CN107917676A - 一种基于条纹图像频谱分析的干涉测量方法 - Google Patents

一种基于条纹图像频谱分析的干涉测量方法 Download PDF

Info

Publication number
CN107917676A
CN107917676A CN201711004029.7A CN201711004029A CN107917676A CN 107917676 A CN107917676 A CN 107917676A CN 201711004029 A CN201711004029 A CN 201711004029A CN 107917676 A CN107917676 A CN 107917676A
Authority
CN
China
Prior art keywords
mtd
mrow
msub
mtr
msubsup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711004029.7A
Other languages
English (en)
Other versions
CN107917676B (zh
Inventor
赵兆
阚凌志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201711004029.7A priority Critical patent/CN107917676B/zh
Publication of CN107917676A publication Critical patent/CN107917676A/zh
Application granted granted Critical
Publication of CN107917676B publication Critical patent/CN107917676B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry

Abstract

本发明公开了一种基于条纹图像频谱分析的干涉测量方法。该方法首先获取待测元件经干涉仪生成的单幅加载频干涉条纹图像,然后对条纹图像进行延拓及边缘平滑处理,再对延拓条纹图像进行快速傅里叶变换(FFT)以获取其频谱。针对该频谱运用二维插值FFT算法估计频谱旁瓣峰值位置,并根据估计结果去除图像载频。最后通过计算得出待测波面的相位信息,实现待测光学元件的面形估计。本发明的方法基于经改进的条纹图像延拓方法与条纹载频估计方法进行条纹图像分析处理,具有更高的干涉测量精度。

Description

一种基于条纹图像频谱分析的干涉测量方法
技术领域
本发明属于光学测量领域,具体涉及到一种基于条纹图像频谱分析的干涉测量方法。
背景技术
高精密度平面光学元件在光学工程领域有着极为广泛的应用。为了实现这些元件的面形检测、三维形貌获取及光学均匀性测试,通常采用基于光干涉原理的高精度干涉仪设备以及相应的干涉条纹测量方法。基于傅里叶变换处理干涉条纹图像是目前常用的一种干涉测量方法,其可以从单幅干涉条纹图像中获取待测光学元件的相关信息,降低了干涉系统的复杂程度,同时可以有效克服外界振动带来的干扰,适用于各类动态光学测量场合。
然而在实际使用该方法进行干涉测量时,由于干涉条纹图像在进行傅里叶变换时会产生频谱能量泄露,并且基于频谱旁瓣峰值去除条纹图像载频的方法并不够准确,实际测算得出的波面相位值会存在较大的测量误差。近年来有多位学者针对图像频谱泄露问题提出了改进方案,但多以损失部分测量区域或增加大量运算处理时间为代价(楚兴春,吕海宝,赵尚弘.基于傅里叶变换的高准确度条纹细分方法;黄菁,朱日宏,陈磊.基于样本块匹配的干涉图延拓方法)。同时也有学者对条纹图像的载频准确估计方法进行了研究(粟银,范琦,王云飞.干涉条纹的高准确度傅里叶变换分析),但其提出的基于旁瓣质心位置进行载频估计的方法存在物理意义不明确的不足,会对最终的相位值计算工作产生不利影响。
发明内容
本发明的目的在于提供一种基于条纹图像频谱分析的干涉测量方法。
实现本发明目的的技术解决方案为:一种基于条纹图像频谱分析的干涉测量方法,具体步骤为:
步骤1、采集干涉条纹灰度图像;
步骤2、对干涉条纹灰度图像进行延拓预处理得到干涉条纹延拓图像;
步骤3、提取干涉条纹延拓图像延拓边缘区域的像素点,按条纹分布对其灰度值进行多项式线性回归处理,得到平滑处理后的干涉条纹延拓图像;
步骤4、对平滑处理后的干涉条纹延拓图像进行频谱分析处理得到去载频图像频谱;
步骤5、根据去载频图像频谱计算出待测光学元件的面形分布。
本发明的方法与现有技术相比,其优点为:1)本发明的方法基于经改进的条纹图像延拓方法与条纹载频估计方法进行条纹图像分析处理,具有更高的干涉测量精度。2)本发明的方法处理流程简单,算法耗时短,有利于开发高效的软件产品。
下面结合附图对本发明作进一步详细描述。
附图说明
图1是本发明使用的基于条纹图像频谱分析的干涉测量方法流程图。
图2是本发明使用的干涉条纹图像延拓平滑预处理方法流程图。
图3是本发明使用的干涉条纹图像载频估计方法流程图。
图4是本发明实施例1采集的原始干涉条纹图像。
图5是本发明实施例1原始干涉条纹二维傅里叶变换频谱图。
图6为本发明实施例1中滤波后的频谱作逆变换得到的新图像。
图7是本发明实施例1原图像中非拓展条纹区域的像素值替换新图像中的相同位置得到的新图。
图8是本发明实施例1迭代50次后的干涉条纹延拓图像。
图9为本发明实施例1其中一组像素点分别在平滑前后的灰度值分布图,图9(a)为平滑前的灰度值分布图,图9(b)为平滑后的灰度值分布图。
图10是本发明实施例1完成延拓及平滑处理后的最终效果图。
图11为每一次迭代运算后的新偏移量δ随迭代次数Q的变化情况。
图12是本发明实施例1最终得到的面形分布结果图及波差图,其中图12(a)为最终得到的面形分布结果图,图12(b)为最终得到的波差图。
下面结合具体实施例对本发明作进一步详细描述
具体实施方式
本发明提出了一种基于条纹图像频谱分析的干涉测量方法,具体步骤为:
步骤1、采集干涉条纹灰度图像,具体步骤为:
步骤1.1、使用干涉仪装置针对待测光学元件进行测试,生成一幅加载频的干涉条纹图像;
步骤1.2、对生成的干涉条纹图像进行采集并上传至计算机;
步骤1.3、将干涉条纹图像转换为灰度图像,其灰度值分布表示如下:
式中,a(x,y)和b(x,y)分别代表条纹图像的背景与调制度,fx0与fy0分别为x,y方向的空间载波频率,为待测相位。
步骤2、对干涉条纹灰度图像进行延拓预处理得到干涉条纹延拓图像,具体步骤为:
步骤2.1、对干涉条纹灰度图像进行二维快速傅里叶变换,干涉条纹图像灰度值分布的复数表达形式为:
i(x,y)=a(x,y)+c(x,y)exp(j2πfx0x+j2πfy0y)+c*(x,y)exp(-j2πfx0x-j2πfy0y)
其中,
对其进行二维傅里叶变换得到干涉条纹灰度图像的频谱成分:
I(fx,fy)=A(fx,fy)+C(fx-fx0,fy-fy0)+C*(fx+fx0,fy+fy0)
步骤2.2、从干涉条纹灰度图像的频谱成分中提取代表条纹信息的两个旁瓣成分C,C*,并对其余频谱成分予以滤除,然后对滤除过后的频谱作逆变换得到一幅新的图像;
步骤2.3、用原条纹图像中的已知条纹区域像素灰度值替换新图像中相同位置的像素灰度值,得到替换处理后的图像;
步骤2.4、对替换处理后的图像重复进行步骤2.1、2.2、2.3,直至完成指定次数的迭代处理,得到干涉条纹延拓图像。
步骤3、提取干涉条纹延拓图像延拓边缘区域的像素点,按条纹分布对其灰度值进行多项式线性回归处理,得到平滑处理后的干涉条纹延拓图像,具体步骤为:
步骤3.1、查找干涉条纹图像中显示真实采集条纹的区域,并以此区域构建蒙版;
步骤3.2、确定所有位于已知条纹区域边缘位置的w个像素点以这些边缘点为中心,向蒙版区域内外方向各提取n个像素点,其灰度值值记录为共计w组数据;
步骤3.3、对每一组灰度值数据构建一元m阶多项式线性回归方程:
各拟合点的关系用矩阵表示为:
用矩阵符号表示为:
按照最小二乘法求算多项式回归向量的系数估计值:
分别求解w组数据中各像素点的灰度值估计值:
步骤3.4、用各点的灰度值估计值替换原像素点灰度值数据,得到完成延拓及平滑预处理的干涉条纹图像。
步骤4、对平滑处理后的干涉条纹延拓图像进行频谱分析处理得到去载频图像频谱;具体步骤为:
步骤4.1、对完成延拓及平滑预处理的干涉条纹图像进行二维快速傅里叶变换,得到如下式所示的频谱成分:
步骤4.2、滤除代表图像背景的基频成分A0(fx,fy);
步骤4.3、基于二维插值FFT算法对频谱进行精确的旁瓣峰值估计;具体步骤为:
步骤4.3.1、对干涉条纹图像二维频谱进行谱峰搜索,得到其正一级旁瓣谱峰坐标点I(x0,y0);
步骤4.3.2、计算真实频率峰值在x、y方向上偏离I(x0,y0)的偏差值,得到对旁瓣谱峰位置的最终估计结果,具体方法为:
步骤4.3.2.1、在(x0-0.5,y0)与(x0+0.5,y0)、(x0,y0-0.5)与(x0,y0+0.5)、(x0-0.5,y0+0.5)与(x0+0.5,y0-0.5)、(x0-0.5,y0-0.5)与(x0+0.5,y0+0.5)添加4组共8个插值点;
步骤4.3.2.2、设定各组插值点的偏差值分量初值为
步骤4.3.2.3、根据各差值点的偏差值分量计算各组插值点的DFT值,具体计算公式为:
步骤4.3.2.4、根据上述DFT值计算各组插值点下的偏差修正值分量,具体计算公式为:
其中分别表示每组数据中位于坐标轴正(负)方向上的插值点DFT值;
各组插值点x、y方向上的偏差修正值,具体为:
得到各组插值点x、y方向上的偏差值分量,具体为:
步骤4.3.2.5、重复步骤4.3.2.3、4.3.2.4,直至完成预设Q次迭代以得到对旁瓣谱峰位置的最终估计结果。
步骤4.4、依据步骤4.3中得到的旁瓣谱峰坐标对图像频谱旁瓣进行频移至零频位置,得到后续计算所需的去载频图像频谱。
步骤5、根据去载频图像频谱计算出待测光学元件的面形分布,具体步骤为:
步骤5.1、对去载频图像频谱中的条纹频谱成分进行傅里叶逆变换得到c0(x,y);
步骤5.2、计算待测波面的相位分布情况,具体计算公式为:
其中Re[c0(x,y)]和Im[c0(x,y)]分别为c0(x,y)的实部和虚部;
步骤5.3、对步骤5.2计算得到的相位分布进行解包裹操作,即可得到代表待测光学元件面形分布的真实波面相位值分布情况。
下面结合实施例对本发明做进一步详细描述。
实施例1
本实施例中使用英特飞光电技术有限公司(Nanjing Interfero Opto-electronics Tenhnology Co.,Ltd)自主研发的25.4mm口径菲索型干涉仪搭建测试光路,对一组光学平面镜进行了干涉测量实验。该干涉仪采用635nm波长半导体激光器作为光源,同时搭载了高精度条纹图像分析装置。干涉仪实物如图1所示。具体的测量步骤如下所示:
步骤1、采集到干涉条纹图像,本实施例中采集的干涉条纹图像如图4所示。
步骤2、对干涉条纹灰度图像进行延拓预处理得到干涉条纹延拓图像,具体步骤为:
步骤2.1、对采集到的干涉条纹图像进行一次二维傅里叶变换处理,得到的频谱如图5所示。
步骤2.2、选定代表条纹信息的两个旁瓣区域,除去选定区域的其余所有频谱成分滤除;然后对滤波后的频谱作逆变换得到新图像,如图6所示。
步骤2.3、用原图像中非拓展条纹区域的像素值替换新图像中的相同位置,如图7所示。
步骤2.4、对替换处理后的图像重复进行步骤2.1、2.2、2.3,直至完成50次的迭代处理,得到干涉条纹延拓图像图,图8所示为迭代50次后的结果。
步骤3、对延拓图像进行平滑处理。本实施例中设置单边取样宽度n为20,并选取了所有边缘位置像素点灰度值数据组进行平滑。图9为其中一组像素点分别在平滑前后的灰度值分布图,通过对比可以看出平滑处理有效缓解了延拓图像边缘区域灰度值突变问题。完成延拓及平滑处理后的最终效果图如图10所示。
步骤4、对完成延拓及平滑处理的干涉条纹图像再次进行二维傅里叶变换,去除图像频谱零频背景后,对其旁瓣谱峰进行插值FFT估计。图11所示为每一次迭代运算后的新偏移量δ随迭代次数Q的变化情况,可以看出,x与y方向上的新偏移量在迭代次数超过15次后均趋向于0,此时真实谱峰位置的估计值趋于稳定,表明插值FFT估计算法具有较好的收敛特性。最后按照插值FFT估计的结果移除条纹载频。
步骤5、根据步骤4中得到的去载频图像频谱进行相位计算,得到的面形分布结果及波差图如图12所示。经计算得知,该光学平面镜的PV值为0.0632λ,RMS值为0.0110λ。

Claims (8)

1.一种基于条纹图像频谱分析的干涉测量方法,其特征在于,具体步骤为:
步骤1、采集干涉条纹灰度图像;
步骤2、对干涉条纹灰度图像进行延拓预处理得到干涉条纹延拓图像;
步骤3、提取干涉条纹延拓图像延拓边缘区域的像素点,按条纹分布对其灰度值进行多项式线性回归处理,得到平滑处理后的干涉条纹延拓图像;
步骤4、对平滑处理后的干涉条纹延拓图像进行频谱分析处理得到去载频图像频谱;
步骤5、根据去载频图像频谱确定待测光学元件的面形分布。
2.根据权利要求1所述的基于条纹图像频谱分析的干涉测量方法,其特征在于,步骤1中采集干涉条纹灰度图像,具体步骤为:
步骤1.1、使用干涉仪装置针对待测光学元件进行测试,生成一幅加载频的干涉条纹图像;
步骤1.2、对生成的干涉条纹图像进行采集并上传至计算机;
步骤1.3、将干涉条纹图像转换为灰度图像,其灰度值分布表示如下:
式中,a(x,y)和b(x,y)分别代表条纹图像的背景与调制度,fx0与fy0分别为x,y方向的空间载波频率,为待测相位。
3.根据权利要求1所述的基于条纹图像频谱分析的干涉测量方法,其特征在于,步骤2中对干涉条纹灰度图像进行延拓预处理得到干涉条纹延拓图像,具体步骤为:
步骤2.1、对干涉条纹灰度图像进行二维快速傅里叶变换,干涉条纹图像灰度值分布的复数表达形式为:
i(x,y)=a(x,y)+c(x,y)exp(j2πfx0x+j2πfy0y)+c*(x,y)exp(-j2πfx0x-j2πfy0y)
其中,
对其进行二维傅里叶变换得到干涉条纹灰度图像的频谱成分:
I(fx,fy)=A(fx,fy)+C(fx-fx0,fy-fy0)+C*(fx+fx0,fy+fy0)
步骤2.2、从干涉条纹灰度图像的频谱成分中提取代表条纹信息的两个旁瓣成分C,C*,并对其余频谱成分予以滤除,然后对滤除过后的频谱作逆变换得到一幅新的图像;
步骤2.3、用原条纹图像中的已知条纹区域像素灰度值替换新图像中相同位置的像素灰度值,得到替换处理后的图像;
步骤2.4、对替换处理后的图像重复进行步骤2.1、2.2、2.3,直至完成指定次数的迭代处理,得到干涉条纹延拓图像。
4.根据权利要求1所述的基于条纹图像频谱分析的干涉测量方法,其特征在于,步骤3中提取干涉条纹延拓图像延拓边缘区域的像素点,按条纹分布对其灰度值进行多项式线性回归处理,得到边缘平滑处理后的干涉条纹延拓图像,具体步骤为:
步骤3.1、查找干涉条纹图像中显示真实采集条纹的区域,并以此区域构建蒙版;
步骤3.2、确定所有位于已知条纹区域边缘位置的w个像素点以这些边缘像素点为中心,向蒙版区域内外方向各提取n个像素点,其灰度值值记录为共计w组数据;
步骤3.3、对每一组灰度值数据构建一元m阶多项式线性回归方程:
Pi k=a0+a1i+a2i2+...+amimi(i=-n,...,-1,0,1,...,n)
各拟合点的关系用矩阵表示为:
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msubsup> <mi>P</mi> <mrow> <mo>-</mo> <mi>n</mi> </mrow> <mi>k</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>P</mi> <mrow> <mo>-</mo> <mn>0</mn> </mrow> <mi>k</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>P</mi> <mi>n</mi> <mi>k</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mi>n</mi> </mrow> </mtd> <mtd> <msup> <mrow> <mo>(</mo> <mo>-</mo> <mi>n</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <msup> <mrow> <mo>(</mo> <mo>-</mo> <mi>n</mi> <mo>)</mo> </mrow> <mi>m</mi> </msup> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mi>n</mi> </mtd> <mtd> <msup> <mi>n</mi> <mn>2</mn> </msup> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <msup> <mi>n</mi> <mi>m</mi> </msup> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>a</mi> <mn>0</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mi>m</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>&amp;epsiv;</mi> <mrow> <mo>-</mo> <mi>n</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;epsiv;</mi> <mn>0</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;epsiv;</mi> <mi>n</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow>
用矩阵符号表示为:
按照最小二乘法求算多项式回归向量的系数估计值:
分别求解w组数据中各像素点的灰度值估计值,具体计算公式为:
<mrow> <msubsup> <mover> <mi>P</mi> <mo>^</mo> </mover> <mi>i</mi> <mi>k</mi> </msubsup> <mo>=</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mn>0</mn> </msub> <mo>+</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mi>i</mi> <mo>+</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <msup> <mi>i</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>...</mn> <mo>+</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mi>m</mi> </msub> <msup> <mi>i</mi> <mi>m</mi> </msup> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mo>-</mo> <mi>n</mi> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
步骤3.4、用各点的灰度值估计值替换原像素点灰度值数据,得到完成延拓及平滑预处理的干涉条纹图像。
5.根据权利要求1所述的基于条纹图像频谱分析的干涉测量方法,其特征在于,步骤4中对平滑处理后的干涉条纹延拓图像进行频谱分析处理得到去载频图像频谱,具体步骤为:
步骤4.1、对完成延拓及平滑预处理的干涉条纹图像进行二维快速傅里叶变换,得到如下式所示的频谱成分:
<mrow> <msub> <mi>I</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>x</mi> </msub> <mo>,</mo> <msub> <mi>f</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>A</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>x</mi> </msub> <mo>,</mo> <msub> <mi>f</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>C</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>x</mi> </msub> <mo>-</mo> <msub> <mi>f</mi> <mrow> <mi>x</mi> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>f</mi> <mi>y</mi> </msub> <mo>-</mo> <msub> <mi>f</mi> <mrow> <mi>y</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>C</mi> <mn>0</mn> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>x</mi> </msub> <mo>+</mo> <msub> <mi>f</mi> <mrow> <mi>x</mi> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>f</mi> <mi>y</mi> </msub> <mo>+</mo> <msub> <mi>f</mi> <mrow> <mi>y</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow>
步骤4.2、滤除代表图像背景的基频成分A0(fx,fy);
步骤4.3、基于二维插值FFT算法对频谱进行精确的旁瓣峰值估计;
步骤4.4、依据步骤4.3中得到的旁瓣谱峰坐标对图像频谱旁瓣进行频移至零频位置,得到后续计算所需的去载频图像频谱。
6.根据权利要求5所述的基于条纹图像频谱分析的干涉测量方法,其特征在于,步骤4.3中基于二维插值FFT算法对频谱进行精确的旁瓣峰值估计,具体步骤为:
步骤4.3.1、对干涉条纹图像二维频谱进行谱峰搜索,得到其正一级旁瓣谱峰坐标点I(x0,y0);
步骤4.3.2、计算真实频率峰值在x、y方向上偏离I(x0,y0)的偏差值,得到对旁瓣谱峰位置的最终估计结果。
7.根据权利要求6所述的基于条纹图像频谱分析的干涉测量方法,其特征在于,
步骤4.3.2.1、在(x0-0.5,y0)与(x0+0.5,y0)、(x0,y0-0.5)与(x0,y0+0.5)、(x0-0.5,y0+0.5)与(x0+0.5,y0-0.5)、(x0-0.5,y0-0.5)与(x0+0.5,y0+0.5)添加4组共8个插值点;
步骤4.3.2.2、设定各组插值点的偏差值分量初值为
步骤4.3.2.3、根据各差值点的偏差值分量计算各组插值点的DFT值,具体计算公式为:
<mrow> <msubsup> <mi>X</mi> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> </mrow> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <munder> <mo>&amp;Sigma;</mo> <mi>x</mi> </munder> <munder> <mo>&amp;Sigma;</mo> <mi>y</mi> </munder> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>j</mi> <mn>2</mn> <mi>&amp;pi;</mi> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>+</mo> <msubsup> <mi>&amp;delta;</mi> <mi>x</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mi>x</mi> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>+</mo> <msubsup> <mi>&amp;delta;</mi> <mi>y</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mi>y</mi> <mo>&amp;rsqb;</mo> </mrow> </msup> <mo>,</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>&amp;PlusMinus;</mo> <mn>0.5</mn> <mo>,</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>&amp;PlusMinus;</mo> <mn>0.5</mn> </mrow>
步骤4.3.2.4、根据上述DFT值计算各组插值点下的偏差修正值分量,具体计算公式为:
<mrow> <msubsup> <mi>&amp;delta;</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>Re</mi> <mo>{</mo> <mfrac> <mrow> <msubsup> <mi>X</mi> <mrow> <mi>i</mi> <mo>+</mo> </mrow> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>X</mi> <mrow> <mi>i</mi> <mo>-</mo> </mrow> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </msubsup> </mrow> <mrow> <msubsup> <mi>X</mi> <mrow> <mi>i</mi> <mo>+</mo> </mrow> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>X</mi> <mrow> <mi>i</mi> <mo>-</mo> </mrow> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </msubsup> </mrow> </mfrac> <mo>}</mo> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> </mrow>
其中分别表示每组数据中位于坐标轴正(负)方向上的插值点DFT值;
各组插值点x、y方向上的偏差修正值,具体为:
<mrow> <mi>&amp;Delta;</mi> <msubsup> <mover> <mi>&amp;delta;</mi> <mo>^</mo> </mover> <mi>x</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mo>&amp;lsqb;</mo> <msubsup> <mi>&amp;delta;</mi> <mn>1</mn> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <mrow> <mo>(</mo> <msubsup> <mi>&amp;delta;</mi> <mn>3</mn> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;delta;</mi> <mn>4</mn> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mfrac> <mi>&amp;pi;</mi> <mn>2</mn> </mfrac> <mo>&amp;rsqb;</mo> <mo>/</mo> <mn>3</mn> </mrow>
<mrow> <mi>&amp;Delta;</mi> <msubsup> <mover> <mi>&amp;delta;</mi> <mo>^</mo> </mover> <mi>y</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mo>&amp;lsqb;</mo> <msubsup> <mi>&amp;delta;</mi> <mn>2</mn> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </msubsup> <mo>-</mo> <mrow> <mo>(</mo> <msubsup> <mi>&amp;delta;</mi> <mn>3</mn> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>&amp;delta;</mi> <mn>4</mn> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mfrac> <mi>&amp;pi;</mi> <mn>2</mn> </mfrac> <mo>&amp;rsqb;</mo> <mo>/</mo> <mn>3</mn> </mrow>
得到各组插值点x、y方向上的偏差值分量,具体为:
<mrow> <msubsup> <mover> <mi>&amp;delta;</mi> <mo>^</mo> </mover> <mi>x</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <msubsup> <mover> <mi>&amp;delta;</mi> <mo>^</mo> </mover> <mi>x</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <mi>&amp;Delta;</mi> <msubsup> <mover> <mi>&amp;delta;</mi> <mo>^</mo> </mover> <mi>x</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </msubsup> </mrow>
<mrow> <msubsup> <mover> <mi>&amp;delta;</mi> <mo>^</mo> </mover> <mi>y</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <msubsup> <mover> <mi>&amp;delta;</mi> <mo>^</mo> </mover> <mi>y</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <mi>&amp;Delta;</mi> <msubsup> <mover> <mi>&amp;delta;</mi> <mo>^</mo> </mover> <mi>y</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </msubsup> <mo>;</mo> </mrow>
步骤4.3.2.5、重复步骤4.3.2.3、4.3.2.4,直至完成预设Q次迭代以得到对旁瓣谱峰位置的最终估计结果。
8.根据权利要求1所述的基于条纹图像频谱分析的干涉测量方法,其特征在于,步骤5中根据去载频图像频谱计算出待测光学元件的面形分布具体步骤为:
步骤5.1、对去载频图像频谱中的条纹频谱成分进行傅里叶逆变换得到c0(x,y);
步骤5.2、计算待测波面的相位分布情况,具体计算公式为:
其中Re[c0(x,y)]和Im[c0(x,y)]分别为c0(x,y)的实部和虚部;
步骤5.3、对步骤5.2计算得到的相位分布进行解包裹操作,即可得到代表待测光学元件面形分布的真实波面相位值分布情况。
CN201711004029.7A 2017-10-24 2017-10-24 一种基于条纹图像频谱分析的干涉测量方法 Active CN107917676B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711004029.7A CN107917676B (zh) 2017-10-24 2017-10-24 一种基于条纹图像频谱分析的干涉测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711004029.7A CN107917676B (zh) 2017-10-24 2017-10-24 一种基于条纹图像频谱分析的干涉测量方法

Publications (2)

Publication Number Publication Date
CN107917676A true CN107917676A (zh) 2018-04-17
CN107917676B CN107917676B (zh) 2020-04-10

Family

ID=61895808

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711004029.7A Active CN107917676B (zh) 2017-10-24 2017-10-24 一种基于条纹图像频谱分析的干涉测量方法

Country Status (1)

Country Link
CN (1) CN107917676B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108881094A (zh) * 2018-07-16 2018-11-23 中南民族大学 谱编码ofdm系统及最小频谱旁瓣导频符号设计方法
CN109916332A (zh) * 2019-04-01 2019-06-21 哈尔滨理工大学 一种带载频单幅干涉条纹相位重构方法
CN110108643A (zh) * 2019-04-16 2019-08-09 北京遥测技术研究所 一种用于光声检测的干涉条纹相位提取方法
CN112066909A (zh) * 2020-08-24 2020-12-11 南京理工大学 一种基于倾斜平面高精度提取的抗振动干涉测量方法
CN112819729A (zh) * 2021-02-23 2021-05-18 中国科学院空天信息创新研究院 一种图像校正方法、装置、计算机存储介质及设备
CN115307746A (zh) * 2022-08-10 2022-11-08 苏州科技大学 一种单色光的干涉测量相位计算方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101655358A (zh) * 2009-07-01 2010-02-24 四川大学 采用颜色编码提高正交复合光栅位相测量轮廓术的动态特性
CN102230827A (zh) * 2011-06-18 2011-11-02 四川大学 马赫-曾德点衍射干涉仪及激光复振幅重建方法
CN104006765A (zh) * 2014-03-14 2014-08-27 中国科学院上海光学精密机械研究所 单幅载频干涉条纹相位提取方法及检测装置
US20150022658A1 (en) * 2013-07-16 2015-01-22 University Of North Carolina At Charlotte Noise reduction techniques, fractional bi-spectrum and fractional cross-correlation, and applications
CN105066907A (zh) * 2015-07-27 2015-11-18 南京理工大学 一种针对傅里叶轮廓术的载频相位去除方法
CN106705856A (zh) * 2015-07-31 2017-05-24 南京理工大学 基于宽带光谱域显微干涉术的近红外位移传感装置及微位移量测量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101655358A (zh) * 2009-07-01 2010-02-24 四川大学 采用颜色编码提高正交复合光栅位相测量轮廓术的动态特性
CN102230827A (zh) * 2011-06-18 2011-11-02 四川大学 马赫-曾德点衍射干涉仪及激光复振幅重建方法
US20150022658A1 (en) * 2013-07-16 2015-01-22 University Of North Carolina At Charlotte Noise reduction techniques, fractional bi-spectrum and fractional cross-correlation, and applications
CN104006765A (zh) * 2014-03-14 2014-08-27 中国科学院上海光学精密机械研究所 单幅载频干涉条纹相位提取方法及检测装置
CN105066907A (zh) * 2015-07-27 2015-11-18 南京理工大学 一种针对傅里叶轮廓术的载频相位去除方法
CN106705856A (zh) * 2015-07-31 2017-05-24 南京理工大学 基于宽带光谱域显微干涉术的近红外位移传感装置及微位移量测量方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
苏俊宏等: "基于FFT的干涉图延拓方法研究", 《西安工业学院学报》 *
郭媛等: ""单幅干涉条纹图相位提取新算法"", 《激光与红外》 *
齐国清等: ""插值FFT估计正弦信号频率的精度分析"", 《电子学报》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108881094A (zh) * 2018-07-16 2018-11-23 中南民族大学 谱编码ofdm系统及最小频谱旁瓣导频符号设计方法
CN108881094B (zh) * 2018-07-16 2020-11-24 中南民族大学 谱编码ofdm系统及最小频谱旁瓣导频符号设计方法
CN109916332A (zh) * 2019-04-01 2019-06-21 哈尔滨理工大学 一种带载频单幅干涉条纹相位重构方法
CN109916332B (zh) * 2019-04-01 2020-09-08 哈尔滨理工大学 一种带载频单幅干涉条纹相位重构方法
CN110108643A (zh) * 2019-04-16 2019-08-09 北京遥测技术研究所 一种用于光声检测的干涉条纹相位提取方法
CN110108643B (zh) * 2019-04-16 2021-12-07 北京遥测技术研究所 一种用于光声检测的干涉条纹相位提取方法
CN112066909A (zh) * 2020-08-24 2020-12-11 南京理工大学 一种基于倾斜平面高精度提取的抗振动干涉测量方法
CN112066909B (zh) * 2020-08-24 2022-04-08 南京理工大学 一种基于倾斜平面高精度提取的抗振动干涉测量方法
CN112819729A (zh) * 2021-02-23 2021-05-18 中国科学院空天信息创新研究院 一种图像校正方法、装置、计算机存储介质及设备
CN115307746A (zh) * 2022-08-10 2022-11-08 苏州科技大学 一种单色光的干涉测量相位计算方法
CN115307746B (zh) * 2022-08-10 2023-08-18 苏州科技大学 一种单色光的干涉测量相位计算方法

Also Published As

Publication number Publication date
CN107917676B (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
CN107917676A (zh) 一种基于条纹图像频谱分析的干涉测量方法
Huang et al. Spline based least squares integration for two-dimensional shape or wavefront reconstruction
Muravsky et al. Two-frame phase-shifting interferometry for retrieval of smooth surface and its displacements
CN102175332B (zh) 一种从含有移相误差的干涉图中恢复相位的方法
Luo et al. Two-step demodulation algorithm based on the orthogonality of diamond diagonal vectors
CN106032976A (zh) 基于波长选择的三条纹投影相位展开方法
Qiao et al. A single-shot phase retrieval method for phase measuring deflectometry based on deep learning
CN105066904A (zh) 基于相位梯度阈值的流水线产品三维面型检测方法
CN104268837A (zh) 电子散斑干涉条纹图相位信息提取的方法
Zhao et al. Fast Hermite element method for smoothing and differentiating noisy displacement field in digital image correlation
CN114061484B (zh) 一种宽带光干涉的微观形貌测量装置和方法
CN103395000B (zh) Ccos抛光工艺抑制不同频段误差能力的评价方法
Lei et al. The sensitivity and the measuring range of the typical differential optical flow method for displacement measurement using the fringe pattern
Shao et al. Engineering surface topography analysis using an extended discrete modal decomposition
Zhang et al. Two-step phase-shifting algorithms with background removal and no background removal
Sun et al. High-accuracy simultaneous phase extraction and unwrapping method for single interferogram based on convolutional neural network
CN106289051A (zh) 大变化密度电子散斑干涉条纹图的方向和密度处理方法
CN108170636A (zh) 一种从全局移相量未知的线性载频移相干涉图中恢复出真实相位的算法
CN109115110A (zh) 一种基于施密特正交化的干涉图相位迭代恢复方法
CN115127683B (zh) 一种动态干涉仪干涉图参数失配的相位提取的方法
CN106482633B (zh) 一种基于π/4相移的多光束干涉相位提取方法
CN103267485A (zh) 一种点衍射三维绝对位移测量方法
Li et al. Background oriented schlieren image displacement estimation method based on global optical flow
Wu et al. RSAGAN: Rapid self-attention generative adversarial nets for single-shot phase-shifting interferometry
CN111964876B (zh) 基于lrte-nufft的平行平板光学均匀性的测量方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant