CN108807506A - 带沟槽栅结构的深槽超结mosfet器件及其加工工艺 - Google Patents

带沟槽栅结构的深槽超结mosfet器件及其加工工艺 Download PDF

Info

Publication number
CN108807506A
CN108807506A CN201811012310.XA CN201811012310A CN108807506A CN 108807506 A CN108807506 A CN 108807506A CN 201811012310 A CN201811012310 A CN 201811012310A CN 108807506 A CN108807506 A CN 108807506A
Authority
CN
China
Prior art keywords
type
active areas
groove structure
areas
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811012310.XA
Other languages
English (en)
Inventor
许剑
刘桂芝
夏虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WUXI LINLI TECHNOLOGY Co Ltd
Original Assignee
WUXI LINLI TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WUXI LINLI TECHNOLOGY Co Ltd filed Critical WUXI LINLI TECHNOLOGY Co Ltd
Priority to CN201811012310.XA priority Critical patent/CN108807506A/zh
Publication of CN108807506A publication Critical patent/CN108807506A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode

Abstract

本发明涉及功率器件技术领域,尤其涉及一种带沟槽栅结构的深槽超结MOSFET器件,其结构包括N+型衬底、N‑型外延层、P型柱深槽结构、P型体区、P+有源区、N+有源区、栅极氧化层、多晶硅栅极、介质层、源极金属;本发明所述的带沟槽栅结构的深槽超结MOSFET器件采用沟槽栅结构,且沟槽栅位于P型柱深槽结构正上方,P型柱深槽结构位于N‑外延层内,该结构既保留了深槽超结MOSFET器件横向耗尽快,耐压高的特点,同时又具有沟槽栅屏蔽JFET电阻的特点,从而提高了超结MOSFET器件的功率密度。

Description

带沟槽栅结构的深槽超结MOSFET器件及其加工工艺
技术领域
本发明涉及功率器件技术领域,尤其涉及一种带沟槽栅结构的深槽超结MOSFET器件及其加工工艺。
背景技术
目前现有的普通VDMOS器件,其结构如图1所示,包括N+型衬底11、N-型外延层12、P型体区(即pbody)13、P+有源区14、N+有源区15、栅氧化层16、多晶硅栅极(即poly gate)17、介质层18和源极金属19,这种结构的VDMOS器件需要提高耐压值时,一般通过增加N-型外延层的电阻率和N-型外延层的厚度实现,但这种方法会导致导通电阻的增加,降低器件的性能。因此,在需要较高耐压的场合,普遍用平面栅深槽超结MOSFET器件代替普通的VDMOS器件。
目前现有的平面栅深槽超结MOSFET器件的结构如图2所示,包括N+型衬底21、N-型外延层22、P型柱深槽结构(即Ptype trench pillar)23、P型体区(pbody)24、P+有源区25、N+有源区26、平面栅氧化层27、多晶硅栅极(即poly gate)28、介质层29和源极金属20。平面栅深槽超结通过在器件内部引入P型柱深槽结构,P型柱深槽结构与N-型外延层之间的PN结反偏时,P型柱深槽结构可以加速N-型外延层耗尽速度,从而可以在更低电阻率的N-外延层中实现高耐压低导通的效果。但平面栅深槽超结的P型体区引入了JFET电阻,P型体区之间的距离越近,JFET电阻对导通电阻的影响越大,需要通过增加注入的方式来缓解导通电阻的升高。P型体区之间的JFET效应制约了P型柱深槽结构的间距减小,制约了N-外延电阻率的进一步减小,制约了同等耐压下导通电阻的进一步降低,制约了超结功率密度的提升。
发明内容
针对现有技术中的问题,本发明提供一种带沟槽栅结构的深槽超结MOSFET器件及其加工工艺。
为实现以上技术目的,本发明的技术方案是:
一种带沟槽栅结构的深槽超结MOSFET器件,包括N+型衬底;
所述N+型衬底上表面形成有N-型外延层;
所述N-型外延层内部中部形成有多个P型柱深槽结构,所述P型柱深槽结构包括柱形深槽结构和位于柱形深槽结构内的P型多晶硅,所述P型柱深槽结构的方向为自N-型外延层顶部向下,相邻的P型柱深槽结构之间相分离;
所述N-型外延层内部上部形成有多个沟槽栅结构,每个沟槽栅结构位于P形柱深槽结构的上方且相邻的沟槽栅结构之间相分离,所述沟槽栅结构包括沟槽结构和N型多晶硅栅极,所述沟槽结构的内表面形成有栅极氧化层,所述N型多晶硅栅极位于沟槽结构内;
所述N-型外延层内部上部形成有P型体区,所述P型体区位于相邻的沟槽栅结构之间,所述P型体区的结深不超过沟槽栅结构的底部,所述P型体区的顶部沿水平方向依次形成有N+有源区、P+有源区、N+有源区;
所述沟槽栅结构、N+有源区、P+有源区的上方形成有金属层,所述金属层与沟槽栅结构之间形成有介质层,所述金属层与N+有源区、P+有源区连接,形成源极金属。
一种带沟槽栅结构的深槽超结MOSFET器件的加工工艺,具体步骤包括:
步骤A:准备EPI衬底,EPI衬底包括N+型衬底及位于N+型衬底上表面的N-型外延层;
步骤B:对N-型外延层表面进行牺牲氧化,形成牺牲氧化层;
步骤C:去除上表面的牺牲氧化层;
步骤D:在N-型外延层上表面沉积薄膜;
步骤E:利用光刻工艺对沉积薄膜后的N-型外延层上表面的部分区域进行光刻处理,利用刻蚀工艺自上而下形成多个柱形深槽结构,柱形深槽结构之间相分离;
步骤F:将P型多晶硅填入柱形深槽结构并填平,形成P型柱深槽结构;
步骤G:填平后,在N-型外延层上表面和P型柱深槽结构的上表面沉积薄膜;
步骤H:利用光刻工艺对沉积薄膜后的N-型外延层上表面的部分区域进行光刻处理,刻蚀形成多个沟槽结构,每个沟槽结构位于一个P型柱深槽结构的上方,相邻的沟槽结构之间相分离;
步骤I:对沟槽结构的内表面进行热氧化处理,形成栅极氧化层;
步骤J:将N型多晶硅填入沟槽结构内且填平,形成多晶硅栅极,进而形成沟槽栅结构;
步骤K:在相邻沟槽结构之间的区域内通过注入P型杂质并推阱形成P型体区,P型体区的结深不超过沟槽结构底部,形成P型体区;
步骤L:在PB的上表面沿水平方向依次注入N型重掺杂、P型重掺杂、N型重掺杂,依次形成N+有源区、P+有源区和N+有源区;
步骤M:在多晶硅栅极、P+有源区和N+有源区的上表面沉积绝缘层,作为介质层;
步骤N:利用光刻工艺对介质层的部分区域进行光刻处理,刻蚀去除位于P+有源区和N+有源区的上表面的绝缘层,以形成金属接触孔区域;
步骤O:在介质层表面和金属接触孔区域表面沉积金属层,所述金属层通过金属接触孔区域与P+有源区和N+有源区连接形成源极金属;
步骤P:减薄背金,加工完成。
从以上描述可以看出,本发明具备以下优点:
本发明所述的带沟槽栅结构的深槽超结MOSFET器件采用沟槽栅结构,沟槽栅位于P型柱深槽结构正上方,P型柱深槽结构位于N-外延层内,该结构既保留了深槽超结MOSFET器件横向耗尽快、耐压高的特点,同时又具有沟槽栅屏蔽JFET电阻的特点,从而提高了超结MOSFET器件的功率密度。
附图说明
图1是现有的普通VDMOS器件的结构示意图;
图2是现有的平面栅深槽超结器件结构示意图;
图3是本发明的结构示意图;
附图标记:
图1中:11.N+型衬底、12.N-型外延层、13.P型体区、14.P+有源区、15.N+有源区、16.栅氧化层、17.多晶硅栅极、18.介质层、19.源极金属;
图2中:21.N+型衬底、22.N-型外延层、23.P型柱深槽结构、24.P型体区、25.P+有源区、26.N+有源区、27.平面栅氧化层、28.多晶硅栅极、29.介质层、20.源极金属;
图3中:31.N+型衬底、32.N-型外延层、33.P型柱深槽结构、34.P型体区、35.P+有源区、36.N+有源区、37.栅极氧化层、38.多晶硅栅极、39.介质层、30.源极金属。
具体实施方式
结合图3,详细说明本发明的一个具体实施例,但不对本发明的权利要求做任何限定。
如图3所示,一种带沟槽栅结构的深槽超结MOSFET器件,包括N+型衬底31,N+型衬底31上表面形成有N-型外延层32,N-型外延层32内部中部形成有多个P型柱深槽结构33,P型柱深槽结构33包括柱形深槽结构和位于柱形深槽结构内的P型多晶硅,P型柱深槽结构33的方向为自N-型外延层顶部向下,相邻的P型柱深槽结构33之间相分离,N-型外延层32内部上部形成有多个沟槽栅结构,每个沟槽栅结构位于P形柱深槽结构33的上方且相邻的沟槽栅结构之间相分离,沟槽栅结构包括沟槽结构和N型多晶硅栅极38,沟槽结构的内表面形成有栅极氧化层37,N型多晶硅栅极38位于沟槽结构内,N-型外延层内部上部形成有P型体区34,P型体区34位于相邻的沟槽栅结构之间,P型体区34的结深不超过沟槽栅结构的底部,P型体区34的顶部沿水平方向依次形成有N+有源区35、P+有源区36、N+有源区35,沟槽栅结构、N+有源区、P+有源区的上方形成有金属层,金属层与沟槽栅结构之间形成有介质层39,金属层与N+有源区、P+有源区连接,形成源极金属30。
上述带沟槽栅结构的深槽超结MOSFET器件的加工工艺为:
步骤A:准备EPI衬底,EPI衬底包括N+型衬底及位于N+型衬底上表面的N-型外延层;
步骤B:对N-型外延层表面进行牺牲氧化,形成牺牲氧化层;
步骤C:去除上表面的牺牲氧化层;
步骤D:在N-型外延层上表面沉积薄膜;
步骤E:利用光刻工艺对沉积薄膜后的N-型外延层上表面的部分区域进行光刻处理,利用刻蚀工艺自上而下形成多个柱形深槽结构,柱形深槽结构之间相分离,多个柱形深槽结构形成的布局可以为品字形、田字形、六边形、长条形等常用的半导体行业的布局设计;
步骤F:将P型多晶硅填入柱形深槽结构并填平,形成P型柱深槽结构;
步骤G:填平后,在N-型外延层上表面和P型柱深槽结构的上表面沉积薄膜;
步骤H:利用光刻工艺对沉积薄膜后的N-型外延层上表面的部分区域进行光刻处理,刻蚀形成多个沟槽结构,每个沟槽结构位于一个P型柱深槽结构的上方,相邻的沟槽结构之间相分离;
步骤I:对沟槽结构的内表面进行热氧化处理,形成栅极氧化层;
步骤J:将N型多晶硅填入沟槽结构内且填平,形成多晶硅栅极,进而形成沟槽栅结构;
步骤K:在相邻沟槽结构之间的区域内通过注入P型杂质并推阱形成P型体区,P型体区的结深不超过沟槽结构底部,形成P型体区;
步骤L:在PB的上表面沿水平方向依次注入N型重掺杂、P型重掺杂、N型重掺杂,依次形成N+有源区、P+有源区和N+有源区;
步骤M:在多晶硅栅极、P+有源区和N+有源区的上表面沉积绝缘层,作为介质层;
步骤N:利用光刻工艺对介质层的部分区域进行光刻处理,刻蚀去除位于P+有源区和N+有源区的上表面的绝缘层,以形成金属接触孔区域;
步骤O:在介质层表面和金属接触孔区域表面沉积金属层,所述金属层通过金属接触孔区域与P+有源区和N+有源区连接形成源极金属;
步骤P:减薄背金,加工完成。
本发明所述的带沟槽栅结构的深槽超结MOSFET器件采用沟槽栅结构,且沟槽栅位于P型柱深槽结构正上方,P型柱深槽结构位于N-外延层内,该结构既保留了深槽超结MOSFET器件横向耗尽快、耐压高的特点,同时又具有沟槽栅屏蔽JFET电阻的特点,从而提高了超结MOSFET器件的功率密度。
综上所述,本发明具有以下优点:
本发明所述的带沟槽栅结构的深槽超结MOSFET器件既具有深槽超结MOSFET器件横向耗尽快、耐压高的特点,又具有沟槽栅屏蔽JFET电阻的特点,进而提高了超结MOSFET器件的功率密度。
可以理解的是,以上关于本发明的具体描述,仅用于说明本发明而并非受限于本发明实施例所描述的技术方案。本领域的普通技术人员应当理解,仍然可以对本发明进行修改或等同替换,以达到相同的技术效果;只要满足使用需要,都在本发明的保护范围之内。

Claims (2)

1.一种带沟槽栅结构的深槽超结MOSFET器件,其特征在于:包括N+型衬底;
所述N+型衬底上表面形成有N-型外延层;
所述N-型外延层内部中部形成有多个P型柱深槽结构,所述P型柱深槽结构包括柱形深槽结构和位于柱形深槽结构内的P型多晶硅,所述P型柱深槽结构的方向为自N-型外延层顶部向下,相邻的P型柱深槽结构之间相分离;
所述N-型外延层内部上部形成有多个沟槽栅结构,每个沟槽栅结构位于P形柱深槽结构的上方且相邻的沟槽栅结构之间相分离,所述沟槽栅结构包括沟槽结构和N型多晶硅栅极,所述沟槽结构的内表面形成有栅极氧化层,所述N型多晶硅栅极位于沟槽结构内;
所述N-型外延层内部上部形成有P型体区,所述P型体区位于相邻的沟槽栅结构之间,所述P型体区的结深不超过沟槽栅结构的底部,所述P型体区的顶部沿水平方向依次形成有N+有源区、P+有源区、N+有源区;
所述沟槽栅结构、N+有源区、P+有源区的上方形成有金属层,所述金属层与沟槽栅结构之间形成有介质层,所述金属层与N+有源区、P+有源区连接,形成源极金属。
2.一种带沟槽栅结构的深槽超结MOSFET器件的加工工艺,具体步骤包括:
步骤A:准备EPI衬底,EPI衬底包括N+型衬底及位于N+型衬底上表面的N-型外延层;
步骤B:对N-型外延层表面进行牺牲氧化,形成牺牲氧化层;
步骤C:去除上表面的牺牲氧化层;
步骤D:在N-型外延层上表面沉积薄膜;
步骤E:利用光刻工艺对沉积薄膜后的N-型外延层上表面的部分区域进行光刻处理,利用刻蚀工艺自上而下形成多个柱形深槽结构,柱形深槽结构之间相分离;
步骤F:将P型多晶硅填入柱形深槽结构并填平,形成P型柱深槽结构;
步骤G:填平后,在N-型外延层上表面和P型柱深槽结构的上表面沉积薄膜;
步骤H:利用光刻工艺对沉积薄膜后的N-型外延层上表面的部分区域进行光刻处理,刻蚀形成多个沟槽结构,每个沟槽结构位于一个P型柱深槽结构的上方,相邻的沟槽结构之间相分离;
步骤I:对沟槽结构的内表面进行热氧化处理,形成栅极氧化层;
步骤J:将N型多晶硅填入沟槽结构内且填平,形成多晶硅栅极,进而形成沟槽栅结构;
步骤K:在相邻沟槽结构之间的区域内通过注入P型杂质并推阱形成P型体区,P型体区的结深不超过沟槽结构底部,形成P型体区;
步骤L:在PB的上表面沿水平方向依次注入N型重掺杂、P型重掺杂、N型重掺杂,依次形成N+有源区、P+有源区和N+有源区;
步骤M:在多晶硅栅极、P+有源区和N+有源区的上表面沉积绝缘层,作为介质层;
步骤N:利用光刻工艺对介质层的部分区域进行光刻处理,刻蚀去除位于P+有源区和N+有源区的上表面的绝缘层,以形成金属接触孔区域;
步骤O:在介质层表面和金属接触孔的区域表面沉积金属层,所述金属层通过金属接触孔区域与P+有源区和N+有源区连接形成源极金属;
步骤P:减薄背金,加工完成。
CN201811012310.XA 2018-08-31 2018-08-31 带沟槽栅结构的深槽超结mosfet器件及其加工工艺 Pending CN108807506A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811012310.XA CN108807506A (zh) 2018-08-31 2018-08-31 带沟槽栅结构的深槽超结mosfet器件及其加工工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811012310.XA CN108807506A (zh) 2018-08-31 2018-08-31 带沟槽栅结构的深槽超结mosfet器件及其加工工艺

Publications (1)

Publication Number Publication Date
CN108807506A true CN108807506A (zh) 2018-11-13

Family

ID=64081527

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811012310.XA Pending CN108807506A (zh) 2018-08-31 2018-08-31 带沟槽栅结构的深槽超结mosfet器件及其加工工艺

Country Status (1)

Country Link
CN (1) CN108807506A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111584365A (zh) * 2020-04-29 2020-08-25 北京时代民芯科技有限公司 一种低米勒电容槽栅vdmos器件制造方法
CN116364772A (zh) * 2023-04-11 2023-06-30 上海超致半导体科技有限公司 一种超结igbt功率器件及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241768A (ja) * 2003-01-16 2004-08-26 Fuji Electric Device Technology Co Ltd 半導体素子
US20100044786A1 (en) * 2008-08-19 2010-02-25 Nec Electronics Corporation Semiconductor device
CN105702739A (zh) * 2016-05-04 2016-06-22 深圳尚阳通科技有限公司 屏蔽栅沟槽mosfet器件及其制造方法
CN208923142U (zh) * 2018-08-31 2019-05-31 无锡麟力科技有限公司 带沟槽栅结构的深槽超结mosfet器件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241768A (ja) * 2003-01-16 2004-08-26 Fuji Electric Device Technology Co Ltd 半導体素子
US20100044786A1 (en) * 2008-08-19 2010-02-25 Nec Electronics Corporation Semiconductor device
CN105702739A (zh) * 2016-05-04 2016-06-22 深圳尚阳通科技有限公司 屏蔽栅沟槽mosfet器件及其制造方法
CN208923142U (zh) * 2018-08-31 2019-05-31 无锡麟力科技有限公司 带沟槽栅结构的深槽超结mosfet器件

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111584365A (zh) * 2020-04-29 2020-08-25 北京时代民芯科技有限公司 一种低米勒电容槽栅vdmos器件制造方法
CN111584365B (zh) * 2020-04-29 2024-01-30 北京时代民芯科技有限公司 一种低米勒电容槽栅vdmos器件制造方法
CN116364772A (zh) * 2023-04-11 2023-06-30 上海超致半导体科技有限公司 一种超结igbt功率器件及制备方法
CN116364772B (zh) * 2023-04-11 2024-01-30 上海超致半导体科技有限公司 一种超结igbt功率器件及制备方法

Similar Documents

Publication Publication Date Title
US8587054B2 (en) Trench MOSFET with resurf stepped oxide and diffused drift region
US8373224B2 (en) Super-junction trench MOSFET with resurf stepped oxides and trenched contacts
CN102169902B (zh) 一种深槽和深注入型超结器件
CN206490066U (zh) 边缘终止的半导体器件
US8445958B2 (en) Power semiconductor device with trench bottom polysilicon and fabrication method thereof
JP2013258327A (ja) 半導体装置及びその製造方法
TWI495100B (zh) 用於高壓半導體功率裝置的邊緣終接的新型及改良型結構
TWI539577B (zh) 用於溝槽式裝置的整合式閘極佈設區及場植入部終止技術
CN106575654B (zh) 半导体装置中的简易电荷平衡
CN208127215U (zh) 包括终止结构的电子设备
KR20130073781A (ko) 반도체 소자 및 그 제조 방법
CN108604551A (zh) 半导体装置以及用于制造这种半导体装置的方法
CN108091573A (zh) 屏蔽栅沟槽mosfet esd结构及其制造方法
US20160293744A1 (en) Semiconductor device and manufacturing method for semiconductor device
KR101802419B1 (ko) 트렌치형 필러 옥사이드를 이용한 탄화규소 슈퍼정션 모스펫 및 그 제조방법
WO2008094497A1 (en) Termination trench structure for mosgated device and process for its manufacture
CN104979213B (zh) 形成具有包括绝缘区的终止区的电子装置的工艺
CN101964343B (zh) 半导体装置
US20080197381A1 (en) Semiconductor device and method for manufacturing same
KR102100863B1 (ko) SiC MOSFET 전력 반도체 소자
CN108807506A (zh) 带沟槽栅结构的深槽超结mosfet器件及其加工工艺
CN208923142U (zh) 带沟槽栅结构的深槽超结mosfet器件
CN208938973U (zh) 带侧墙栅结构的深槽超结mosfet器件
CN104900697A (zh) 半导体装置及其制作方法
CN209104155U (zh) 功率器件和电子设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination