CN113897678A - 高质量氮化铝模板及其制备方法 - Google Patents

高质量氮化铝模板及其制备方法 Download PDF

Info

Publication number
CN113897678A
CN113897678A CN202111167137.2A CN202111167137A CN113897678A CN 113897678 A CN113897678 A CN 113897678A CN 202111167137 A CN202111167137 A CN 202111167137A CN 113897678 A CN113897678 A CN 113897678A
Authority
CN
China
Prior art keywords
aluminum nitride
template
quality
preparing
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111167137.2A
Other languages
English (en)
Inventor
王新强
袁冶
刘上锋
李泰�
王钇心
李铎
万文婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Songshan Lake Materials Laboratory
Original Assignee
Zhongzi Semiconductor Technology Dongguan Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongzi Semiconductor Technology Dongguan Co ltd filed Critical Zhongzi Semiconductor Technology Dongguan Co ltd
Priority to CN202111167137.2A priority Critical patent/CN113897678A/zh
Publication of CN113897678A publication Critical patent/CN113897678A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • C30B1/04Isothermal recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种高质量氮化铝模板及其制备方法,其包括以下步骤:1)对衬底进行清洁处理;2)沉积形成氮化铝薄膜和氮化镓保护薄膜;3)经非面对面高温退火处理后制得高质量氮化铝单晶模板。在高温退火的条件下氮化镓保护薄膜分解而在氮化铝薄膜表面创造富氮环境,从而抑制氮化铝薄膜表面的分解;同时氮化铝薄膜在高温状态下发生重结晶而实现高质量氮化铝单晶模板,并且在高温退火时是非面对面相贴合接触,即有效避免引入传统面对面退火方式引入的对片表面摩擦,从而减小对外延片表面的损伤,而且本发明操作方法简单,易于实现,适于大规模产业化生产。

Description

高质量氮化铝模板及其制备方法
技术领域
本发明涉及属于氮化铝模板技术领域,特别涉及一种高质量氮化铝模板及其制备方法。
背景技术
新冠病毒爆发以来,深紫外发光二极管(UVC-LED)杀菌技术逐渐受到人们的重视,相比于传统的低压杀菌汞灯,其在瞬间杀菌与特种环境下的杀菌优势更是体现的淋漓尽致。但与成熟的蓝光发光二极管相比,UVC-LED器件却在电光转化效率上依然存在着巨大的提升空间,而其主要原因涵盖了物理与材料双重方面。其中最重要的便是同时满足深紫外高透过率和与AlGaN基LED发光结构晶格匹配等双重条件,而在众多已成熟的可选衬底中,尽管蓝宝石衬底对深紫外的透过率极高,但其与AlGaN材料具有较大的晶格失配,因此会在发光量子结构区域产生密度较高的位错,直接导致了发光的湛灭;而尽管氮化铝体材料单晶衬底能够同时兼顾上述二者条件,但其大尺寸体材料的制备困难则是阻碍其真正得以应用的本质问题。而蓝宝石衬底上氮化铝单晶模板的成功实现则能够在大尺寸尺度兼顾实现上述需求,特别是面对面退火的提出更是为大尺寸单晶氮化铝模板的制备提供了合适的路径,但面对面退火的样品则会对模板的表面产生摩擦划痕进而影响后续的外延生长,因此,寻找到一种全新的制备高质量氮化铝模板的方法,将对深紫外半导体光电子器件领域具有重大意义。
发明内容
针对上述不足,本发明的目的在于,提供一种高质量氮化铝模板及其制备方法。
为实现上述目的,本发明所提供的技术方案是:
一种高质量氮化铝模板制备方法,其特征在于,其包括以下步骤:
(1)选用具有特定晶体取向的蓝宝石Al2O3作为衬底,对其进行化学清洗;所述蓝宝石Al2O3为α相单晶蓝宝石,晶向范围包括但不限于(0001)Al2O3衬底、(10)衬底、(102)Al2O3衬底、(100)Al2O3衬底等;衬底尺寸包括但不限于2寸、4寸、6寸与更大的尺寸范围;所述化学清洗可以依次采用丙酮溶液、乙醇溶液和去离子水超声清洗具有特定晶相的单晶蓝宝石Al2O3衬底,除去衬底上的正面与背面的有机及无机沾污;
(2)利用物理或化学气相沉积方法在衬底表面沉积形成氮化铝薄膜,所利用的物理或化学气相沉积方法包括但不限于磁控溅射、金属有机物气相沉积、分子束外延等;随后利用物理或化学气相外延方法,如分子束外延、磁控溅射、原子层沉积、激光脉冲沉积、金属有机物气相外延等在氮化铝薄膜表面制备氮化镓保护薄膜,得到氮化铝模板;所述氮化镓保护薄膜可为原位制备也可为非原位工艺制备,所述氮化镓保护薄膜的厚度大于或等于氮化铝薄膜的厚度。所述氮化镓保护薄膜的厚度可从nm数量级至μm数量级区间内自由变换;所制备的氮化镓保护薄膜厚度为μm数量级;
(3)对表面有氮化镓保护层的氮化铝模板进行非面对面高温退火处理,持冷却降温后,制得高质量氮化铝单晶模板;退火处理具体是退火容器中完成,所述退火容器为石墨或碳化硅材质制成;所述退火容器为采用以焦耳热、闪光灯和脉冲激光灯作为加热方式的管式退火炉或箱式退火炉。退火处理的高温温度为1500-2000℃,处理时间为15-300分钟,处理氛围为氮气氛围。所述氮化铝模板在高温状态下,氮化铝薄膜表面覆盖的氮化镓保护薄膜会由于具有较低的分解温度而不断发生分解,从而在氮化铝薄膜表面形成富氮环境,以抑制氮化铝薄膜的表面分解,而氮化铝薄膜本身也会在高温下实现重结晶;而且在高温退火时由于具有氮化镓保护薄膜进行覆盖保护,不需要面对面退火,而为非面对面高温退火处理。面对面退火是指在传统模板在高温退火时需要成对设置,成对的模板与模板相贴合,确保贴合之间的间隙需要弥合好,以尽量防止模板上的材料升华。然而相贴合时容易对模板表面产生摩擦划痕进而影响后续的外延生长。本发明为非面对面高温退火处理,从而减小对表面的损伤,提升外延生长效果。
一种高质量氮化铝模板,其应用上述的高质量氮化铝模板制备方法制得。
本发明的有益效果为:本发明高质量氮化铝模板制备方法利用在氮化铝薄膜表面制备氮化镓保护薄膜结合高温退火的方式制备高质量氮化铝单晶模板,通过在高温退火的条件下氮化镓保护薄膜分解而在氮化铝薄膜表面创造富氮环境,从而抑制氮化铝薄膜表面的分解;同时氮化铝薄膜在高温状态下发生重结晶而实现高质量氮化铝单晶模板,有效避免引入传统面对面退火方式引入的对片表面摩擦,从而减小对外延片表面的损伤,而且本发明操作方法简单,易于实现,适于大规模产业化生产。
下面结合附图与实施例,对本发明进一步说明。
附图说明
图1为本发明高质量氮化铝模板的结构示意图。
具体实施方式
实施例1:本实施例提供的一种高质量氮化铝模板的制备方法,在本实施例中,以反应磁控溅射方法在c面蓝宝石衬底上先后原位制备氮化铝薄膜与氮化镓保护层,然后将其置于箱式退火炉中施行高温退火处理,所制备厚度为400nm单晶氮化铝模板具有较高的晶体质量与表面平整度且表面无划痕。具体步骤如下:
(1)选择单面抛光的2寸(0001)晶面的蓝宝石衬底1,利用丙酮进行超声清洗10分钟,后用氮气吹干;
(2)利用物理气相沉积方法在蓝宝石衬底1正面沉积形成氮化铝薄膜2,所使用靶材为纯度99.99%的单质纯铝靶材,溅射衬底温度设置为500℃,溅射过程中氩气与氮气气氛比例为1:4,溅射功率设定为3000W,溅射时间设置为20分钟,所制备氮化铝薄膜2厚度为约为400nm;
(3)在溅射沉积氮化铝薄膜2的表面原位制备氮化镓保护薄膜3,所使用靶材为氮化镓靶材,溅射衬底温度设置为300℃,溅射过程中氩气与氮气气氛比例为1:4,溅射功率设定为3000W,溅射时间设置为60分钟,所制备氮化镓保护薄膜3厚度为约为1μm;
(4)以石墨舟为载体将表面具有氮化镓保护薄膜3的氮化铝薄膜2移至于管式退火炉中,抛光面敞开置于氮气氛围中,即非面对面接触贴合,升温至1700℃,在氮气氛围下常压退火处理300分钟;
(5)在氮气气氛保护条件下,自然冷却至室温取出,制得高质量氮化铝模板。
实施例2:本实施例提供的一种高质量氮化铝模板的制备方法,在本实施例中,以反应磁控溅射方法在c面蓝宝石衬底上先后原位制备氮化铝薄膜与氮化镓保护层,然后将其置于箱式退火炉中施行高温退火处理,所制备厚度为1μm单晶氮化铝模板具有较高的晶体质量与表面平整度且表面无划痕。具体步骤如下:
(1)选择单面抛光的2寸(0001)晶面的蓝宝石衬底1,利用丙酮进行超声清洗10分钟,后用氮气吹干;
(2)利用物理气相沉积方法在蓝宝石衬底1正面沉积形成氮化铝薄膜2,所使用靶材为纯度99.99%的单质纯铝靶材,溅射衬底温度设置为500℃,溅射过程中氩气与氮气气氛比例为1:4,溅射功率设定为3000W,溅射时间设置为20分钟,所制备氮化铝薄膜2厚度为约为1μm;
(3)在溅射沉积氮化铝薄膜2表面原位制备氮化镓保护薄膜3,所使用靶材为氮化镓靶材,溅射衬底温度设置为300℃,溅射过程中氩气与氮气气氛比例为1:4,溅射功率设定为3000W,溅射时间设置为60分钟,所制备氮化镓保护薄膜3厚度为约为1μm;
(4)以石墨舟为载体将表面具有氮化镓保护薄膜3的氮化铝薄膜2移至于管式退火炉中,抛光面敞开置于氮气氛围中,即非面对面接触贴合,升温至1700℃,在氮气氛围下常压退火处理300分钟;
(5)在氮气气氛保护条件下,自然冷却至室温取出,制得高质量氮化铝模板。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制,采用与其相同或相似的其它板体及方法,均在本发明保护范围内。

Claims (9)

1.一种高质量氮化铝模板制备方法,其特征在于,其包括以下步骤:
(1)对衬底进行清洁处理;
(2)利用物理或化学气相沉积方法在衬底表面沉积形成氮化铝薄膜,随后利用物理或化学气相外延方法在氮化铝薄膜表面制备氮化镓保护薄膜,得到氮化铝模板;
(3)对表面有氮化镓保护层的氮化铝模板进行非面对面高温退火处理,持冷却降温后,制得高质量氮化铝单晶模板。
2.根据权利要求1所述高质量氮化铝模板制备方法,其特征在于:所述衬底为α相单晶蓝宝石。
3.根据权利要求1所述高质量氮化铝模板制备方法,其特征在于:所述步骤(1)依次采用丙酮溶液、乙醇溶液和去离子水超声清洗所述衬底。
4.根据权利要求1所述高质量氮化铝模板制备方法,其特征在于:所述氮化镓保护薄膜的厚度大于或等于氮化铝薄膜的厚度。
5.根据权利要求1所述高质量氮化铝模板制备方法,其特征在于:所述步骤(3)在退火容器中完成,所述退火容器为石墨或碳化硅材质制成。
6.根据权利要求5所述高质量氮化铝模板制备方法,其特征在于:所述退火容器为采用以焦耳热、闪光灯和脉冲激光灯作为加热方式的管式退火炉或箱式退火炉。
7.根据权利要求1所述高质量氮化铝模板制备方法,其特征在于:所述步骤(3)中的退火处理的高温温度为1500-2000℃,处理时间为15-300分钟,处理氛围为氮气氛围。
8.根据权利要求7所述高质量氮化铝模板制备方法,其特征在于:所述氮化铝模板在高温状态下,氮化铝薄膜表面覆盖的氮化镓保护薄膜会由于具有较低的分解温度而不断发生分解,从而在氮化铝薄膜表面形成富氮环境,以抑制氮化铝薄膜的表面分解,而氮化铝薄膜本身也会在高温下实现重结晶进而得到高质量氮化铝单晶模板。
9.一种高质量氮化铝模板,其特征在于,其应用权利要求1-8中任意一项所述的高质量氮化铝模板制备方法制得。
CN202111167137.2A 2021-10-03 2021-10-03 高质量氮化铝模板及其制备方法 Pending CN113897678A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111167137.2A CN113897678A (zh) 2021-10-03 2021-10-03 高质量氮化铝模板及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111167137.2A CN113897678A (zh) 2021-10-03 2021-10-03 高质量氮化铝模板及其制备方法

Publications (1)

Publication Number Publication Date
CN113897678A true CN113897678A (zh) 2022-01-07

Family

ID=79190246

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111167137.2A Pending CN113897678A (zh) 2021-10-03 2021-10-03 高质量氮化铝模板及其制备方法

Country Status (1)

Country Link
CN (1) CN113897678A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117488408A (zh) * 2022-08-02 2024-02-02 松山湖材料实验室 单晶氮化铝材料及其制备方法
CN117568912A (zh) * 2023-11-21 2024-02-20 松山湖材料实验室 一种单晶复合衬底及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7732301B1 (en) * 2007-04-20 2010-06-08 Pinnington Thomas Henry Bonded intermediate substrate and method of making same
US20150255308A1 (en) * 2014-03-07 2015-09-10 National Taiwan University Stress modulation of semiconductor thin film
JP2020037507A (ja) * 2018-09-03 2020-03-12 国立大学法人三重大学 窒化物半導体基板の製造方法および窒化物半導体基板
US20200243334A1 (en) * 2019-01-24 2020-07-30 The Regents Of The University Of California Method for processing of semiconductor films with reduced evaporation and degradation
CN111676451A (zh) * 2020-06-28 2020-09-18 中国科学院半导体研究所 极性可控的高质量AlN模板制备方法
CN113215531A (zh) * 2021-05-17 2021-08-06 广西大学 一种通过热处理调控大斜切角氮化铝薄膜缺陷的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7732301B1 (en) * 2007-04-20 2010-06-08 Pinnington Thomas Henry Bonded intermediate substrate and method of making same
US20150255308A1 (en) * 2014-03-07 2015-09-10 National Taiwan University Stress modulation of semiconductor thin film
JP2020037507A (ja) * 2018-09-03 2020-03-12 国立大学法人三重大学 窒化物半導体基板の製造方法および窒化物半導体基板
US20200243334A1 (en) * 2019-01-24 2020-07-30 The Regents Of The University Of California Method for processing of semiconductor films with reduced evaporation and degradation
CN111676451A (zh) * 2020-06-28 2020-09-18 中国科学院半导体研究所 极性可控的高质量AlN模板制备方法
CN113215531A (zh) * 2021-05-17 2021-08-06 广西大学 一种通过热处理调控大斜切角氮化铝薄膜缺陷的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117488408A (zh) * 2022-08-02 2024-02-02 松山湖材料实验室 单晶氮化铝材料及其制备方法
CN117488408B (zh) * 2022-08-02 2024-05-10 松山湖材料实验室 单晶氮化铝材料及其制备方法
CN117568912A (zh) * 2023-11-21 2024-02-20 松山湖材料实验室 一种单晶复合衬底及其制备方法

Similar Documents

Publication Publication Date Title
US6210479B1 (en) Product and process for forming a semiconductor structure on a host substrate
Detchprohm et al. The growth of thick GaN film on sapphire substrate by using ZnO buffer layer
JP5444460B2 (ja) エピタキシャル膜形成方法、真空処理装置、半導体発光素子の製造方法、半導体発光素子、照明装置
EP3351660B1 (en) Manufacturing method of sic composite substrate
CN113897678A (zh) 高质量氮化铝模板及其制备方法
CN114059165B (zh) 发光器件、氮化铝制品、氮化铝单晶及其制作方法、应用
TWI600809B (zh) Composite substrate, method of manufacturing the same, method of manufacturing the functional layer made of Group 13 nitride, and functional device
TWI567214B (zh) A method for forming a nitride semiconductor layer, and a method of manufacturing the semiconductor device
CN102208337B (zh) 一种硅基复合衬底及其制造方法
WO2013061572A1 (ja) 成膜方法、真空処理装置、半導体発光素子の製造方法、半導体発光素子、照明装置
TW201405868A (zh) 沉積iii族氮化物半導體薄膜的方法
Kumar et al. Epitaxial growth of high quality ZnO: Al film on silicon with a thin γ-Al 2 O 3 buffer layer
CN115295401A (zh) 氮化铝单晶复合衬底及其制备方法、紫外发光器件
JP7277908B2 (ja) 窒化物半導体基板の製造方法
US7696533B2 (en) Indium nitride layer production
CN109830429B (zh) 一种双光路脉冲激光在Si(100)基片上沉积InGaN薄膜的方法
JP3577974B2 (ja) 半導体発光素子、およびその製造方法
CN210897327U (zh) 硅基应力协变衬底及垂直结构氮化镓led
JP3951013B2 (ja) 固体ターゲットパルスレーザ蒸着法によるGaN結晶性薄膜の作製方法及び同法で作製した薄膜
JP5024765B2 (ja) 酸化物基板の清浄化方法及び酸化物半導体薄膜の製造方法
JP2004281955A (ja) 窒化物半導体の製造方法、窒化物半導体用気相成長装置、窒化物半導体ウェハ、窒化物半導体デバイス
CN105225928B (zh) 一种氧化锌单晶薄膜的制备方法
TWI841976B (zh) 用於uv led結構的方法及系統
KR100338390B1 (ko) 하층기판-승화법에 의한 질화갈륨 후막의 제조방법 및반응장치
CN117690780B (zh) 氮化铝单晶复合衬底的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Wang Xinqiang

Inventor after: Yuan Ye

Inventor after: Liu Shangfeng

Inventor after: Li Tai

Inventor after: Wang Yixin

Inventor after: Li Duo

Inventor before: Wang Xinqiang

Inventor before: Yuan Ye

Inventor before: Liu Shangfeng

Inventor before: Li Tai

Inventor before: Wang Yixin

Inventor before: Li Duo

Inventor before: Wan Wenting

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20220224

Address after: Building A1, innovation city, Songshanhu University, Dongguan, Guangdong 523000

Applicant after: Material Laboratory of Songshan Lake

Address before: 523000 Room 302, building 12, No. 1, Xuefu Road, Songshanhu Park, Dongguan City, Guangdong Province

Applicant before: Zhongzi semiconductor technology (Dongguan) Co.,Ltd.

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220107