CN113897596B - 一种高灵敏度柔性应变传感器的制作方法 - Google Patents

一种高灵敏度柔性应变传感器的制作方法 Download PDF

Info

Publication number
CN113897596B
CN113897596B CN202111036545.4A CN202111036545A CN113897596B CN 113897596 B CN113897596 B CN 113897596B CN 202111036545 A CN202111036545 A CN 202111036545A CN 113897596 B CN113897596 B CN 113897596B
Authority
CN
China
Prior art keywords
strain
strain sensor
substrate
manufacturing
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111036545.4A
Other languages
English (en)
Other versions
CN113897596A (zh
Inventor
马一飞
王梅
黎子健
陈旭远
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi University
Original Assignee
Shanxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi University filed Critical Shanxi University
Priority to CN202111036545.4A priority Critical patent/CN113897596B/zh
Publication of CN113897596A publication Critical patent/CN113897596A/zh
Application granted granted Critical
Publication of CN113897596B publication Critical patent/CN113897596B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • B05D3/107Post-treatment of applied coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/40Metallic substrate based on other transition elements
    • B05D2202/45Metallic substrate based on other transition elements based on Cu
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2518/00Other type of polymers
    • B05D2518/10Silicon-containing polymers
    • B05D2518/12Ceramic precursors (polysiloxanes, polysilazanes)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

本发明属于柔性应变传感器制作领域,柔性应变传感器需具备良好的延展性、高的灵敏度、宽检测范围,现有的高灵敏的柔性应变传感器存在检测范围低,制作方法复杂等问题;而具有较大的检测范围的应变传感器存在灵敏度低,检测下限高等问题,本发明提供一种高灵敏度柔性应变传感器的制作方法,通过等离子增强化学气相沉积系统,利用三维化二维材料力学性能和网状结构,使网状基底上的三维化二维材料为基础制作的传感材料在受到应力而导致应变时产生应变集中效果,产生敏感的拉力响应,实现对传感材料的微小应变的检测,提升了应变传感材料的灵敏度和力学性能,实现更大范围的应变响应。

Description

一种高灵敏度柔性应变传感器的制作方法
技术领域
本发明涉及柔性应变传感器技术领域,更具体的说,涉及一种高灵敏度柔性应变传感器的制作方法。
背景技术
柔性应变传感器在人体运动检测、个性化健康检测以及电子皮肤等多方面具有很好的应用前景而受到广泛关注。在实际使用时,柔性应变传感器需具备良好的延展性、高的灵敏度、宽检测范围。但是现有的柔性应变传感器在具有高灵敏的同时存在检测范围低,制作方法复杂等问题;而当应变传感器具有较大的检测范围时则存在灵敏度低,检测下限高等问题。因此,有必要制作一种柔性应变传感器,同时具备灵敏度高,检测下限低且检测范围合适的柔性应变传感器,兼具便携的信号采集装置,实现信号的便携化显示。
发明内容
本发明针对上述问题,提出了一种基于竖直取向三维化二维材料的高灵敏度应变传感器的制作方法,解决了现有技术中应变传感器灵敏度不足,检测下限不足的问题。本发明通过等离子体增强化学气相沉积系统,在网状基底上生长了竖直取向的三维化二维材料,利用其优良的力学性能和网状结构的应变集中效果,将微小应变转化为电阻信号,并通过惠斯通电桥电路转化为电压信号,计算拉伸前和拉伸后的电压差值,计算出实际应变大小,实现对微小应变的检测。
为实现上述目的,本发明提供了如下技术方案:
一种高灵敏度柔性应变传感器的制作方法,通过等离子增强化学气相沉积系统,在网状基底上生长了竖直取向的三维化二维材料,利用三维化二维材料力学性能和网状结构,使网状基底上的三维化二维材料为基础制作的传感材料在受到应力而导致应变时产生应变集中效果,局部发生显著的结构变化导致电阻值产生变化,在应变集中效果下,利用惠斯通电桥电路将传感材料的电阻变化信号转化为电压信号,计算拉伸前和拉伸后的电压差值,通过电压差值反馈传感材料的实际应变大小,实现对传感材料的微小应变的检测,高分子弹性材料制作柔性应变传感器具体包括以下步骤:
步骤1.将网筛为生长基底,洗净后放置于等离子体增强化学气相沉积系统的加热区域;
步骤2. 将基底材料放置在等离子体增强化学气相沉积系统的石英管腔的加热区域,将石英管腔调节至真空状态后,开启等离子体增强化学气相沉积系统的加热模式,对石英管腔内的基底材料进行加热,并加热至预设温度,当温度稳定后通入前驱气体,然后开启射频等离子体源,开始沉积,在整个沉积过程中,保持温度和等离子体功率稳定;
步骤3. 将步骤2中获取的网筛的两端连接导线引出电极,在网筛表面涂覆柔性高分子弹性材料并在电极两端连接应变信号处理器;
步骤4. 裁切步骤3中的涂覆柔性高分子弹性材料的网筛,并根据使用要求和基底材质通过刻蚀去除网筛基底,若基底为金属的网筛,需要进行刻蚀去除金属网筛,以确保传感材料的柔性;若基底为非金属可拉伸的网筛,省略步骤4。
进一步,应变信号处理器包括提供稳定电压的电源模块、检测传感材料的电阻变化的惠斯通电桥电路、对电压信号进行放大和滤波的信号处理模块,以及采集信号并读取和显示的信号采集模块,电源模块依次连接惠斯通电桥电路、信号处理模块和信号采集模块形成回路。
进一步,电源模块包括纽扣电池盒稳压电路。
进一步,惠斯通桥式电路中柔性应变传感器连接在电阻R1和地线之间。
进一步,高分子弹性材料为聚二甲基硅氧烷、Ecoflex(共聚酯)系列硅胶、聚对二甲苯、聚醚酰亚胺、丁基橡胶、热塑性聚氨酯橡胶、聚氨酯中的一种或多种。
进一步,步骤1中网筛目数为10~300目。
进一步,步骤2中沉积后的三维化二维材料为石墨烯、碳纳米管、二硫化钨、二硫化钼;所述前驱气体为氢气、甲烷、乙炔、氧气中的一种或多种;所述前驱物为氧化钼、硫、氧化钨中的一种或多种。
本发明的有益效果体现在:
(1)本发明改变了二维材料生长方式,使其以垂直于基底的方向竖直生长,形成三维结构,与常规二维材料片层相比,本发明的三维化的二维材料具有非堆叠形态,造成了事实上的结构强度不均匀分布,使得拉伸过程中纳米尺度上的应力不均匀分布,造成应力集中,产生敏感的拉力响应,使用本发明制作的应变传感材料,具有相较于其他方法制作的应变传感材料具有更高的灵敏度和检测下限。
(2)相比于传统的平面基底,本发明使用的网状基底赋予了三维化二维材料网状的宏观结构。去除原有网状基底后,所形成的网状的空心结构被拉伸时改变了应力分布,使应变集中在弯曲程度较深的区域,基于此结构,提升了基于此方法制作的应变传感材料的灵敏度,最小能够检测到0.1‰的微小应变。
(3)本发明中,使用高分子弹性材料涂覆在三维化二维材料沉积的网筛表面,在去除网状基底后,为三维化二维材料提供新的支撑,维持网状结构不被破坏并起到保护三维化二维材料的微观结构的作用。同时柔性高分子材料和三维化二维材料复合可以提升应变传感材料的力学性能,在实现微小应变检测的同时,实现更大范围的应变响应。
附图说明
图1为本发明实施例1中使用的铜网;
图2为本发明实施例1中制备石墨烯网;
图3为本发明实施例1中在铜网上制备的三维石墨烯的扫描电子显微镜图;
图4为信号处理端流程图;
图5为本发明实施例1中应变传感器拉伸0.1‰-0.5‰阶梯应变响应图;
图6为本发明实施例1中应变传感器拉伸1%-4%响应变化图。
具体实施方式
如图1~6所示,本发明公开了一种高灵敏度柔性应变传感器的制作方法,柔性应变传感器包括应变传感材料和信号处理器,二维纳米材料通常是指其电子仅可在两个维度的纳米尺度上自由运动(平面运动)的材料,由于其单原子厚度使其具有独特的电学和机械性能,通过等离子增强化学气相沉积系统,在网状基底上生长了竖直取向的三维化二维材料,利用三维化二维材料力学性能和网状结构,使网状基底上的三维化二维材料为基础制作的传感材料在受到应力而导致应变时产生应变集中效果,局部发生显著的结构变化导致电阻值产生变化,在应变集中效果下,利用惠斯通电桥电路将传感材料的电阻变化信号转化为电压信号,计算拉伸前和拉伸后的电压差值,通过电压差值反馈传感材料的实际应变大小,实现对传感材料的微小应变的检测,高分子弹性材料制作柔性应变传感器具体包括以下步骤:
步骤1.将网筛为生长基底,洗净后放置于等离子体增强化学气相沉积系统的加热区域;网筛目数为10~300目。
步骤2.等离子体增强化学气相沉积系统包括四个部分:射频等离子体源、加热线圈、操控单元和石英管腔,将基底材料放置在石英管腔的加热区域,将管腔调节至真空状态后,开启等离子体增强化学气相沉积系统的加热模式,对管腔和基底材料进行加热,并加热至预设温度,预设温度300℃~900℃,当温度稳定后通入前驱气体,然后开启射频等离子体源,开始沉积,在整个沉积过程中,保持温度和等离子体功率稳定。
沉积后的三维化二维材料为石墨烯、碳纳米管、二硫化钨、二硫化钼;所述前驱气体为氢气、甲烷、乙炔、氧气中的一种或多种;所述前驱物为氧化钼、硫、氧化钨中的一种或多种。
步骤3. 将步骤2中获取的网筛的两端连接导线引出电极,在网筛表面涂覆柔性高分子弹性材料并在电极两端连接应变信号处理器,;应变信号处理器包括提供稳定电压的电源模块、检测传感材料的电阻变化的惠斯通电桥电路、对电压信号进行放大和滤波的信号处理模块,以及采集信号并读取和显示的信号采集模块,电源模块包括纽扣电池盒稳压电路,电源模块依次连接惠斯通电桥电路、信号处理模块和信号采集模块形成回路,惠斯通桥式电路中柔性应变传感器连接在电阻R1和地线之间,惠斯通电桥电路将电阻变化转化为电压信号,方便后续信号采集;信号处理模块惠斯通电桥电路所产生的电压信号进行放大和滤波,得到更清晰的信号流;
步骤4. 裁切步骤3中的涂覆柔性高分子弹性材料的网筛,并根据使用要求和基底材质通过刻蚀去除网筛基底,若基底为金属的网筛,需要进行刻蚀去除金属网筛,以确保传感材料的柔性;若基底为非金属可拉伸的网筛,可省略步骤4。
高分子弹性材料为聚二甲基硅氧烷、Ecoflex系列硅胶、聚对二甲苯、聚醚酰亚胺、丁基橡胶、热塑性聚氨酯橡胶、聚氨酯中的一种或多种。
实施例1:
本实施例包括以下步骤:
如图1以50目铜网为基底,依次使用丙酮、乙醇和水充分洗净;放入管式炉内的加热区域,并将管式炉抽至真空,在三维化石墨烯生长之前,等离子体增强化学气相沉积系统的腔室以8sccm(标准毫升每分钟)的流速和900℃的温度用氢气清洗5分钟;引入氢气2sccm和乙炔6sccm,待气体流稳定后开启射频等离子体源,在整个沉积过程中射频等离子体源需维持功率500W,然后,竖直石墨烯开始沉积,时间为60分钟。生长过程结束,待炉腔冷却后取出基底并裁剪如图2,在两端涂布银胶引出导线,可在扫描电子显微镜下观察到铜网表面被竖直石墨烯完全覆盖,如图3所示。
采用聚二甲基硅氧烷作为涂覆高分子材料,首先按10:1(胶体:固化剂)的比例配置聚二甲基硅氧烷胶体,涂覆于上述所得网筛表面,然后放入烘箱中,在80℃的条件下热固化2小时,得到传感材料制作的传感器前体。将传感器前体裁剪露出铜网基底,放入预先配置好三氯化铁溶液中刻蚀铜网基底,浓度为0.2g/mL,刻蚀时间为3天。待铜网基底被完全刻蚀,就得到了高灵敏度柔性应变传感器。
信号处理端的流程图如图4所示:
电源模块由一块4.2V的纽扣电池和稳压芯片组成,供电分为两个部分,第一部分是为惠斯通电桥电路提供稳定的2.5V基准电压。另一部分是为信号采集模块提供能源。
高灵敏度柔性应变传感器初始电阻根据制作条件不同存在差异,即使是非常微小的应变,三维化二维材料的电阻也会发生显著改变,惠斯通电桥电路中的定值电阻要根据高灵敏度柔性应变传感器的初始电阻进行选择,高灵敏度柔性应变传感器与惠斯通电桥电路的初始电阻值不能相差太大。在本实施例中,高灵敏度柔性应变传感器的初始电阻为4.1kΩ,所以由三个3.9kΩ的定制电阻和柔性应变传感器组成惠斯通电桥电路。当柔性应变传感器受外界刺激发生应变,其电阻也会随之改变。导致惠斯通电桥电路两桥臂的电势差改变。以此检测外部应变刺激,并转变成随外部刺激变化的电压信号。
信号处理模块包括信号放大电路,滤波电路。将上述电信号传输至信号处理模块,由一块仪表放大器和定值电阻组成放大电路对上述电信号进行放大,放大倍数可由定值电阻的电阻值进行调控。进过放大之后的电信号经过滤波电路,由运算放大器,两个电容C1、C2和两个电阻R3、R4构成。滤波电路具有截止频率f,只允许定于此频率的电信号通过,,选择R3=R4=510Ω,C1=22uF,C2=10uF,截止频率为20Hz。
图5为本实施例制作的高灵敏度柔性应变传感器的微小应变阶梯响应图,其中电阻百分比变化量。当对高灵敏度柔性应变传感器施加0.1-0.5‰的阶梯微小拉伸应变,都能够观察到明显的电阻信号变化,并且在长时间保持微小应变状态下,信号稳定不会发生信号回落或者突变,说明其灵敏度极好。图6显示在大范围应变下(1-4%)的电阻响应特性,其电阻随着应变的提升而显著提高,表现出良好的线性响应。
实施例2:
本实施例包括以下步骤:
取200目铜网,依次使用丙酮、乙醇和水充分洗净;然后将铜网浸入10%的氢氟酸中10分钟去除原生氧化物层。将铜网置于射频磁控溅射系统中进行钼沉积,在此过程之前进行5分钟的预溅射,然后在室温条件下沉积50分钟,钼靶与衬底固定器之间的距离为10厘米,射频功率为150瓦。
溅射完成之后,将钼沉积后的铜网衬底取出放入管式炉的加热区域,在氩气气氛下进行加热,当温度加热至300℃时开启等离子体(300W)并引入硫化氢(20sccm)气体开始二硫化钼生长过程,生长时间为140分钟;生长结束后,待炉腔冷却后去除二硫化钼网;在裁剪之后使用银胶引出导线。
配置聚二甲基硅氧烷胶体:在量杯中加入适量的聚二甲基硅氧烷胶体,然后滴入前者质量1/10的固化剂。将混合胶体放置在磁力搅拌仪上进行充分搅拌。最后在行星搅拌仪中进行脱气处理。
将上述处理过后的聚二甲基硅氧烷胶体均匀的涂布在引出导线后的二硫化钼网表面,然后放入烘箱中,80℃热固化2小时后得到传感器前体。
配置刻蚀剂,取4g三氯化铁粉末,滴入1滴浓盐酸用以保持酸性环境,然后加入去离子水20mL,充分搅拌均匀得到刻蚀剂。
将传感器前体浸泡在刻蚀剂中进行刻蚀,时间为3天,最终得到高灵敏度柔性应变传感器。
信号处理端的流程图如图3所示:
电源模块由一块4.2V的纽扣电池和稳压芯片组成,供电分为两个部分,第一部分是为惠斯通电桥电路提供稳定的2.5V基准电压。另一部分是为信号采集模块提供能源。
传感材料制作传感器初始电阻根据制作条件不同会有差异,在本实施例中,惠斯通电桥电路由三个5.9kΩ的定制电阻和传感器构成。
信号处理模块包括信号放大电路,滤波电路。由高灵敏度柔性应变传感器与三个定值电阻相连,可以置于鼻孔或者嘴唇前,用检测人体呼吸信号,人体呼吸造成的气体流动会带动传感器拉伸或者收缩,形成与呼吸相匹配的波动电信号。
将上述电信号传输至信号处理模块,由一块仪表放大器和定值电阻组成放大电路对上述电信号进行放大,放大倍数可由定值电阻的电阻值进行调控。进过放大之后的电信号进过滤波电路,由运算放大器,两个电容C1、C2和两个电阻R5、R6构成。滤波电路具有截止频率f,只允许定于此频率的电信号通过,,选择R5=R6=750Ω,C1=22uF,C2=22uF,截止频率为10Hz。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

1.一种高灵敏度柔性应变传感器的制作方法,其特征在于:通过等离子增强化学气相沉积系统,在网状基底上生长了竖直取向的三维化二维材料,利用三维化二维材料力学性能和网状结构,使网状基底上的三维化二维材料为基础制作的传感材料在受到应力而导致应变时产生应变集中效果,局部发生显著的结构变化导致电阻值产生变化,在应变集中效果下,利用惠斯通电桥电路将传感材料的电阻变化信号转化为电压信号,计算拉伸前和拉伸后的电压差值,通过电压差值反馈传感材料的实际应变大小,实现对传感材料的微小应变的检测,高分子弹性材料制作柔性应变传感器具体包括以下步骤:
步骤1.将网筛为生长基底,洗净后放置于等离子体增强化学气相沉积系统的加热区域;
步骤2. 将基底材料放置在等离子体增强化学气相沉积系统的石英管腔的加热区域,将石英管腔调节至真空状态后,开启等离子体增强化学气相沉积系统的加热模式,对石英管腔内的基底材料进行加热,并加热至预设温度,当温度稳定后通入前驱气体,然后开启射频等离子体源,开始沉积,在整个沉积过程中,保持温度和等离子体功率稳定;
步骤3. 将步骤2中获取的网筛的两端连接导线引出电极,在网筛表面涂覆柔性高分子弹性材料并在电极两端连接应变信号处理器;
步骤4. 裁切步骤3中的涂覆柔性高分子弹性材料的网筛,并根据使用要求和基底材质通过刻蚀去除网筛基底,若基底为金属的网筛,需要进行刻蚀去除金属网筛,以确保传感材料的柔性;若基底为非金属可拉伸的网筛,省略步骤4。
2.根据权利要求1所述的高灵敏度柔性应变传感器的制作方法,其特征在于:所述应变信号处理器包括提供稳定电压的电源模块、检测传感材料的电阻变化的惠斯通电桥电路、对电压信号进行放大和滤波的信号处理模块,以及采集信号并读取和显示的信号采集模块,电源模块依次连接惠斯通电桥电路、信号处理模块和信号采集模块形成回路。
3.根据权利要求2所述的高灵敏度柔性应变传感器的制作方法,其特征在于:所述电源模块包括纽扣电池盒稳压电路。
4.根据权利要求2所述的高灵敏度柔性应变传感器的制作方法,其特征在于:所述惠斯通桥式电路中柔性应变传感器连接在电阻R1和地线之间。
5.根据权利要求1或2所述的高灵敏度柔性应变传感器的制作方法,其特征在于:所述高分子弹性材料为聚二甲基硅氧烷、Ecoflex系列硅胶、聚对二甲苯、聚醚酰亚胺、丁基橡胶、热塑性聚氨酯橡胶、聚氨酯中的一种或多种。
6.根据权利要求1所述的高灵敏度柔性应变传感器的制作方法,其特征在于:所述步骤1中网筛目数为10~300目。
7.根据权利要求1所述的高灵敏度柔性应变传感器的制作方法,其特征在于:所述步骤2中沉积后的三维化二维材料为石墨烯、碳纳米管、二硫化钨、二硫化钼;所述前驱气体为氢气、甲烷、乙炔、氧气中的一种或多种。
CN202111036545.4A 2021-09-06 2021-09-06 一种高灵敏度柔性应变传感器的制作方法 Active CN113897596B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111036545.4A CN113897596B (zh) 2021-09-06 2021-09-06 一种高灵敏度柔性应变传感器的制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111036545.4A CN113897596B (zh) 2021-09-06 2021-09-06 一种高灵敏度柔性应变传感器的制作方法

Publications (2)

Publication Number Publication Date
CN113897596A CN113897596A (zh) 2022-01-07
CN113897596B true CN113897596B (zh) 2023-07-18

Family

ID=79188491

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111036545.4A Active CN113897596B (zh) 2021-09-06 2021-09-06 一种高灵敏度柔性应变传感器的制作方法

Country Status (1)

Country Link
CN (1) CN113897596B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102104879B1 (ko) * 2018-11-23 2020-04-27 울산과학기술원 3차원 스트레인 센서 및 이의 제조방법
CN111928770A (zh) * 2020-07-29 2020-11-13 青岛菲灿新材料科技服务有限责任公司 二维网状石墨烯基拉伸应变传感器及其制备方法
CN112113498A (zh) * 2020-09-14 2020-12-22 山西大学 一种高灵敏度压阻式应变传感器的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210095369A1 (en) * 2019-09-03 2021-04-01 The Board Of Trustees Of The University Of Illinois Kirigami-inspired strain-insensitive sensors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102104879B1 (ko) * 2018-11-23 2020-04-27 울산과학기술원 3차원 스트레인 센서 및 이의 제조방법
CN111928770A (zh) * 2020-07-29 2020-11-13 青岛菲灿新材料科技服务有限责任公司 二维网状石墨烯基拉伸应变传感器及其制备方法
CN112113498A (zh) * 2020-09-14 2020-12-22 山西大学 一种高灵敏度压阻式应变传感器的制备方法

Also Published As

Publication number Publication date
CN113897596A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
Gabay et al. Electro-chemical and biological properties of carbon nanotube based multi-electrode arrays
Huang et al. Large-scale synthesis of flowerlike ZnO nanostructure by a simple chemical solution route and its gas-sensing property
Arif et al. Metallic nanowire–graphene hybrid nanostructures for highly flexible field emission devices
Lee et al. Low temperature solution-processed ZnO nanorod arrays with application to liquid ethanol sensors
CN104807861A (zh) 一种海绵状石墨烯基可拉伸气敏传感器的制备方法
CN113237580A (zh) 一种MXene的高灵敏度压阻传感器及制备方法
Yang et al. Gas sensing of tellurium-modified silicon nanowires to ammonia and propylamine
CN113074622B (zh) 基于石墨烯-金复合薄膜裂纹柔性应变传感器及制备方法
CN109099832A (zh) 应变传感器及其制造方法
CN105783695A (zh) 石墨烯复合纳米金薄膜柔性应变传感器的制备方法及其应变传感器
Sun et al. Ultrasensitive micro/nanocrack-based graphene nanowall strain sensors derived from the substrate's Poisson's ratio effect
Wu et al. A practical vacuum sensor based on a ZnO nanowire array
Chang et al. A ZnO nanowire vacuum pressure sensor
CN110184577B (zh) 柔性基底表面兼具压阻性能与韧性的非晶碳膜的制备方法及其应用
CN104237345A (zh) 低密度碳纳米管阵列复合电极制备及其在葡萄糖传感器中的应用
CN113897596B (zh) 一种高灵敏度柔性应变传感器的制作方法
Guo et al. PEG-20000 assisted hydrothermal synthesis of hierarchical ZnO flowers: structure, growth and gas sensor properties
CN104142207B (zh) 基于气体吸附与碳纳米管场发射原理的真空计及其真空度检测方法
Nick et al. A three-dimensional microelectrode array composed of vertically aligned ultra-dense carbon nanotube networks
CN107884316B (zh) 基于有序碳纳米管薄膜的液体表面张力传感器及其制备方法
Neella et al. Negative temperature coefficient behavior of graphene-silver nanocomposite films for temperature sensor applications
KR20070101029A (ko) 산화아연 나노막대 어레이 센서의 제조방법
CN116447967A (zh) 高灵敏与高线性协同的仿生柔性应变传感器及其制造方法
Kovalska et al. Wireless graphene-enabled wearable temperature sensor
CN117249752A (zh) 一种基于仿生微结构的柔性应变传感器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant