CN113889525A - 提升耐压工艺窗口的超结器件 - Google Patents

提升耐压工艺窗口的超结器件 Download PDF

Info

Publication number
CN113889525A
CN113889525A CN202111487782.2A CN202111487782A CN113889525A CN 113889525 A CN113889525 A CN 113889525A CN 202111487782 A CN202111487782 A CN 202111487782A CN 113889525 A CN113889525 A CN 113889525A
Authority
CN
China
Prior art keywords
semiconductor layer
epitaxial
process window
layer
super
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111487782.2A
Other languages
English (en)
Other versions
CN113889525B (zh
Inventor
李吕强
陈辉
王加坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Xinmai Semiconductor Technology Co ltd
Original Assignee
Hangzhou Xinmai Semiconductor Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Xinmai Semiconductor Technology Co ltd filed Critical Hangzhou Xinmai Semiconductor Technology Co ltd
Priority to CN202111487782.2A priority Critical patent/CN113889525B/zh
Publication of CN113889525A publication Critical patent/CN113889525A/zh
Application granted granted Critical
Publication of CN113889525B publication Critical patent/CN113889525B/zh
Priority to US17/985,489 priority patent/US20230178591A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1602Diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes

Landscapes

  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Recrystallisation Techniques (AREA)
  • Bipolar Transistors (AREA)

Abstract

本发明提供一种提升耐压工艺窗口的超结器件,包括:半导体衬底;沉积于半导体衬底上的外延层,外延层包括第一半导体层及层叠于其上的第二半导体层,且第一半导体层的禁带宽度大于第二半导体层的禁带宽度;形成于外延层中的超结结构,超结结构包括至少一个第一导电类型的第一外延柱及至少一个第二导电类型的第二外延柱,第一外延柱与第二外延柱横向交替排布。通过采用具有夹层结构的外延层制备超结结构,由于下层的禁带宽度大于上层的禁带宽度,当超结结构在中部区域电场高于两端的电场时,由于第一半导体层的临界电场大于第二半导体层的临界电场,可以保证中部区域不提前击穿,从而可以在保证超结结构的高耐压下扩大耐压工艺窗口。

Description

提升耐压工艺窗口的超结器件
技术领域
本发明涉及半导体功率器件结构技术领域,特别是涉及一种提升耐压工艺窗口的超结器件。
背景技术
超结(Super Junction)结构是基于电荷平衡技术采用交替的PN结结构取代单一导电类型材料作为漂移区,在漂移区引入横向电场,使得器件漂移区在较小的关断电压下即可完全耗尽,击穿电压仅与耗尽层厚度及临界电场有关。因此,在相同耐压条件下,超结结构漂移区的掺杂浓度可以提高一个数量级,大大降低了导通电阻。
超结结构能够实现较高的击穿电压关键在于P区域和N区域的电荷平衡,当P区域和N区域的电荷平衡时超结结构可以得到较高的击穿电压,而当P区域和N区域的电荷失去平衡,则会导致击穿电压迅速降低。然而,在实际的工艺制备过程中,很难做到电荷平衡的P区域和N区域。目前常采用通过控制超结沟槽倾斜角或渐变掺杂分布梯度,抬升超结结构中部区域的电场,使超结结构两端区域的电场降低,以达到扩展器件耐压工艺窗口的效果,但是由于超结结构中部区域的过强电场也会导致器件更易击穿,导致器件耐压的降低。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种提升耐压工艺窗口的超结器件,用于解决现有技术中超结结构由于中部区域的过强电场会使器件更易击穿,导致耐压降低等的问题。
为实现上述目的及其他相关目的,本发明提供一种提升耐压工艺窗口的超结器件,所述超结器件包括:
半导体衬底;
沉积于所述半导体衬底上的外延层,所述外延层包括第一半导体层及层叠于其上的第二半导体层,且所述第一半导体层的禁带宽度大于所述第二半导体层的禁带宽度;
形成于所述外延层中的超结结构,所述超结结构包括至少一个第一导电类型的第一外延柱及至少一个第二导电类型的第二外延柱,所述第一外延柱与所述第二外延柱横向交替排布,且所述超结结构沿所述第二半导体层上表面向下至少延伸至所述第一半导体层的下表面,其中,所述第一导电类型与所述第二导电类型相反。
可选地,所述半导体衬底为硅衬底,所述第一半导体层的材料为碳化硅或金刚石,所述第二半导体层的材料为硅。
进一步地,所述第一半导体层的厚度大于所述第二半导体层的厚度。
可选地,所述外延层还包括位于所述第一半导体层下表面的第三半导体层,且所述超结结构沿所述第二半导体层上表面向下延伸至所述第三半导体层的下表面,所述第一半导体层的禁带宽度大于所述第三半导体层的禁带宽度。
进一步地,所述半导体衬底为硅衬底,所述第一半导体层的材料为碳化硅或金刚石,所述第二半导体层的材料为硅,所述第三半导体层的材料为硅。
进一步地,所述第一半导体层的厚度大于所述第二半导体层的厚度,且大于所述第三半导体层的厚度。
可选地,所述第一外延柱及所述第二外延柱为互补的倾斜柱。
可选地,所述第一导电类型为N型或P型,所述第二导电类型为P型或N型。
可选地,所述超结器件应用于超结二极管器件中,或IGBT中,或VDMOS中。
如上所述,本发明的提升耐压工艺窗口的超结器件,通过采用具有夹层结构的外延层制备超结结构,由于下层的第一半导体层的禁带宽度大于上层的第二半导体层的禁带宽度,从而可提高第一半导体层所在区域的临界电场,当超结结构在中部区域电场高于两端的电场时,由于第一半导体层的临界电场大于第二半导体层的临界电场,可以保证中部区域不提前击穿,从而可以在保证超结结构的高耐压下扩大耐压工艺窗口。
附图说明
图1显示为现有技术中超结沟槽未倾斜的超结结构及其位置与电场的分布示意图。
图2显示为现有技术中超结沟槽倾斜的超结结构及其位置与电场的分布示意图。
图3显示为本发明一示例的提升耐压工艺窗口的超结器件结构示意图。
图4显示为本发明另一示例的提升耐压工艺窗口的超结器件及其位置与电场的分布结构示意图。
图5显示为现有技术中超结沟槽倾斜的超结结构及其位置与电场的分布示意图,其中超结结构所在的外延层材料为硅。
元件标号说明
10-半导体衬底,11-外延层,111-第一半导体层,112-第二半导体层,113-第三半导体层,121-第一外延柱,122-第二外延柱,13- P型区,14-金属引出层。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
请参阅图1至图5。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可根据实际需要进行改变,且其组件布局型态也可能更为复杂。
如背景技术中所述,超结结构是基于电荷平衡技术形成的耐高压器件,如图1所示,当超结结构中的所有P区域和所有N区域的电荷平衡时,超结结构可以得到很高的击穿电压Vb。而在实际工艺中很难做到P区域和N区域之间电荷的平衡,为了避免该非平衡导致击穿电压的迅速降低,目前常采用将超结结构的沟槽设置为倾斜槽,如图2所示,将超结沟槽设置为θ角的倾斜,将超结结构中部区域的电场抬升,使超结结构上下两端区域的电场降低,以达到扩展器件耐压工艺窗口的效果;另外还可通过将超结结构从上向下设置为渐变掺杂分布梯度,例如,P柱掺杂上高下低,N柱掺杂上低下高,也可以将超结结构中部区域的电场抬升,使超结结构上下两端区域的电场降低。虽然通过将中部区域的电场抬升可以达到扩展器件耐压工艺窗口的效果,但是中部区域的过强电场也会导致器件更易击穿,拉低器件的耐压性能。
基于以上问题,发明人从如何提高中部区域的耐压性能的角度出发,提出一种提升耐压工艺窗口的超结器件,在保证器件高耐压下扩大器件的耐压工艺窗口。这里的耐压工艺窗口指的是,定义超结器件中P柱与N柱内部的电荷总量比为电荷非平衡度,当P柱/N柱内部电荷总量相等,即电荷平衡时,器件可取得最高的击穿电压BVmax,如此,耐压工艺窗口可表述为器件耐压值可维持在BVmax~预设百分比*BVmax范围内的电荷非平衡度的范围。
如图3所示,本实施例提出的提升耐压工艺窗口的超结器件包括:半导体衬底10;沉积于所述半导体衬底10上的外延层11,所述外延层11包括第一半导体层111及层叠于其上的第二半导体层112,且所述第一半导体层111的禁带宽度大于所述第二半导体层112的禁带宽度;形成于所述外延层11中的超结结构,所述超结结构包括至少一个第一导电类型的第一外延柱121及至少一个第二导电类型的第二外延柱122,所述第一外延柱121与所述第二外延柱122横向交替排布,且所述超结结构沿所述第二半导体层112上表面向下至少延伸至所述第一半导体层111的下表面,其中,所述第一导电类型与所述第二导电类型相反。
本实施例通过采用具有夹层结构的外延层制备超结结构,由于下层的第一半导体层的禁带宽度大于上层的第二半导体层的禁带宽度,从而可提高第一半导体层所在区域的临界电场,当超结结构在中部区域电场高于两端的电场时,由于第一半导体层的临界电场大于第二半导体层的临界电场,可以保证中部区域不提前击穿,从而可以在保证超结结构的高耐压下扩大耐压工艺窗口。
如图4所示,作为示例,所述外延层11还可以在所述第一半导体层111下面设置第三半导体层113,所述超结结构沿所述第二半导体层112上表面向下延伸至所述第三半导体层113的下表面,所述第一半导体层111的禁带宽度大于所述第三半导体层113的禁带宽度。即在两窄禁带宽度的半导体层之间增加一宽禁带宽度的半导体层,沿超结结构厚度的方向Y,当其两端区域的电场小于中部区域的电场时,超结结构的耐压主要落在中部区域上,而中部区域采用禁带宽度大的半导体材料层,所以中部区域半导体材料层的临界电场可得到有效提高,从而可以保证中部区域不被提前击穿,达到可以在保证高耐压下扩大耐压工艺窗口。
具体地,可参考图4及图5,图4中外延层由下向上结构为硅材料层(第三半导体层113)、碳化硅材料层(第一半导体层111)及硅材料层(第二半导体层112),图5中外延层11由单独的硅材料层形成。单纯使用硅材料层作为超结结构的半导体材料层,由于硅的禁带宽度小于碳化硅的禁带宽度,因而碳化硅的临界电场大于硅的临界电场,所以在图5中,超结结构中部区域的临界电场值由硅材料的最大电场承受值Ec(Si)决定,当超结结构中部区域的电场值大于Ec(Si)时,超结结构则面临被击穿的风险,而在图4中,超结结构中部区域的临界电场值由碳化硅材料的最大电场承受值Ec(SiC)决定,当超结结构中部区域的电场值大于Ec(Si)时,超结结构还是具有一定的抗击穿能力,保证超结结构不会提前击穿,达到可以在保证高耐压下扩大耐压工艺窗口的效果。
如上所述,本实施例的超结器件较佳地可以应用于所述半导体衬底为硅衬底,当所述外延层11为双层叠层时,所述第一半导体层111的材料为碳化硅或金刚石,所述第二半导体层112的材料为硅(如图3所示);当所述外延层11为三层叠层时,所述第一半导体层111的材料为碳化硅或金刚石,所述第二半导体层112的材料为硅,所述第三半导体层113的材料为硅(如图4所示)。考虑不同材料之间的晶格匹配与热匹配参数,所述第一半导体层111的材料优选选择为碳化硅。
如图3及图4所示,作为示例,当所述外延层11为双层叠层时,所述第一半导体层111的厚度大于所述第二半导体层112的厚度;当所述外延层11为三层叠层时,所述第一半导体层111的厚度大于所述第二半导体层112的厚度,且大于所述第三半导体层113的厚度。
如图3及图4所示,于所述外延层11中形成的超结结构,包括所述第一外延柱121及第二外延柱122可以为互补的倾斜柱,即第一外延柱121与第二外延柱122的倾斜方向互相相反。但也不限于此,所述述第一外延柱121及第二外延柱122也可以为没有倾斜的外延柱,可通过将外延柱从上向下设置为渐变掺杂分布梯度,以使超结结构的中部区域的电场大于两端区域的电场。
作为一具体示例,所述外延层11通过多次外延工艺形成,所述超结结构可通过离子注入的方式形成,也可通过先沟槽刻蚀再外延填充的方式形成,但也不限于此,任意现有制备超结结构的工艺均可应用于本实施例中。
本实施例中,所述第一导电类型与所述第二导电类型的导电类型相反,例如,当所述第一导电类型为N型,则所述第二导电类型为P型;当所述第一导电类型为P型,则所述第二导电类型为N型。
本实施例提出的超结器件尤其适用于超结二极管器件中,或IGBT器件中,或VDMOS器件中。如图3及图4所示,即为在超结二极管器件中的应用,其中,半导体衬底10为N型掺杂的N型区,超结结构之上为P型掺杂的P型区13,N型区及P型区13两端分别为金属引出层14。IGBT器件及VDMOS器件也为现有常规结构器件,其具体结构在此不再赘述。
综上所述,本发明提供一种提升耐压工艺窗口的超结器件,通过采用具有夹层结构的外延层制备超结结构,由于下层的第一半导体层的禁带宽度大于上层的第二半导体层的禁带宽度,从而可提高第一半导体层所在区域的临界电场,当超结结构在中部区域电场高于两端的电场时,由于第一半导体层的临界电场大于第二半导体层的临界电场,可以保证中部区域不提前击穿,从而可以在保证超结结构的高耐压下扩大耐压工艺窗口。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (9)

1.一种提升耐压工艺窗口的超结器件,其特征在于,所述超结器件包括:
半导体衬底;
沉积于所述半导体衬底上的外延层,所述外延层包括第一半导体层及层叠于其上的第二半导体层,且所述第一半导体层的禁带宽度大于所述第二半导体层的禁带宽度;
形成于所述外延层中的超结结构,所述超结结构包括至少一个第一导电类型的第一外延柱及至少一个第二导电类型的第二外延柱,所述第一外延柱与所述第二外延柱横向交替排布,且所述超结结构沿所述第二半导体层上表面向下至少延伸至所述第一半导体层的下表面,其中,所述第一导电类型与所述第二导电类型相反。
2.根据权利要求1所述的提升耐压工艺窗口的超结器件,其特征在于:所述半导体衬底为硅衬底,所述第一半导体层的材料为碳化硅或金刚石,所述第二半导体层的材料为硅。
3.根据权利要求2所述的提升耐压工艺窗口的超结器件,其特征在于:所述第一半导体层的厚度大于所述第二半导体层的厚度。
4.根据权利要求1所述的提升耐压工艺窗口的超结器件,其特征在于:所述外延层还包括位于所述第一半导体层下表面的第三半导体层,且所述超结结构沿所述第二半导体层上表面向下延伸至所述第三半导体层的下表面,所述第一半导体层的禁带宽度大于所述第三半导体层的禁带宽度。
5.根据权利要求4所述的提升耐压工艺窗口的超结器件,其特征在于:所述半导体衬底为硅衬底,所述第一半导体层的材料为碳化硅或金刚石,所述第二半导体层的材料为硅,所述第三半导体层的材料为硅。
6.根据权利要求5所述的提升耐压工艺窗口的超结器件,其特征在于:所述第一半导体层的厚度大于所述第二半导体层的厚度,且大于所述第三半导体层的厚度。
7.根据权利要求1所述的提升耐压工艺窗口的超结器件,其特征在于:所述第一外延柱及所述第二外延柱为互补的倾斜柱。
8.根据权利要求1所述的提升耐压工艺窗口的超结器件,其特征在于:所述第一导电类型为N型或P型,所述第二导电类型为P型或N型。
9.根据权利要求1所述的提升耐压工艺窗口的超结器件,其特征在于:所述超结器件应用于超结二极管器件中,或IGBT中,或VDMOS中。
CN202111487782.2A 2021-12-08 2021-12-08 提升耐压工艺窗口的超结器件 Active CN113889525B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111487782.2A CN113889525B (zh) 2021-12-08 2021-12-08 提升耐压工艺窗口的超结器件
US17/985,489 US20230178591A1 (en) 2021-12-08 2022-11-11 Super-junction semiconductor device with enlarged process window for desirable breakdown voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111487782.2A CN113889525B (zh) 2021-12-08 2021-12-08 提升耐压工艺窗口的超结器件

Publications (2)

Publication Number Publication Date
CN113889525A true CN113889525A (zh) 2022-01-04
CN113889525B CN113889525B (zh) 2022-03-18

Family

ID=79016505

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111487782.2A Active CN113889525B (zh) 2021-12-08 2021-12-08 提升耐压工艺窗口的超结器件

Country Status (2)

Country Link
US (1) US20230178591A1 (zh)
CN (1) CN113889525B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101167530B1 (ko) * 2012-01-05 2012-07-20 주식회사 시지트로닉스 수퍼 헤테로 접합 반도체소자 및 그 제작방법
CN104779290A (zh) * 2014-01-10 2015-07-15 瑞萨电子株式会社 半导体器件
CN107275383A (zh) * 2017-06-22 2017-10-20 四川大学 一种含有异质结的超结igbt

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101167530B1 (ko) * 2012-01-05 2012-07-20 주식회사 시지트로닉스 수퍼 헤테로 접합 반도체소자 및 그 제작방법
CN104779290A (zh) * 2014-01-10 2015-07-15 瑞萨电子株式会社 半导体器件
CN107275383A (zh) * 2017-06-22 2017-10-20 四川大学 一种含有异质结的超结igbt

Also Published As

Publication number Publication date
US20230178591A1 (en) 2023-06-08
CN113889525B (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
USRE46799E1 (en) Semiconductor device with alternating conductivity type layers having different vertical impurity concentration profiles
US8404526B2 (en) Semiconductor device and manufacturing method for the same
US8395230B2 (en) Semiconductor device and method of manufacturing the same
JP5052025B2 (ja) 電力用半導体素子
US6710418B1 (en) Schottky rectifier with insulation-filled trenches and method of forming the same
US7859076B2 (en) Edge termination for semiconductor device
CN109166922B (zh) 一种沟槽型超结功率终端结构及其制备方法
JP2007116190A (ja) 半導体素子およびその製造方法
JP2008182054A (ja) 半導体装置
JP2003273355A (ja) 半導体素子およびその製造方法
US8907421B2 (en) Superjunction structure, superjunction MOS transistor and manufacturing method thereof
US9972677B2 (en) Methods of forming power semiconductor devices having superjunction structures with pillars having implanted sidewalls
KR101802419B1 (ko) 트렌치형 필러 옥사이드를 이용한 탄화규소 슈퍼정션 모스펫 및 그 제조방법
JP2003101022A (ja) 電力用半導体素子
CN110212018B (zh) 超结结构及超结器件
JP5559232B2 (ja) 電力用半導体素子
CN103199104A (zh) 一种晶圆结构以及应用其的功率器件
CN108807506A (zh) 带沟槽栅结构的深槽超结mosfet器件及其加工工艺
CN112864219B (zh) 超结器件及其制造方法
CN106356401A (zh) 一种功率半导体器件的场限环终端结构
US20080197381A1 (en) Semiconductor device and method for manufacturing same
CN106158631A (zh) 带埋层沟槽功率器件及其制作方法
CN113889525B (zh) 提升耐压工艺窗口的超结器件
US7268079B2 (en) Method for fabricating a semiconductor having a field zone
CN209981223U (zh) 一种高压深沟槽型超结mosfet的结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant