CN114061484B - 一种宽带光干涉的微观形貌测量装置和方法 - Google Patents

一种宽带光干涉的微观形貌测量装置和方法 Download PDF

Info

Publication number
CN114061484B
CN114061484B CN202111341927.8A CN202111341927A CN114061484B CN 114061484 B CN114061484 B CN 114061484B CN 202111341927 A CN202111341927 A CN 202111341927A CN 114061484 B CN114061484 B CN 114061484B
Authority
CN
China
Prior art keywords
matrix
phase
broadband light
light
shifting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111341927.8A
Other languages
English (en)
Other versions
CN114061484A (zh
Inventor
陈浩博
孙文卿
吴峰
张力伟
郭振翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University of Science and Technology
Original Assignee
Suzhou University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University of Science and Technology filed Critical Suzhou University of Science and Technology
Priority to CN202111341927.8A priority Critical patent/CN114061484B/zh
Publication of CN114061484A publication Critical patent/CN114061484A/zh
Application granted granted Critical
Publication of CN114061484B publication Critical patent/CN114061484B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

本发明公开了一种宽带光干涉的微观形貌测量装置和方法。所述微观形貌测量采用微观物体干涉图包含的相位信息与高度信息,利用相位与高度的关系,对微观物体的表面进行测量,宽带光干涉信号可以看成是具有包络的单色光干涉信号,该装置是以宽带光作为光源的显微干涉系统,测量方法采用降维思想,在损失很少信息的前提下,把多个可能相互关联的指标转化为少数几个互不相关的指标,其在相位求解的步骤主要包括重组干涉图、获得背景分量、计算协方差矩阵、计算对角化协方差矩阵、得到最显著的分量、最后通过相位解包算法求解相位,该方法使用多幅干涉图恢复出微观物体的相位分布,计算简单且计算速度快,能适应大数据量图像处理等需求。

Description

一种宽带光干涉的微观形貌测量装置和方法
技术领域
本发明主要涉及微观形貌测量和移相干涉术等领域,特别涉及一种宽带光干涉的微观形貌测量装置和方法。
背景技术
随着超精密加工技术的不断进步,二元光学元件,微机械以及半导体器件等精密零件的出现,超精密零件的表面微观轮廓三维形貌可以真实、全面地反应了零件的表面质量,所以不断推动微观表面检测技术的发展,微观轮廓三维形貌的测量方法大致可以分为两大类:接触式测量和非接触式测量。接触式测量方法主要有机械探针法、扫描电子显微镜、扫描隧道显微镜,对超精密零件的接触,可能导致其真实形貌受损,造成零件的浪费,所以非接触式测量的移相干涉法拥有精度高、速度快、非接触、测量范围大等特点,已经成为主要的测量方法。自wyant提出四帧算法用于相位提取,移相干涉法已经成为研究热点之一。1965年,Carré等提出单色光的等步长相移法;1987年,Hariharan提出一种对线性误差不敏感的5帧相移法;P.Sandoz等假使宽带光干涉条纹的局部调制度依线性变化,提出了七步移相的宽带光移相算法,相位的计算精度得到明显提高;然而,被测物表面间断的高度变化或表面粗糙会引起相位模糊,导致传统单色光移相干涉术受到单色光干涉信号级次模糊的限制,所以被测件相邻轮廓点的高度差需低于1/4波长。最后,上述的移相干涉法,不适用于有包络曲线的宽带光干涉,不断增加干涉图的数目,也会对相位提取的准确度造成影响。
发明内容
相比现有的单色光移相干涉术,本发明采用宽带光照明显微干涉系统装置避免干涉信号级次模糊的限制,利用矩阵降维的思想,通过矩阵分解及特征值计算得到相位分布,而且相位提取所花费时间相较于一些迭代算法要少,且适用于有包络曲线的宽带光干涉。本发明提供了一种宽带光干涉的微观形貌测量装置和方法,包括以下步骤:
步骤1:根据本发明设计微观形貌测量装置如图1,测量装置具体使用流程是通过1显微镜照明光源发出宽带光,宽带光经过2聚光镜、3孔径光阑、4准直扩束镜后以平行光的形式出射,经5分光棱镜后,一束宽带光分成两束光,一束光经6被测物表面反射,另一束光经7参考镜反射,用8压电陶瓷驱动器调节两束光的光程差,通过9显微物镜会聚至10接收装置CCD的靶面上,记录显微视场的宽带光干涉条纹。
步骤2:利用压电陶瓷驱动器产生微小位移,并记录产生随机相移值的多幅宽带光干涉图,根据照明光源发出宽带光的光谱特性,相干长度、条纹对比度及包络曲线,得出其光强值表达式:
(1)
其中,是背景光,M是移项图的序数,/>是包络曲线的振幅值,/>是光谱密度宽度,/>是中心波长,/>是每幅移项干涉图的相移值,/>是面形高度分布。
步骤3:重组干涉图,将每一幅随机移相宽带光干涉图重组成行向量,然后将这N幅移相干涉图的行向量按照列组合成如下的p矩阵:,其中每一行都是每一幅移相干涉图重组得到的一维数据,其长度为/>,/>和/>分别为移相干涉图x轴和y轴所占的像素点数,T代表矩阵的转置。
步骤4:获得背景分量,矩阵/>具有和矩阵p同样的维度,而矩阵/>中所有元素的值均一致,其是矩阵p中所有元素的平均值。
步骤5:通过矩阵p和矩阵计算得到协方差矩阵/>,其中上标T表示矩阵转置。
步骤6:协方差矩阵C可以如下式实现对角化:,矩阵D为对角化协方差矩阵而矩阵U是一个正交变换的矩阵,其大小都为/>
步骤7:主成分分量K可以由矩阵U,矩阵p和矩阵得到: />,其中,矩阵K的第一列和第二列便分别代表了主成分的正交特征值,其分别为/>和/>
步骤8:通过反正切函数求解压包相位:
步骤9:通过相位解包算法以及中心波长值中恢复出测量的面形高度值。
本发明的有益效果是:该方法使用多幅移相宽带光干涉图恢复出微观物体的相位,仅需矩阵运算便可以得到相位分布,并且该算法需要的计算时间还少于多数迭代算法,能够适应大数据量图像处理等需求。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是摘要附图;
图1是本发明中宽带光的微观形貌测量的装置;
图2是本发明中软件仿真的一幅宽带光干涉图;
图3是本发明中对多幅宽带光干涉图进行相位提取的压包相位分布侧视图;
图4是本发明中对多幅宽带光干涉图进行相位提取的压包相位分布俯视图;
图5是本发明中通过相位解包裹和消倾斜得到的解包相位图;
图6是本发明中通过电脑模拟的真实的参考相位分布图。
具体实施方式
为了使技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实例中的附图,对本发明实例中的技术方案进行清楚完整地描述,显然,所描述的实施例仅是本发明一部分实施列,而不是全部实施例。本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应该属于本发明保护的范围。
实施例1,本实施例提供了一种宽带光干涉的微观形貌测量装置和方法,包括以下步骤:
步骤1:根据本发明设计微观形貌测量装置如图1,测量装置具体使用流程是通过1显微镜照明光源发出宽带光,宽带光经过2聚光镜、3孔径光阑、4准直扩束镜后以平行光的形式出射,经5分光棱镜后,一束宽带光分成两束光,一束光经6被测物表面反射,另一束光经7参考镜反射,用8压电陶瓷驱动器调节两束光的光程差,通过9显微物镜会聚至10接收装置CCD的靶面上,记录显微视场的宽带光干涉条纹。
步骤2:利用压电陶瓷驱动器产生微小位移,并记录产生随机相移值的多幅宽带光干涉图,根据照明光源发出宽带光的光谱特性,相干长度、条纹对比度及包络曲线,得出其光强值表达式:
(1)
其中,是背景光,M是移项图的序数,/>是包络曲线的振幅值,/>是光谱密度宽度,/>是中心波长,/>是每幅移项干涉图的相移值,/>是面形高度分布。
步骤3:重组干涉图,将每一幅随机移相宽带光干涉图重组成行向量,然后将这N幅移相干涉图的行向量按照列组合成如下的p矩阵:,其中每一行都是每一幅移相干涉图重组得到的一维数据,其长度为/>,/>和/>分别为移相干涉图x轴和y轴所占的像素点数,T代表矩阵的转置。
步骤4:获得背景分量,矩阵/>具有和矩阵p同样的维度,而矩阵/>中所有元素的值均一致,其是矩阵p中所有元素的平均值。
步骤5:通过矩阵p和矩阵计算得到协方差矩阵/>,其中上标T表示矩阵转置。
步骤6:协方差矩阵C可以如下式实现对角化:,矩阵D为对角化协方差矩阵而矩阵U是一个正交变换的矩阵,其大小都为/>
步骤7:主成分分量K可以由矩阵U,矩阵p和矩阵得到: />,其中,矩阵K的第一列和第二列便分别代表了主成分的正交特征值,其分别为/>和/>
步骤8:通过反正切函数求解压包相位:
步骤9:通过相位解包算法以及中心波长值中恢复出测量的面形高度值。
以下通过计算机仿真的方式说明宽带光的微观形貌测量方法的原理与过程。
通过Matlab软件对本发明一种宽带光干涉的微观形貌测量装置和方法的具体步骤进行模拟仿真,首先利用宽带光干涉信号表达式仿真出一系列随机相移的宽带光干涉图,其中一幅宽带光干涉图如图2,然后利用数学降维的思想,利用矩阵运算,对多幅宽带光干涉图进行相位提取,得到压包相位分布,压包相位分布侧视图如图3和俯视图如图4,相位提取都是通过反正切函数方法得到的,物体真正的相位会被反正切函数截断在之间,所以要想获得物体的真实形貌需要对压包相位进行相位解包裹,通过相位解包裹和消倾斜后得到计算所得的解包裹相位分布图如图5,然后把图5与自己用软件模拟的真实参考相位分布图图6作比较,根据两幅图的对比看出,相位的分布是一致的,证实本发明宽带光的微观形貌测量装置和方法是有效的。
通过电脑模拟仿真和具体实施例,本发明公开的宽带光的微观形貌测量装置和方法能够避免单色光受到物表面间断的高度变化或表面粗糙会引起相位分布,导致干涉术受到单色光干涉信号级次模糊的限制,对超精密零件测量等领域的应用,尤其是宽带光移相干涉术提供新的思路。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (1)

1.一种宽带光干涉的微观形貌测量方法,其特征在于包括以下步骤:
步骤1:根据本发明设计微观形貌测量装置,测量装置具体使用流程是通过显微镜照明光源(1)发出宽带光,宽带光经过聚光镜(2)、孔径光阑(3)、准直扩束镜(4)后以平行光的形式出射,经分光棱镜(5)后,一束宽带光分成两束光,一束光经被测物(6)表面反射,另一束光经参考镜(7)反射,用压电陶瓷驱动器(8)调节两束光的光程差,通过显微物镜(9)会聚至接收装置CCD(10)的靶面上,记录显微视场的宽带光干涉条纹;
步骤2:利用压电陶瓷驱动器产生微小位移,并记录产生随机相移值δm的多幅宽带光干涉图,根据照明光源发出宽带光的光谱特性,相干长度、条纹对比度及包络曲线,得出其光强值表达式:
其中,I0是背景光,M是移项图的序数,IM是包络曲线的振幅值,Δλ是光谱密度宽度,λ0是中心波长,δm是每幅移项干涉图的相移值,Z(x,y)是面形高度分布;
步骤3:重组干涉图,将每一幅随机移相宽带光干涉图重组成行向量,然后将这N幅移相干涉图的行向量按照列组合成如下的p矩阵:P=[X1,X2,X3…,XN]T,其中每一行都是每一幅移相干涉图重组得到的一维数据,其长度为Nx×Ny,Nx和Ny分别为移相干涉图x轴和y轴所占的像素点数,T代表矩阵的转置;
步骤4:获得背景分量mx,矩阵mx具有和矩阵p同样的维度,而矩阵mx中所有元素的值均一致,其是矩阵p中所有元素的平均值;
步骤5:通过矩阵p和矩阵mx计算得到协方差矩阵C=(p-mx)(p-mx)T,其中上标T表示矩阵转置;
步骤6:协方差矩阵C可以如下式实现对角化:D=UCUT,矩阵D为对角化协方差矩阵而矩阵U是一个正交变换的矩阵,其大小都为N×N;
步骤7:主成分分量K可以由矩阵U,矩阵p和矩阵mx得到:K=U(p-mx),其中,矩阵K的第一列和第二列便分别代表了主成分的正交特征值,其分别为K1和K2
步骤8:通过反正切函数求解压包相位:
步骤9:通过相位解包算法以及中心波长值λ0中恢复出测量的面形高度值。
CN202111341927.8A 2021-11-12 2021-11-12 一种宽带光干涉的微观形貌测量装置和方法 Active CN114061484B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111341927.8A CN114061484B (zh) 2021-11-12 2021-11-12 一种宽带光干涉的微观形貌测量装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111341927.8A CN114061484B (zh) 2021-11-12 2021-11-12 一种宽带光干涉的微观形貌测量装置和方法

Publications (2)

Publication Number Publication Date
CN114061484A CN114061484A (zh) 2022-02-18
CN114061484B true CN114061484B (zh) 2023-08-11

Family

ID=80271926

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111341927.8A Active CN114061484B (zh) 2021-11-12 2021-11-12 一种宽带光干涉的微观形貌测量装置和方法

Country Status (1)

Country Link
CN (1) CN114061484B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115220085B (zh) * 2022-07-06 2023-06-09 苏州科技大学 探测隧穿电离电子初始横向位置的方法
CN115307746B (zh) * 2022-08-10 2023-08-18 苏州科技大学 一种单色光的干涉测量相位计算方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075134A (ja) * 2001-09-04 2003-03-12 Univ Kanazawa 光干渉を用いた形状測定方法および形状測定装置
WO2005086582A2 (en) * 2004-03-11 2005-09-22 Nano-Or Technologies (Israel) Ltd. Methods and apparatus for wavefront manipulations and improved 3-d measurements
WO2006068217A1 (ja) * 2004-12-22 2006-06-29 The University Of Electro-Communications 三次元形状計測装置
CN101050949A (zh) * 2007-05-22 2007-10-10 天津大学 大视场物体微观表面三维形貌的测量系统及其测量方法
CN106767496A (zh) * 2016-11-18 2017-05-31 中国科学院光电技术研究所 一种结合相移干涉与垂直扫描干涉的3d形貌恢复方法
DE102019208028A1 (de) * 2019-06-03 2019-07-18 Carl Zeiss Smt Gmbh Interferometrische Messvorrichtung für Oberflächen
DE102019114405A1 (de) * 2019-05-29 2020-04-16 Polytec Gmbh Interferometrische Messvorrichtung und interferometrisches Verfahren zur Bestimmung der Oberflächentopographie eines Messobjekts
WO2020109486A1 (fr) * 2018-11-30 2020-06-04 Unity Semiconductor Procede et systeme pour mesurer une surface d'un objet comprenant des structures differentes par interferometrie a faible coherence

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075134A (ja) * 2001-09-04 2003-03-12 Univ Kanazawa 光干渉を用いた形状測定方法および形状測定装置
WO2005086582A2 (en) * 2004-03-11 2005-09-22 Nano-Or Technologies (Israel) Ltd. Methods and apparatus for wavefront manipulations and improved 3-d measurements
WO2006068217A1 (ja) * 2004-12-22 2006-06-29 The University Of Electro-Communications 三次元形状計測装置
CN101050949A (zh) * 2007-05-22 2007-10-10 天津大学 大视场物体微观表面三维形貌的测量系统及其测量方法
CN106767496A (zh) * 2016-11-18 2017-05-31 中国科学院光电技术研究所 一种结合相移干涉与垂直扫描干涉的3d形貌恢复方法
WO2020109486A1 (fr) * 2018-11-30 2020-06-04 Unity Semiconductor Procede et systeme pour mesurer une surface d'un objet comprenant des structures differentes par interferometrie a faible coherence
DE102019114405A1 (de) * 2019-05-29 2020-04-16 Polytec Gmbh Interferometrische Messvorrichtung und interferometrisches Verfahren zur Bestimmung der Oberflächentopographie eines Messobjekts
DE102019208028A1 (de) * 2019-06-03 2019-07-18 Carl Zeiss Smt Gmbh Interferometrische Messvorrichtung für Oberflächen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于主成分分析的白光干涉微观形貌测量算法;陈浩博等;《中国光学》;全文 *

Also Published As

Publication number Publication date
CN114061484A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
CN114061484B (zh) 一种宽带光干涉的微观形貌测量装置和方法
TWI401414B (zh) 相移干涉方法及系統
KR100290086B1 (ko) 백색광주사간섭법을 이용한 투명한 박막층의 3차원 두께 형상 측정 및 굴절률 측정 방법 및 그 기록매체
US7127109B1 (en) Digital interference holographic microscope and methods
Zuo et al. Direct continuous phase demodulation in digital holography with use of the transport-of-intensity equation
US11635289B2 (en) Surface shape measurement device and surface shape measurement method
US20110261347A1 (en) Method for interferometric detection of surfaces
CN104111120A (zh) 基于朗奇剪切干涉仪的相位提取方法
EP0647310B1 (en) Method of an apparatus for interferometrically inspecting a surface of an object
Sokolenko et al. Three-dimensional nanoscale optical vortex profilometry
Quan et al. Determination of surface contour by temporal analysis of shadow moiré fringes
JPH04161832A (ja) 光位相差測定法
JP4069204B2 (ja) デジタルホログラフィを利用した変位分布計測方法
CN108170636A (zh) 一种从全局移相量未知的线性载频移相干涉图中恢复出真实相位的算法
US7158914B2 (en) Precision surface measurement
CN114322833B (zh) 基于伪Wigner-Ville分布的白光扫描干涉三维重建方法
JP2022162306A (ja) 表面形状計測装置および表面形状計測方法
Ibrahim Calibration of a step height standard for dimensional metrology using phase-shift interferometry and Hamming window: band-pass filter
Styk et al. Vibration amplitude recovery from time averaged interferograms using the directional spatial carrier phase shifting method
Yatagai et al. High-speed Fizeau interferometry and digital holography for dynamic phenomena measurement
Yuan et al. Phase-tilting and rotation interferometry for dynamic optical measurement
Pandey et al. Nanoscale surface topography using low-cost digital holographic microscopy
Farid Speckle Metrology in Dimensional Measurement
CN113946117A (zh) 散射光场全息范围三维位移测量装置、方法及介质
Abdelsalam Calibration of a Step Height Standard for Dimensional Metrology Using Phase-Shift Interferometry and Hamming Window: Band-Pass Filter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant