CN113899305A - 一种改进的相移相位测量方法及系统 - Google Patents

一种改进的相移相位测量方法及系统 Download PDF

Info

Publication number
CN113899305A
CN113899305A CN202111157053.0A CN202111157053A CN113899305A CN 113899305 A CN113899305 A CN 113899305A CN 202111157053 A CN202111157053 A CN 202111157053A CN 113899305 A CN113899305 A CN 113899305A
Authority
CN
China
Prior art keywords
initial
phase
phase shift
calculating
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111157053.0A
Other languages
English (en)
Other versions
CN113899305B (zh
Inventor
李娇声
章勤男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Polytechnic Normal University
Original Assignee
Guangdong Polytechnic Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Polytechnic Normal University filed Critical Guangdong Polytechnic Normal University
Priority to CN202111157053.0A priority Critical patent/CN113899305B/zh
Publication of CN113899305A publication Critical patent/CN113899305A/zh
Application granted granted Critical
Publication of CN113899305B publication Critical patent/CN113899305B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/0201Interferometers characterised by controlling or generating intrinsic radiation properties using temporal phase variation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/021Interferometers using holographic techniques

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

本发明公开一种改进的相移相位测量方法及系统,包括以下步骤:数据获取,获取两幅差分干涉图,其中,差分干涉图为获取的干涉图两两相减去除背景项后的图;数据处理,将差分干涉图的表达式用矩阵的形式来表示,然后利用因式分解的方法对矩阵不断迭代,直至收敛,计算得到与待测相位和相移量相关的向量;计算,基于相关的向量,计算待测相位。本技术方案不需要进行长时间的迭代,且不需要任何近似条件的假设,对干涉图的条纹数量、形状以及相移量分布没有要求,即可快速得到高精度的相移相位测量结果。

Description

一种改进的相移相位测量方法及系统
技术领域
本发明涉及光学干涉测量或数字全息测量领域,尤其涉及一种使用相移技术的光学干涉测量或数字全息测量领域。
背景技术
相移干涉测量技术因具有非接触、全场、高精度和快速等优势,被广泛应用于精密机械元件检测、定量相位成像、流场测量以及材料和生命科学等领域。在实现定量相位成像等相位解调的过程中,对干涉条纹图的高精度解调是保证相位准确获取的关键步骤。最早提出的多步相移算法中,包括最小二乘算法,定步长的多步相移算法等,因具有高精度和快速等优势被广泛使用。然而,这类算法需要提前知道相移量或者要求相移量等步长分布,其相位求解的精度依赖于相移量的精度,空气的扰动、相移器件的非线性特性和激光频率的不稳定性等因素都会导致相移量产生偏差。
从相移量未知的相移干涉条纹图中提取相位的方法不需要事先求出相移量即可直接从采集到的相移干涉图中提取待测相位,是一种可以降低振动、空气流动等对相移测量精度影响的有效方法。到目前为止,学者们已经提出了许多未知相移量下的高精度相移算法,其中公认的精度较高的有改进的最小二乘算法(AIA)和主成分分析算法(PCA),以及为了解决相移量分布问题的改进的主成分分析方法(APCA)。除此之外,也有一些基于条纹正交特性提出的独立成分分析方法和正交归一化算法以及基于线性相关的自校准算法。然而,在以上的算法中,AIA算法由于需要不停迭代以满足收敛条件而存在耗时的问题,其他的算法和PCA、APCA算法一样,虽然时间快,但是存在计算精度受条纹数量影响的问题。为了解决条纹稀疏对计算精度的影响,许多不受条纹数量影响的相移算法被提出。中频空间谱匹配算法(MSSM)和相移量搜索算法(PSS)在一定程度上可以减小干涉条纹数量对计算精度的影响,但是MSSM算法需要进行滤波,且对相移量分布有要求;PSS算法限制条件少,但是需要进行一定的搜索,相对耗时。
以上算法在一定程度上总会受到相移量分布、条纹分布和数量的影响,计算精度不稳定,适用范围受限,这在一定程度上并不适合用于实际的相位检测。因此急需一种相移相位测量方法来解决上述问题。
发明内容
本发明要解决的技术问题是,提供一种不受条纹形状和数量影响,不受应用限制的相移相位测量方法及装置。
一方面,为了实现上述目的,本发明提供了一种改进的相移相位测量方法,包括以下步骤:
数据获取,获取两幅差分干涉图,其中,所述差分干涉图为干涉图两两相减去除背景项后的图;
数据处理,将所述差分干涉图的表达式用矩阵的形式来表示,然后利用因式分解的方法对矩阵不断迭代,直至收敛,计算得到与待测相位和相移量相关的向量;
计算,基于所述相关的向量,计算待测相位。
可选地,所述差分干涉图的表达式为:
Figure BDA0003289020920000021
其中,Ibm,k(x,y)表示差分干涉图,下标m表示像素下标索引,每个图像中的像素数为M,即满足m∈(1,2,3...M),k表示第几幅差分干涉图,且k=1,2。
可选地,将所述差分干涉图的表达式用矩阵的形式来表示:
Ib=(c-s)(uv)T
=VUT
其中c和s分别表示列向量,表示为
Figure BDA0003289020920000022
Figure BDA0003289020920000023
u和v分别表示其他的列向量,表示为u={cosθk-1}和v={sinθk},矩阵V和U则表示为V=(c-s)和U=(uv);其中[]T表示转置运算。
可选地,所述数据处理包括:
预设初始相移量,随机预设初始相移量θ,计算得到初始u0和初始v0
计算U0、V0,基于初始u0和初始v0计算初始的矩阵U0=(u0v0)、初始的矩阵V0
迭代,基于初始的矩阵V0,计算出初始的向量分布,并更新为V1,基于所述V1计算得到U1,完成一次迭代;重复以上迭代的过程,直到达到收敛的精度,输出最终的V和U值;
基于最终的V和U值,计算得到待测相位。
可选地,得到所述V0的过程为:利用V=Ib[U(UTU)-1]和已知的差分干涉图得到V0
用得到的V0根据
Figure BDA0003289020920000031
计算出初始的向量分布,并将初始的向量分布更新为V1,然后将V1代入U=[(VTV)-1VTIb]-1,得到新的U1
另一方面,为了实现上述目的,本发明还公开了一种改进的相移相位测量系统,包括:
数据获取模块,用于获取两幅差分干涉图,其中,所述差分干涉图为干涉图两两相减去除背景项后的图;
数据处理模块,用于将所述差分干涉图的表达式用矩阵的形式来表示,然后利用因式分解的方法对矩阵不断迭代,直至收敛,计算得到与待测相位和相移量相关的向量;
计算模块,用于基于所述相关的向量,计算待测相位。
可选地,所述数据处理模块包括:
第一处理模块,用于将所述差分干涉图表达为:
Figure BDA0003289020920000032
其中,Ibm,k(x,y)表示差分干涉图,下标m表示像素下标索引,每个图像中的像素数为M,即满足m∈(1,2,3...M),k表示第几幅差分干涉图,且k=1,2。
可选地,所述数据处理模块还包括:
第二处理模块,用于将所述第一处理模块的处理结果用矩阵的形式来表示:
Ib=(c-s)(uv)T
=VUT
其中c和s分别表示列向量,表示为
Figure BDA0003289020920000041
Figure BDA0003289020920000042
u和v分别表示其他的列向量,表示为u={cosθk-1}和v={sinθk},矩阵V和U则表示为V=(c-s)和U=(uv);其中[]T表示转置运算。
可选地,所述数据处理模块还包括:
第三处理模块包括:
第四处理子模块,用于预设初始相移量,随机预设初始相移量θ,计算得到初始u和初始v;
第五处理子模块,用于计算U0、V0,基于初始u0和初始v0计算初始的矩阵U0=(u0v0)、初始的矩阵V0;还用于进行迭代处理,基于初始的矩阵V0,计算出初始的向量分布,并更新为V1,基于所述V1计算得到U1,完成一次迭代;重复以上迭代的过程,直到达到收敛的精度,输出最终的V和U值;
第六处理子模块,用于基于最终的V和U值,计算得到待测相位。
可选地,第五处理子模块利用V=Ib[U(UTU)-1]和已知的差分干涉图得到V0
用得到的V0根据
Figure BDA0003289020920000043
计算出初始的向量分布,并将初始的向量分布更新为V1,然后将V1代入U=[(VTV)-1VTIb]-1,得到新的U1
本发明的技术效果:本发明提出了一种快速、高精度、稳定且比较通用的随机相移相位测量方案,使用本方案不需要进行长时间的迭代,且不需要任何近似条件的假设,对干涉图的条纹数量、形状以及相移量分布没有要求,即可快速得到高精度的相移相位测量结果。
附图说明
图1为本发明实施例一的改进的相移相位测量方法流程示意图;
图2为本发明实施例二的改进的相移相位测量的结构示意图;
图3为本发明实施例一的仿真结果示意图,其中(a)、(b)仿真的其中使用本方法得到的两幅相移干涉图;(c)预设参考相位;(d)提出的DM-UV算法(e)APCA(f)AIA计算得到的相位分布;(g)提出的DM-UV算法(h)APCA(i)AIA计算的相位偏差结果;
图4为本发明实施例一使用改进的相移相位测量方法的实验结果示意图,(a)其中一幅实验干涉图;(b)参考相位;(c)提出的DM-UV算法(d)APCA和(e)AIA算法计算得到的相位分布;(f)提出的DM-UV算法(g)APCA和(h)AIA算法计算的相位偏差结果。。
具体实施方式
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。
应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见的。本申请说明书和实施例仅是示例性的。
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
实施例一
本发明实施例一公开了一种改进的相移相位测量方法,如图1所示,包括:
数据获取,获取两幅差分干涉图,其中,所述差分干涉图为干涉图两两相减去除背景项后的图;
数据处理,将所述差分干涉图的表达式用矩阵的形式来表示,然后利用因式分解的方法对矩阵不断迭代,直至收敛,计算得到与待测相位和相移量相关的向量;
计算,基于所述相关的向量,计算待测相位。
本实施例中,搭建马赫曾德尔干涉系统,在参考光路中使用相移器引入相移,采集200幅样品为聚苯乙烯小球的相移干涉图。从中挑选出3幅有具有任意相移量差的相移干涉图,其中一幅相移干涉图如图4(a)所示。对干涉图中有物体的区域进行截取计算,截取的区域大小为168×468像素。其中,干涉系统不限于单通道干涉系统以及双通道干涉系统、三通道干涉系统、四通道干涉系统的多通道系统。
作为一种优选地实施方式,本实施例中以单通道干涉系统为例,所述差分干涉图的表达式为:
Figure BDA0003289020920000061
其中,Ibm,k(x,y)表示差分干涉图,下标m表示像素下标索引,每个图像中的像素数为M,即满足m∈(1,2,3...M),k表示第几幅差分干涉图,且k=1,2。
具体地,其中选取的三幅相差任意相移量的干涉图的强度可以表示为:
Figure BDA0003289020920000062
Figure BDA0003289020920000063
Figure BDA0003289020920000064
其中a(x,y)和b(x,y)表示干涉图的背景项和强度项,θ1和θ2分别表示与第一幅干涉图的相移量差。
作为一种优选地实施方式,将所述差分干涉图的表达式用矩阵的形式来表示:
Figure BDA0003289020920000065
其中,c和s分别表示列向量,表示为
Figure BDA0003289020920000066
Figure BDA0003289020920000067
u和v分别表示其他的列向量,表示为u={cosθk-1}和v={sinθk},矩阵V和U则表示为V=(c-s)和U=(uv);其中[]T表示转置运算。具体地,该矩阵形式将差分干涉图建模为两个矩阵的乘积:左矩阵V,大小为M×2,包含描述调制相位的分量,右矩阵U,尺寸为2×k,包含描述相移的分量。因此,只要获取了矩阵V,那么待测相位信息可以表示为:
Figure BDA0003289020920000071
作为一种优选地实施方式,所述数据处理包括:
预设初始相移量,随机预设初始相移量θ,计算得到初始u0和初始v0
计算U0、V0,基于初始u0和初始v0计算初始的矩阵U0=(u0 v0)、初始的矩阵V0
迭代,基于初始的矩阵V0,计算出初始的向量分布,并更新为V1,基于所述V1计算得到U1,完成一次迭代;重复以上迭代的过程,直到达到收敛的精度,输出最终的V和U值;
基于最终的V和U值,计算得到待测相位。
本实施例中,收敛的计算误差可以定义为:
Figure BDA0003289020920000072
其中n表示n次迭代,n=1,2,3...。
Figure BDA0003289020920000073
Figure BDA0003289020920000074
分别表示目前迭代和上一次迭代得到的相位分布。
作为一种优选地实施方式,得到所述V0的过程为:利用V=Ib[U(UTU)-1]和已知的差分干涉图得到V0,其中Ib为上文中获取的两幅差分干涉图,为已知量;
用得到的V0根据
Figure BDA0003289020920000075
计算出初始的向量分布,并将初始的向量分布更新为V1,然后将V1代入U=[(VTV)-1VTIb]-1,得到新的U1
如图3所示,为了验证本技术方案的可行性,首先利用一组高度为36.6rad的仿真干涉图来验证方法的可行性,其中干涉图的大小为300×300像素;其中背景项和调制项分别设为:
a(x,y)=80exp(-0.05((x-0.01)2+y2))+40
b(x,y)=100exp(-0.05(x2+y2))
预设相位分布为
Figure BDA0003289020920000081
预设的相移量值分别为1.5rad和5rad。为了使得仿真干涉图接近实际,本实施例将信噪比为35dB的高斯白噪声加入到了三幅干涉图中。其中两幅相移干涉图和预设相位如图3(a-c)所示。为了比较计算精度,分别同时利用了AIA算法和APCA算法来对待测相位进行求解。如图3(d-f)所示所提方法(DM-VU)和APCA以及AIA算法计算得到的相位分布,为了定量分析算法的精度,将以上三种算法计算得到的相位与预设相位进行相减得到了相位偏差分布图,如图3(g-i),并计算了其均方根误差RMSE值以及比较了计算时间,如图表1所示。从表中可以看出,本方法在精度上有明显的优势,且计算时间比迭代的AIA算法要快一个数量级。
表1
Figure BDA0003289020920000082
如图4所述,为了展现本发明所述的相移相位测量方法相对于传统方法的优点,使用了传统方法中具有代表性的最小二乘迭代方法(AIA)和改进的主成分分析方法(APCA)来作为比较,其中用于比较的参考相位是用200幅相移干涉图通过AIA计算得到的,如图4(b)所示。使用本方法以及APCA、AIA算法对选取的三幅相移干涉图进行计算后,得到的相位分布以及与参考相位的偏差分布如图4(c-e)和(f-h)所示。从相位偏差分布的结果可以明显看出,本方法的相位偏差最小,其次是AIA算法,APCA算法由于计算的干涉图条纹数量较少,因此计算偏差最大。为了定量分析以上结果,将各个方法的计算精度与计算时间展示在表2中。从表2也明显可以看出,本方法在计算精度上有明显优势,时间也要比AIA算法快出一个数量级。
表2
Figure BDA0003289020920000091
实施例二
本发明实施例二公开了一种改进的相移相位测量系统,如图2所示,包括
数据获取模块,用于获取两幅差分干涉图,其中,所述差分干涉图为干涉图去除背景项后的图;
数据处理模块,用于将所述差分干涉图的表达式用矩阵的形式来表示,然后利用因式分解的的方法对矩阵不断迭代,直至收敛,计算得到与待测相位和相移量相关的向量;
计算模块,用于基于所述相关的向量,计算待测相位。
作为一种优选地实施方式,所述数据处理模块包括:
第一处理模块,用于将所述差分干涉图表达为:
Figure BDA0003289020920000092
其中,Ibm,k(x,y)表示差分干涉图,下标m表示像素下标索引,每个图像中的像素数为M,即满足m∈(1,2,3...M),k表示第几幅差分干涉图,且k=1,2。
作为一种优选地实施方式,所述数据处理模块还包括:
第二处理模块,用于将所述第一处理模块的处理结果用矩阵的形式来表示:
Ib=(c-s)(uv)T
=VUT
其中c和s分别表示列向量,表示为
Figure BDA0003289020920000093
Figure BDA0003289020920000094
u和v分别表示其他的列向量,表示为u={cosθk-1}和v={sinθk},矩阵V和U则表示为V=(c-s)和U=(uv);其中[]T表示转置运算。
作为一种优选地实施方式,所述数据处理模块还包括:
第三处理模块包括:
第四处理子模块,用于预设初始相移量,随机预设初始相移量θ,计算得到初始u和初始v;
第五处理子模块,用于计算U0、V0,基于初始u0和初始v0计算初始的矩阵U0=(u0v0)、初始的矩阵V0;还用于进行迭代处理,基于初始的矩阵V0,计算出初始的向量分布,并更新为V1,基于所述V1计算得到U1,完成一次迭代;重复以上迭代的过程,直到达到收敛的精度,输出最终的V和U值;
第六处理子模块,用于基于最终的V和U值,计算得到待测相位。
作为一种优选地实施方式,第五处理子模块利用V=Ib[U(UTU)-1]和已知的差分干涉图得到V0
用得到的V0根据
Figure BDA0003289020920000101
计算出初始的向量分布,并将初始的向量分布更新为V1,然后将V1代入U=[(VTV)-1VTIb]-1,得到新的U1
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (10)

1.一种改进的相移相位测量方法,其特征在于,包括以下步骤:
数据获取,获取两幅差分干涉图,其中,所述差分干涉图为干涉图两两相减去除背景项后的图;
数据处理,将所述差分干涉图的表达式用矩阵的形式来表示,然后利用因式分解的方法对矩阵不断迭代,直至收敛,计算得到与待测相位和相移量相关的向量;
计算,基于所述相关的向量,计算待测相位。
2.如权利要求1所述的改进的相移相位测量方法,其特征在于,所述差分干涉图的表达式为:
Figure FDA0003289020910000011
其中,Ibm,k(x,y)表示差分干涉图,下标m表示像素下标索引,每个图像中的像素数为M,即满足m∈(1,2,3...M),k表示第几幅差分干涉图,且k=1,2。
3.如权利要求2所述的改进的相移相位测量方法,其特征在于,
将所述差分干涉图的表达式用矩阵的形式来表示:
Ib=(c-s)(uv)T
=VUT
其中c和s分别表示列向量,表示为
Figure FDA0003289020910000012
Figure FDA0003289020910000013
u和v分别表示其他的列向量,表示为u={cosθk-1}和v={sinθk},矩阵V和U则表示为V=(c-s)和U=(uv);其中[]T表示转置运算。
4.如权利要求3所述的改进的相移相位测量方法,其特征在于,所述数据处理包括:
预设初始相移量,随机预设初始相移量θ,计算得到初始u0和初始v0
计算U0、V0,基于初始u0和初始v0计算初始的矩阵U0=(u0v0)、初始的矩阵V0
迭代,基于初始的矩阵V0,计算出初始的向量分布,并更新为V1,基于所述V1计算得到U1,完成一次迭代;重复以上迭代的过程,直到达到收敛的精度,输出最终的V和U值;
基于最终的V和U值,计算得到待测相位。
5.如权利要求4所述的改进的相移相位测量方法,其特征在于,
得到所述V0的过程为:利用V=Ib[U(UTU)-1]和已知的差分干涉图得到V0
用得到的V0根据
Figure FDA0003289020910000023
计算出初始的向量分布,并将初始的向量分布更新为V1,然后将V1代入U=[(VTV)-1VTIb]-1,得到新的U1
6.一种改进的相移相位测量系统,其特征在于,包括:
数据获取模块,用于获取两幅差分干涉图,其中,所述差分干涉图为干涉图两两相减去除背景项后的图;
数据处理模块,用于将所述差分干涉图的表达式用矩阵的形式来表示,然后利用因式分解的方法对矩阵不断迭代,直至收敛,计算得到与待测相位和相移量相关的向量;
计算模块,用于基于所述相关的向量,计算待测相位。
7.如权利要求6所述的改进的相移相位测量系统,其特征在于,所述数据处理模块包括:
第一处理模块,用于将所述差分干涉图表达为:
Figure FDA0003289020910000021
其中,Ibm,k(x,y)表示差分干涉图,下标m表示像素下标索引,每个图像中的像素数为M,即满足m∈(1,2,3...M),k表示第几幅差分干涉图,且k=1,2。
8.如权利要求7所述的改进的相移相位测量系统,其特征在于,所述数据处理模块还包括:
第二处理模块,用于将所述第一处理模块的处理结果用矩阵的形式来表示:
Ib=(c-s)(uv)T
=VUT
其中c和s分别表示列向量,表示为
Figure FDA0003289020910000022
Figure FDA0003289020910000031
u和v分别表示其他的列向量,表示为u={cosθk-1}和v={sinθk},矩阵V和U则表示为V=(c-s)和U=(uv);其中[]T表示转置运算。
9.如权利要求8所述的改进的相移相位测量系统,其特征在于,所述数据处理模块还包括:
第三处理模块包括:
第四处理子模块,用于预设初始相移量,随机预设初始相移量θ,计算得到初始u和初始v;
第五处理子模块,用于计算U0、V0,基于初始u0和初始v0计算初始的矩阵U0=(u0v0)、初始的矩阵V0;还用于进行迭代处理,基于初始的矩阵V0,计算出初始的向量分布,并更新为V1,基于所述V1计算得到U1,完成一次迭代;重复以上迭代的过程,直到达到收敛的精度,输出最终的V和U值;
第六处理子模块,用于基于最终的V和U值,计算得到待测相位。
10.如权利要求9所述的改进的相移相位测量系统,其特征在于,
第五处理子模块利用V=Ib[U(UTU)-1]和已知的差分干涉图得到V0
用得到的V0根据
Figure FDA0003289020910000032
计算出初始的向量分布,并将初始的向量分布更新为V1,然后将V1代入U=[(VTV)-1VTIb]-1,得到新的U1
CN202111157053.0A 2021-09-30 2021-09-30 一种改进的相移相位测量方法及系统 Active CN113899305B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111157053.0A CN113899305B (zh) 2021-09-30 2021-09-30 一种改进的相移相位测量方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111157053.0A CN113899305B (zh) 2021-09-30 2021-09-30 一种改进的相移相位测量方法及系统

Publications (2)

Publication Number Publication Date
CN113899305A true CN113899305A (zh) 2022-01-07
CN113899305B CN113899305B (zh) 2023-08-22

Family

ID=79189667

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111157053.0A Active CN113899305B (zh) 2021-09-30 2021-09-30 一种改进的相移相位测量方法及系统

Country Status (1)

Country Link
CN (1) CN113899305B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0469718A2 (en) * 1990-07-03 1992-02-05 Konica Corporation Laser interferometry length measuring apparatus
US20050146730A1 (en) * 2001-08-02 2005-07-07 Junji Endo Coherent beam device for observing and measuring sample
CN102425988A (zh) * 2011-11-20 2012-04-25 中国科学院光电技术研究所 一种用于移相干涉条纹图的相位提取方法
CN202350735U (zh) * 2011-09-20 2012-07-25 浙江师范大学 干涉测量装置
CN104236452A (zh) * 2014-07-17 2014-12-24 华南师范大学 基于特定相移量的单黑白ccd相移双波长干涉测量方法
CN106017305A (zh) * 2016-05-06 2016-10-12 西安交通大学 一种基于差分进化算法的相位解包裹方法
EP3092943A1 (en) * 2015-05-13 2016-11-16 EP Solutions SA Systems, components, devices and methods for cardiac mapping using numerical reconstruction of cardiac action potentials
CN106767523A (zh) * 2016-11-17 2017-05-31 南方科技大学 一种提高相位精度的方法及装置
CN107462149A (zh) * 2017-07-03 2017-12-12 华南师范大学 一种相移干涉测量系统及其波片相移方法
CN109115110A (zh) * 2018-06-07 2019-01-01 华南师范大学 一种基于施密特正交化的干涉图相位迭代恢复方法
CN110300883A (zh) * 2016-11-29 2019-10-01 光热光谱股份有限公司 用于增强光热成像和光谱的方法和设备
CN210513046U (zh) * 2019-11-02 2020-05-12 广东技术师范大学 一种杆状物体垂直度的激光检测装置
CN111615667A (zh) * 2018-01-17 2020-09-01 Asml荷兰有限公司 测量目标的方法和量测设备

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0469718A2 (en) * 1990-07-03 1992-02-05 Konica Corporation Laser interferometry length measuring apparatus
US20050146730A1 (en) * 2001-08-02 2005-07-07 Junji Endo Coherent beam device for observing and measuring sample
CN202350735U (zh) * 2011-09-20 2012-07-25 浙江师范大学 干涉测量装置
CN102425988A (zh) * 2011-11-20 2012-04-25 中国科学院光电技术研究所 一种用于移相干涉条纹图的相位提取方法
CN104236452A (zh) * 2014-07-17 2014-12-24 华南师范大学 基于特定相移量的单黑白ccd相移双波长干涉测量方法
EP3092943A1 (en) * 2015-05-13 2016-11-16 EP Solutions SA Systems, components, devices and methods for cardiac mapping using numerical reconstruction of cardiac action potentials
US20160338611A1 (en) * 2015-05-13 2016-11-24 EP Solution SA Systems, Components, Devices and Methods for Cardiac Mapping Using Numerical Reconstruction of Cardiac Action Potentials
CN106017305A (zh) * 2016-05-06 2016-10-12 西安交通大学 一种基于差分进化算法的相位解包裹方法
CN106767523A (zh) * 2016-11-17 2017-05-31 南方科技大学 一种提高相位精度的方法及装置
CN110300883A (zh) * 2016-11-29 2019-10-01 光热光谱股份有限公司 用于增强光热成像和光谱的方法和设备
CN107462149A (zh) * 2017-07-03 2017-12-12 华南师范大学 一种相移干涉测量系统及其波片相移方法
CN111615667A (zh) * 2018-01-17 2020-09-01 Asml荷兰有限公司 测量目标的方法和量测设备
CN109115110A (zh) * 2018-06-07 2019-01-01 华南师范大学 一种基于施密特正交化的干涉图相位迭代恢复方法
CN210513046U (zh) * 2019-11-02 2020-05-12 广东技术师范大学 一种杆状物体垂直度的激光检测装置

Also Published As

Publication number Publication date
CN113899305B (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
Smirnov et al. Radio interferometric gain calibration as a complex optimization problem
Koleva et al. ULySS: a full spectrum fitting package
Liu et al. Performance of iterative gradient-based algorithms with different intensity change models in digital image correlation
Lindroos et al. Stacking of large interferometric data sets in the image-and uv-domain–a comparative study
CN113158487B (zh) 一种基于长短期记忆深度网络的波前相位差探测方法
CN108872153A (zh) 基于非均匀傅里叶变换的平行平板光学均匀性的测量方法
CN107917676A (zh) 一种基于条纹图像频谱分析的干涉测量方法
Sur et al. On biases in displacement estimation for image registration, with a focus on photomechanics
CN105890540A (zh) 基于数字图像相关的物体离面变形相位测量方法
CN110751268A (zh) 基于端到端卷积神经网络的相位混叠误差去除方法及装置
Dou et al. Numerical computation for backward time-fractional diffusion equation
CN111521112B (zh) 一种傅里叶及窗口傅里叶变换的联合相位重构算法
Xu et al. Random phase-shifting interferometry based on independent component analysis
Vargas et al. Error analysis of the principal component analysis demodulation algorithm
CN113589286A (zh) 基于D-LinkNet的无迹卡尔曼滤波相位解缠方法
Gdeisat et al. Fast fringe pattern phase demodulation using FIR Hilbert transformers
Cywińska et al. DeepDensity: Convolutional neural network based estimation of local fringe pattern density
Yu et al. Efficient phase-shift error compensation algorithm based on probability density function
Sun et al. High-accuracy simultaneous phase extraction and unwrapping method for single interferogram based on convolutional neural network
CN113899305B (zh) 一种改进的相移相位测量方法及系统
Vithin et al. Deep learning based single shot multiple phase derivative retrieval method in multi-wave digital holographic interferometry
CN110230996B (zh) 基于二维稀疏s变换快速频域解相的三维面形测量方法
Shi et al. Radial lens distortion correction by adding a weight layer with inverted foveal models to convolutional neural networks
Cywińska et al. DeepVID: deep-learning accelerated variational image decomposition model tailored to fringe pattern filtration
CN111964876B (zh) 基于lrte-nufft的平行平板光学均匀性的测量方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant