал научно-исследовательского и конструкторского института электротехники" Способ обработки циркониевых сплавов
US20090301610A1 (en) * 2006-09-08 2009-12-10 Universite D'orleans Process for depositing a thin film of metal alloy on a substrate and metal alloy in thin-film form
RU2379378C2 (ru) * 2006-07-26 2010-01-20 Дмитрий Давидович Спиваков Способ ионно-плазменного нанесения многокомпонентных пленочных покрытий и установка для его осуществления
CN201400714Y (zh) * 2009-05-06 2010-02-10 佛山市华南精密制造技术研究开发院 一种多功能镀膜设备
CN102027564A (zh) * 2008-04-28 2011-04-20 塞梅孔公司 对物体进行预处理和涂覆的装置和方法
RU2465372C1 (ru) * 2011-05-12 2012-10-27 Билал Аругович Билалов Устройство для получения тонких пленок нитридных соединений
CN203065570U (zh) * 2013-03-04 2013-07-17 电子科技大学 一种直列多靶磁控溅射镀膜装置
CN103212729A (zh) * 2013-04-17 2013-07-24 重庆市硅酸盐研究所 一种具有CrAlTiN超晶格涂层的数控刀具及其制备方法
US20170287578A1 (en) * 2014-09-17 2017-10-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Nuclear fuel claddings, production method thereof and uses of same against oxidation/hydriding
CN108315706A (zh) * 2018-04-02 2018-07-24 上海应用技术大学 一种对刀具进行pvd涂层的真空镀膜装置
CN108486537A (zh) * 2018-03-09 2018-09-04 中国科学院宁波材料技术与工程研究所 一种用于锆合金的非晶防护涂层及其制备方法和应用
CN109852943A (zh) * 2019-03-15 2019-06-07 成都理工大学 核用锆合金表面CrN涂层的制备方法及产品

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3503398A1 (de) * 1985-02-01 1986-08-07 W.C. Heraeus Gmbh, 6450 Hanau Sputteranlage zum reaktiven beschichten eines substrates mit hartstoffen
GB9006073D0 (en) 1990-03-17 1990-05-16 D G Teer Coating Services Limi Magnetron sputter ion plating
ES2378327T3 (es) * 2006-07-26 2012-04-11 Naco Technologies, Sia Procedimiento para la aplicación mediante plasma iónico de revestimientos de película y dispositivo para llevar a cabo el procedimiento
US9803891B2 (en) * 2011-12-15 2017-10-31 Council Of Scientific & Industrial Research Solar selective coating having high thermal stability and a process for the preparation thereof
JP7130629B2 (ja) * 2016-10-03 2022-09-05 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー 原子燃料棒の事故耐性二重被膜の形成方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07305166A (ja) * 1993-09-03 1995-11-21 Inst Of Physics Of Acad Of Sciences Of Czecho Republic マグネトロンスパッタリング方法
RU2199607C2 (ru) * 2000-07-07 2003-02-27 Государственное унитарное дочернее предприятие "Свердловский филиал научно-исследовательского и конструкторского института электротехники" Способ обработки циркониевых сплавов
RU2379378C2 (ru) * 2006-07-26 2010-01-20 Дмитрий Давидович Спиваков Способ ионно-плазменного нанесения многокомпонентных пленочных покрытий и установка для его осуществления
US20090301610A1 (en) * 2006-09-08 2009-12-10 Universite D'orleans Process for depositing a thin film of metal alloy on a substrate and metal alloy in thin-film form
CN102027564A (zh) * 2008-04-28 2011-04-20 塞梅孔公司 对物体进行预处理和涂覆的装置和方法
CN201400714Y (zh) * 2009-05-06 2010-02-10 佛山市华南精密制造技术研究开发院 一种多功能镀膜设备
RU2465372C1 (ru) * 2011-05-12 2012-10-27 Билал Аругович Билалов Устройство для получения тонких пленок нитридных соединений
CN203065570U (zh) * 2013-03-04 2013-07-17 电子科技大学 一种直列多靶磁控溅射镀膜装置
CN103212729A (zh) * 2013-04-17 2013-07-24 重庆市硅酸盐研究所 一种具有CrAlTiN超晶格涂层的数控刀具及其制备方法
US20170287578A1 (en) * 2014-09-17 2017-10-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Nuclear fuel claddings, production method thereof and uses of same against oxidation/hydriding
CN108486537A (zh) * 2018-03-09 2018-09-04 中国科学院宁波材料技术与工程研究所 一种用于锆合金的非晶防护涂层及其制备方法和应用
CN108315706A (zh) * 2018-04-02 2018-07-24 上海应用技术大学 一种对刀具进行pvd涂层的真空镀膜装置
CN109852943A (zh) * 2019-03-15 2019-06-07 成都理工大学 核用锆合金表面CrN涂层的制备方法及产品

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《离子注入表面优化技术》: "《离子注入表面优化技术》", 北京工业出版社, pages: 674 *
STAROSTA ET AL.: "Studies on magnetron-sputtered zirconium-silicide coatings deposited on zirconium alloy for the enhancement of their high-temperature oxidation resistance", vol. 63, no. 63, pages 73 - 79, XP093004548, DOI: 10.2478/nuka-2018-0009 *

Also Published As

Publication number Publication date
ZA202109640B (en) 2022-04-28
FI3960896T3 (fi) 2024-02-20
US20230032964A1 (en) 2023-02-02
EP3960896A1 (en) 2022-03-02
HUE065388T2 (hu) 2024-05-28
EP3960896A4 (en) 2023-01-11
CN113906154B (zh) 2024-02-20
EP3960896B1 (en) 2023-12-06
WO2021215953A1 (ru) 2021-10-28

Similar Documents

Publication Publication Date Title
CN109943824B (zh) 一种高硬度导电的碳基薄膜的制备方法
US20200208255A1 (en) Corrosion resistant and low embrittlement aluminum alloy coatings on steel by magnetron sputtering
US20200273684A1 (en) Method and apparatus for metal and ceramic nanolayering for accident tolerant nuclear fuel, particle accelerators, and aerospace leading edges
CN113906154A (zh) 锆合金产品上溅射耐锈蚀薄膜保护层的离子等离子体方法
JP6051492B2 (ja) 拡散接合スパッター・ターゲット・アセンブリの製造方法
CN114351110B (zh) 一种强化处理的类金刚石薄膜及其制备方法
KR101353451B1 (ko) 도금강판 및 이의 제조방법
CN107313086B (zh) 一种超细晶/纳米晶Cr涂层的复合制备工艺
KR20140057227A (ko) 도금 강판 및 이의 제조방법
RU2816323C1 (ru) Способ ионно-плазменного нанесения коррозионностойких пленочных покрытий на изделия из циркониевых сплавов
RU2566232C1 (ru) Способ комбинированной ионно-плазменной обработки изделий из алюминиевых сплавов
JP5162148B2 (ja) 複合体およびその製造方法
CN109207943B (zh) 一种磁控管、反应腔室和半导体处理设备
EA043273B1 (ru) Способ ионно-плазменного нанесения коррозионностойких пленочных покрытий на изделия из циркониевых сплавов
JP2010229552A (ja) 非晶質炭素被覆部材の製造方法
KR20110117528A (ko) 알루미늄 박막 코팅 방법
KR20240005313A (ko) 전자빔 표면처리를 이용한 탄소 코팅 접착력 향상 방법
RU2165474C2 (ru) Способ обработки поверхности металлических изделий
US20230298772A1 (en) Nuclear fuel cladding element and method of manufacturing said cladding element
GB2557580A (en) Tablet tool coating
EP3249072B1 (en) Method for increasing the electrical conductivity of a composite part surface
CN114196928A (zh) 一种具有优异抗等离子体辐照性能的钨涂层及其制备方法
KR20130074648A (ko) 도금 강판 및 이의 제조방법
US20170175246A1 (en) Method for production of a composite layer comprising a plastic foil and a layer deposited thereon
CN117448827A (zh) 用于人工关节摩擦表面的低粗糙度氮化钛涂层及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant