CN113897397A - 一种基于DNAzyme调控基因编辑的方法 - Google Patents

一种基于DNAzyme调控基因编辑的方法 Download PDF

Info

Publication number
CN113897397A
CN113897397A CN202111160432.5A CN202111160432A CN113897397A CN 113897397 A CN113897397 A CN 113897397A CN 202111160432 A CN202111160432 A CN 202111160432A CN 113897397 A CN113897397 A CN 113897397A
Authority
CN
China
Prior art keywords
grna
precursor
gene editing
dnazyme
crispr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111160432.5A
Other languages
English (en)
Other versions
CN113897397B (zh
Inventor
周文虎
董丽萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202111160432.5A priority Critical patent/CN113897397B/zh
Publication of CN113897397A publication Critical patent/CN113897397A/zh
Application granted granted Critical
Publication of CN113897397B publication Critical patent/CN113897397B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43595Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from coelenteratae, e.g. medusae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/12Type of nucleic acid catalytic nucleic acids, e.g. ribozymes
    • C12N2310/127DNAzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/50Methods for regulating/modulating their activity

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明属于生物技术领域,具体涉及一种基于DNAzyme调控基因编辑的方法。方法包括:将CRISPR/Cas9系统中的gRNA的5’末端进行延长,获得含有5’末端延长片段的gRNA前体;根据所述gRNA前体的碱基序列设计8‑17DNAzyme底物结合臂的序列,获得与gRNA前体形成碱基互补配对的8‑17DNAzyme;将所述gRNA前体和8‑17DNAzyme作为调控CRISPR/Cas9基因编辑系统原料,通过是否加入金属离子对基因编辑进行调控。该方法通过对gRNA进行延长获得gRNA前体,并根据gRNA前体设计DNAzyme序列,实现对基因编辑的精准调控,设计简单,精准靶向具有普适性。

Description

一种基于DNAzyme调控基因编辑的方法
技术领域
本发明属于生物材料技术领域,具体涉及一种基于DNAzyme调控基因编辑的方法。
背景技术
现有技术中如何对CRISPR/Cas9系统中基因编辑调控主要有两种方法:(1)利用miRNA诱导启动CRISPR基因编辑平台:通过设计具有miRNA结合位点的没有活性的sgRNA前体,使得只有在特定miRNA表达的细胞中,才会通过miRNA介导的切割反应产生成熟的sgRNA,继而引导CRISPR基因编辑体系启动工作;该方法需要针对特定的细胞寻找特定的miRNA,再根据miRNA的序列设计gRNA前体,不具有普适性。(2)基于上转换纳米粒子(UCNPs)的CRISPR/Cas9递送系统:在该递送系统中,CRISPR/Cas9通过光敏分子ONA共价锚定在UCNP上(表示为UCNPs-Cas9),然后用聚乙烯亚胺(PEI)包被(表示为UCNPs-Cas9@PEI),以形成纳米颗粒。然后,将这些纳米颗粒暴露在近红外光NIR下,上转换纳米粒子(UCNPs)吸收近红外光(NIR)辐射,将其转换为紫外光(UV)辐射,紫外光能够切断光敏分子ONA,从而将CRISPR/Cas9体系从纳米颗粒中释放出来,并将它们按需递送给细胞。但是基于光敏分子的递送系统一般只适用于浅表组织。
因此,急需建立一种设计简单、精准靶向且具有普适性的CRISPR/Cas9活性可控系统,实现对基因编辑的精准调控。
发明内容
针对现有技术存在的问题,本发明通过对gRNA进行延长,并设计DNAzyme的碱基序列使得二者形成碱基互补配对,由于DNAzyme的屏蔽作用,CRISPR/Cas9无法识别靶DNA序列,其基因编辑能力被抑制,在特定金属离子的作用下,DNAzyme被激活,对gRNA延长位点特异性切割,使得CRISPR/Cas9系统恢复活性启动基因编辑。
为实现上述目的,本发明实施例提供了一种基于DNAzyme调控基因编辑的方法,所述方法具体包括:
将CRISPR/Cas9系统中的gRNA的5’末端进行延长,获得含有5’末端延长片段的gRNA前体;
根据所述gRNA前体的碱基序列设计8-17DNAzyme底物结合臂的序列,获得与gRNA前体形成碱基互补配对的DNAzyme;
将所述gRNA前体和8-17DNAzyme作为CRISPR/Cas9基因编辑系统原料,通过是否加入金属离子对基因编辑进行调控。
进一步的,所述gRNA的5’末端进行延长过程中延长的长度为13-15个碱基。
进一步的,所述gRNA前体5’末端的延长片段与所述gRNA连接在一起没有潜在的发夹结构和互补配对情况。
进一步的,所述金属离子包括:锰离子、镁离子。
基于同一发明构思的,本发明实施例还提供了上述基于DNAzyme调控基因编辑的方法在调控增强型绿色荧光蛋白基因表达中的应用,所述增强型绿色荧光蛋白的特异性gRNA、gRNA前体和8-17DNAzyme的基因序列如序列SEQ ID NO:1-3所示。
有益效果:
本发明通过简单的设计将目标gRNA 5’末端延长13-15个碱基成为gRNA前体,然后根据gRNA前体序列设计8-17DNAzyme序列,使得二者碱基互补,由于DNAzyme的屏蔽作用,CRISPR/Cas9无法识别靶DNA序列,其基因编辑能力被抑制,再通过加入特定金属离子,DNAzyme被激活,对gRNA延长位点特异性切割,CRISPR/Cas9系统恢复活性启动基因编辑,实现了CRISPR/Cas9系统的精准调控,且具有普适性。
附图说明
图1为本发明实施例提供的CRISPR/Cas9系统恢复活性启动基因编辑的示意图;
图2为本发明实施例提供的各组流式细胞术检测结果,A为空白对照组,B为gRNA组,C为gRNA前体组,D为gRNA前体+DNAzyme组,E为gRNA前体+DNAzyme+Mn2+组;
图3为本发明实施例提供的各组基因编辑效率统计图。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合具体实施例进行详细描述,但本发明的保护范围并不限于以下具体实施例。
除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。
除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。
在CRISPR/Cas9系统,对gRNA的5’末端进行延长(延长13-15个碱基),成为gRNA前体,并与8-17DNAzyme形成碱基互补配对。由于DNAzyme的屏蔽作用,CRISPR/Cas9无法识别靶DNA序列,其基因编辑能力被抑制。如图1所示,在特定金属离子如Mn2+的作用下,DNAzyme被激活,对gRNA延长位点特异性切割,CRISPR/Cas9系统恢复活性启动基因编辑。
gRNA前体5’末端的延长片段与原gRNA末端分别结合DNAzyme活性中心两侧的结合部位,延长片段与原gRNA末端连接部位为DNAzyme切割位点,其中gRNA延长片段的设计原则是与原gRNA连接在一起没有潜在的发夹结构和互补配对情况。
实施例
本发明在增强型绿色荧光蛋白(Enhanced Green Fluorescent Protein,EGFP)标记细胞中的应用证明本发明基于DNAzyme调控基因编辑的方法可行性。利用CRISPR技术沉默EGFP标记的HEK-293T细胞的绿色荧光。
具体步骤如下:
(1)根据EGFP序列,设计EGFP特异性gRNA,然后对gRNA的5’末端进行延长设计gRNA前体;
EGFP gRNA:5’-cucgugaccacccugaccua-3’;
EGFP gRNA前体:
5’-cgucggagucgcuagcucgugaccacccugaccua-3’。
(2)根据gRNA前体设计8-17DNAzyme序列
8-17DNAzyme序列:
5’-gtcacgagtccgagccggtcgaaagcgactccgacg-3’
(3)细胞实验测定基于DNAzyme的CRISPR/Cas9可控基因编辑系统的切割活性
采用流式细胞术测定DNAzyme控制的CRISPR/Cas9的切割活性。
细胞分5组:空白对照组,gRNA组,gRNA前体组,gRNA前体+DNAzyme组,gRNA前体+DNAzyme+Mn2+组。HEK293T细胞以2×105个/孔接种于12孔板中,培养24h后,转染CRISPR/Cas9体系(锐博,riboEDIT CRISPR-Cas9mRNA Standard Set)(各组每孔转染体系成分见表1),每组3个复孔,转染48h后消化离心,预冷的PBS洗涤两遍并重悬细胞,立即利用流式细胞仪测量细胞中绿色荧光强度,根据空白对照组及各组绿色荧光标记细胞所占比例计算基因编辑的效率。
基因编辑效率=(空白对照组EGFP阳性细胞率-实验组EGFP阳性细胞率)/空白对照组EGFP阳性细胞率
表1各组每孔CRISPR/Cas9转染体系成分
Figure BDA0003289787900000041
Figure BDA0003289787900000051
结果如图2、3所示,空白对照组EGFP阳性细胞率为97.5%,gRNA组,gRNA前体组,gRNA前体+DNAzyme组,gRNA前体+DNAzyme+Mn2+组。gRNA组的CRISPR/Cas9的基因编辑效率为40.3%,gRNA前体组和的gRNA前体+DNAzyme组的基因编辑效率分别为1%、2%,gRNA前体+DNAzyme+Mn2+组的基因编辑效率为22.5%。由此可见,利用DNAzyme调控CRISPR/Cas9系统的基因编辑活性是可行可控的。
以上所述实施例,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明的技术范围内,根据本发明的技术方案及其构思加以等同替换或改变,都应涵盖在本发明的保护范围内。
序列表
<110> 中南大学
<120> 一种基于DNAzyme调控基因编辑的方法
<160> 3
<170> SIPOSequenceListing 1.0
<210> 1
<211> 20
<212> RNA
<213> Artificial Sequence
<400> 1
cucgugacca cccugaccua 20
<210> 2
<211> 35
<212> RNA
<213> Artificial Sequence
<400> 2
cgucggaguc gcuagcucgu gaccacccug accua 35
<210> 3
<211> 36
<212> DNA
<213> Artificial Sequence
<400> 3
gtcacgagtc cgagccggtc gaaagcgact ccgacg 36

Claims (5)

1.一种基于DNAzyme调控基因编辑的方法,其特征在于,所述方法具体包括:
将CRISPR/Cas9系统中的gRNA的5’末端进行延长,获得含有5’末端延长片段的gRNA前体;
根据所述gRNA前体的碱基序列设计8-17DNAzyme底物结合臂的序列,获得与gRNA前体形成碱基互补配对的8-17DNAzyme;
将所述gRNA前体和8-17DNAzyme作为调控CRISPR/Cas9基因编辑系统原料,通过是否加入金属离子对基因编辑进行调控。
2.根据权利要求1所述的基于DNAzyme调控基因编辑的方法,其特征在于,所述gRNA的5’末端进行延长过程中延长的长度为13-15个碱基。
3.根据利要求1所述的基于DNAzyme调控基因编辑的方法,其特征在于,所述gRNA前体5’末端的延长片段与所述gRNA连接在一起没有潜在的发夹结构和互补配对情况。
4.根据权利要求1所述的基于DNAzyme调控基因编辑的方法,其特征在于,所述金属离子包括:锰离子、镁离子。
5.权利要求1-4任意所述的基于DNAzyme调控基因编辑的方法在调控增强型绿色荧光蛋白基因表达中的应用,其特征在于,所述增强型绿色荧光蛋白的特异性gRNA、gRNA前体和8-17DNAzyme的基因序列如序列SEQ ID NO:1-3所示。
CN202111160432.5A 2021-09-30 2021-09-30 一种基于DNAzyme调控基因编辑的方法 Active CN113897397B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111160432.5A CN113897397B (zh) 2021-09-30 2021-09-30 一种基于DNAzyme调控基因编辑的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111160432.5A CN113897397B (zh) 2021-09-30 2021-09-30 一种基于DNAzyme调控基因编辑的方法

Publications (2)

Publication Number Publication Date
CN113897397A true CN113897397A (zh) 2022-01-07
CN113897397B CN113897397B (zh) 2024-04-02

Family

ID=79189748

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111160432.5A Active CN113897397B (zh) 2021-09-30 2021-09-30 一种基于DNAzyme调控基因编辑的方法

Country Status (1)

Country Link
CN (1) CN113897397B (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2998287A1 (en) * 2015-09-24 2017-04-20 Crispr Therapeutics Ag Novel family of rna-programmable endonucleases and their uses in genome editing and other applications
CN106978428A (zh) * 2017-03-15 2017-07-25 上海吐露港生物科技有限公司 一种Cas蛋白特异结合靶标DNA、调控靶标基因转录的方法及试剂盒
WO2017136629A1 (en) * 2016-02-05 2017-08-10 Regents Of The University Of Minnesota Vectors and system for modulating gene expression
WO2017180915A2 (en) * 2016-04-13 2017-10-19 Duke University Crispr/cas9-based repressors for silencing gene targets in vivo and methods of use
WO2018164948A1 (en) * 2017-03-09 2018-09-13 The Scripps Research Institute Vectors with self-directed cpf1-dependent switches
WO2019126762A2 (en) * 2017-12-22 2019-06-27 The Broad Institute, Inc. Cas12a systems, methods, and compositions for targeted rna base editing
CA3110103A1 (en) * 2018-08-22 2020-02-27 Blueallele, Llc Methods for delivering gene editing reagents to cells within organs
CA3147575A1 (en) * 2019-07-29 2021-02-04 Yeda Research And Development Co. Ltd. Methods of treating and diagnosing lung cancer
CN112567030A (zh) * 2018-05-08 2021-03-26 勒芬天主教大学 生物传感器
CN112979530A (zh) * 2021-05-17 2021-06-18 中南大学 可吸附dna的纳米粒、核酸检测探针及其制备方法与应用
CN113164589A (zh) * 2018-06-29 2021-07-23 维西欧制药公司 用于调节单核细胞和巨噬细胞发炎表型的组合物和方法以及其免疫疗法用途
WO2021183502A1 (en) * 2020-03-09 2021-09-16 The Methodist Hospital System Engineered nucleic acids and uses thereof
CN113975397A (zh) * 2021-10-26 2022-01-28 中南大学湘雅三医院 一种基因/小分子化合物纳米递药系统及其制备方法与应用
CN115711877A (zh) * 2022-10-25 2023-02-24 重庆医科大学 目标物触发球形核酸自组装快速激活CRISPR-Cas12a信号开关的传感器

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2998287A1 (en) * 2015-09-24 2017-04-20 Crispr Therapeutics Ag Novel family of rna-programmable endonucleases and their uses in genome editing and other applications
WO2017136629A1 (en) * 2016-02-05 2017-08-10 Regents Of The University Of Minnesota Vectors and system for modulating gene expression
WO2017180915A2 (en) * 2016-04-13 2017-10-19 Duke University Crispr/cas9-based repressors for silencing gene targets in vivo and methods of use
WO2018164948A1 (en) * 2017-03-09 2018-09-13 The Scripps Research Institute Vectors with self-directed cpf1-dependent switches
CN106978428A (zh) * 2017-03-15 2017-07-25 上海吐露港生物科技有限公司 一种Cas蛋白特异结合靶标DNA、调控靶标基因转录的方法及试剂盒
WO2019126762A2 (en) * 2017-12-22 2019-06-27 The Broad Institute, Inc. Cas12a systems, methods, and compositions for targeted rna base editing
US20210230690A1 (en) * 2018-05-08 2021-07-29 Katholieke Universiteit Leuven Biosensor
CN112567030A (zh) * 2018-05-08 2021-03-26 勒芬天主教大学 生物传感器
CN113164589A (zh) * 2018-06-29 2021-07-23 维西欧制药公司 用于调节单核细胞和巨噬细胞发炎表型的组合物和方法以及其免疫疗法用途
CA3110103A1 (en) * 2018-08-22 2020-02-27 Blueallele, Llc Methods for delivering gene editing reagents to cells within organs
CA3147575A1 (en) * 2019-07-29 2021-02-04 Yeda Research And Development Co. Ltd. Methods of treating and diagnosing lung cancer
WO2021183502A1 (en) * 2020-03-09 2021-09-16 The Methodist Hospital System Engineered nucleic acids and uses thereof
CN112979530A (zh) * 2021-05-17 2021-06-18 中南大学 可吸附dna的纳米粒、核酸检测探针及其制备方法与应用
CN113975397A (zh) * 2021-10-26 2022-01-28 中南大学湘雅三医院 一种基因/小分子化合物纳米递药系统及其制备方法与应用
CN115711877A (zh) * 2022-10-25 2023-02-24 重庆医科大学 目标物触发球形核酸自组装快速激活CRISPR-Cas12a信号开关的传感器

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
KENNY SCHLOSSER等: "A versatile endoribonuclease mimic made of DNA: characteristics and applications of the 8-17 RNA-cleaving DNAzyme", CHEMBIOCHEM, vol. 11, no. 7, 3 May 2010 (2010-05-03), pages 866 - 879 *
LI, CY 等: "Biomimetic Chip Enhanced Time-Gated Luminescent CRISPR-Cas12a Biosensors under Functional DNA Regulation", ANALYTICAL CHEMISTRY, vol. 93, no. 37 *
QIAN, RC等: "Cell Surface Engineering Using DNAzymes: Metal Ion Mediated Control of Cell-Cell Interactions", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 143, no. 15 *
WEIQI CAI等: "Orthogonal Chemical Activation of Enzyme-Inducible CRISPR/Cas9 for Cell-Selective Genome Editing", J. AM. CHEM. SOC., vol. 144, no. 48, 11 November 2022 (2022-11-11), pages 22272 *
梁长城: "功能性核酸8-17 DNAzyme的活性调控", 中国优秀硕士学位论文全文数据库(电子期刊)工程科技I辑, no. 2 *
王胜峰等: "基于仿生DNA酶的肿瘤诊疗研究进展", 药学进展, vol. 45, no. 5 *
袁思琪等: "病原细菌DNAzyme的筛选及基于CRISPR-Cas12a的DNAzyme传感器的构建", 中国优秀硕士学位论文全文数据库(电子期刊)工程科技I辑, no. 3 *

Also Published As

Publication number Publication date
CN113897397B (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
Xu et al. Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing
Li et al. Precise gene replacement in rice by RNA transcript-templated homologous recombination
CN107099850B (zh) 一种通过酶切基因组构建CRISPR/Cas9基因组敲除文库的方法
CN108359712B (zh) 一种快速高效筛选SgRNA靶向DNA序列的方法
CN114846146B (zh) 用于增加CRISPR/Cas12f1系统的效率的工程化引导RNA及其用途
WO2020190509A9 (en) Methods for using spatial arrays for single cell sequencing
WO2020123318A9 (en) Resolving spatial arrays using deconvolution
Li et al. Strategies for the CRISPR-based therapeutics
Harden et al. Modulation of microRNA-mRNA target pairs by human papillomavirus 16 oncoproteins
CN105861552A (zh) 一种T7 RNA 聚合酶介导的CRISPR/Cas9基因编辑系统的构建方法
CN110819592A (zh) 一种通用供体干细胞及其制备方法
WO2023202199A1 (zh) 一种加帽组合物及其制备方法和体外转录反应体系
Arakawa A method to convert mRNA into a gRNA library for CRISPR/Cas9 editing of any organism
WO2021252924A8 (en) Arrdc1-mediated microvesicle-based delivery to the nervous system
CN110628767B (zh) 一种生物矿化的CRISPR/Cas9 RNPs纳米颗粒、制备方法及其用于基因编辑
Jiang et al. Robust genome and RNA editing via CRISPR nucleases in PiggyBac systems
CN111041049A (zh) 一种基于近红外光控的CRISPR-Cas13a系统制备方法及其应用
Li et al. Precise large-fragment deletions in mammalian cells and mice generated by dCas9-controlled CRISPR/Cas3
CN113897397A (zh) 一种基于DNAzyme调控基因编辑的方法
CN110468133B (zh) 利用CRISPR/Cas9系统敲除猪GOT1基因的方法
WO2018086512A1 (zh) 植物基因组定点敲入方法
CN112011539A (zh) 一种基于CRISPR-Cas9技术靶向敲除猪GDPD2基因的细胞系及其构建方法
CN110499334A (zh) CRISPR/SlugCas9基因编辑系统及其应用
Komori et al. A CRISPR-del-based pipeline for complete gene knockout in human diploid cells
CN116004716A (zh) 一种复制型dCas9-FokI系统进行高效基因编辑的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant